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This paper is of a methodological character. It econtains a part of the
theory of propositional and predicate calculi, developed from a purely
algebraic point of view. The languages of propositional and predicate
caleuli are considered as certain abstract algebras with operations deter-
mined by logical connectives and quantifiers. The set of terms is treated
in & similar way. From the methodological point of view, the method just
mentioned ecauses an elimination of proofs by induetion with respect to
the length of formulas. Inductive arguments are used only to state that
some operations on sets of formulas are homomorphisms (theorems 2.2,
7.2y 1.3, 7.4, 9.1, 9.2), and that some algebras of formulas or terms are
free (theorems 2.1, 6.1, 7.1). Other theorems (3.1, 3.2, 8.3, 8.1, 8.2, 8.3,
8.4, 9.3, 9.4), traditionally proved by induction with respect to the length
of formulag, are now proved without the use of any induetive argument.
Rach of those theorems has the form of an equality between two expres-
sions. The proof iy based on the fact that both sides of the equality can
be interpreted as homomorphisms in suitable algebras. These homomor-
phigms coincide on & set of generators. Consequently they are equal,
i. o, the equality holds. Thus many inductive reasonings are now replaced
by the purely algebraic argument that every mapping from generators
of an algebra into another similar algebra has at most one homomorphic
oxtengion over the whole algebra (1.2 and 4.2). Another algebraic argu-
ment froquently used in thiy paper is that the superposition of two
homomorphisms is a homomorphigm (1.1 and 4.1).

The developed part of the theory of propositional and predicate
caleuli which is presented here treats of the interpretation of formulas
and terms as mappings in suitable algebras or sets. We recall that, given
a Boolean algebra 4, every formula o from a propositional calculus can
be interpreted as a mapping a,: AXx...X4 - 4. Similarly, in the case

of a predicate ealoulus, if X is a gi A is a Boolean algebra and B
i3 a realization of functors xyé‘; ingdAtem XX...XX into X, and
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of predicates as mappings from X x...xX X into 4, then every formula «
can be interpreted as a mapping op: XX...XX — 4, and every term 7
can be interpreted as a mapping Tp: Xx..xX = X. The mappings
a4, ag, 7 Play an important part, o.g. in algebraic lproo'fs.o:l? the com-
pleteness theorems for the clagsical propositional and predicate ealeuli.
These mappings also play an important part in the investigation of non-
classical propositional and predicate caleuli, Boolean algebras being re-
placed by algebras of another kind (e. g. by relatively pseudo-comple-
mentative lattices for the intuitionistic ecaleuli, ebe.) (*).

The ease of predicate caleuli is much more complicated than that
of propositional ealeuli. Tn the case of predicate caleuli thore are various
possibilitics of 2lgebraic interpretations of quentifiors. One of the possible
interpretations is that in the theory of polyadic algebras or of eylindrical
algebras (?). The interpretation assumed in this paper is of another type.
It requires to assign, with the formalized language of & predicate caleulus,
two kinds of algebras called Q-algebras and X-algebras respectively
(§6 and § 7). They are algebras with infinite operations, i. e. operations
performed on some infinite sets of formulas. The general theory of alge-
bras with operations performed on some infinite subsets is the subject
of §4. The algebraic investigation of formalized languages of predicate
caleuli is the main part of this paper (§§ 5-9). The algebraic investigation
of formalized languages of propositional caleuli and languages of terms
is only of an auxiliary importance (§§ 2, 3).

The paper is written in an abstract way, the degree of generality
being greater than is necessary for applications in Mathematical Logie.
The great degree of generality is assumed because it brings out the essen-
tial algebraic aspects of the paper without causing any complications.
The close connection with concrete problems in Mathematical Logic is
ghown in Examples 1-6.

Many ideas appearing in this paper are well known among specialists

(1) The truth-table method applied to two-valued and many-valued proposi-
tional caleuli can be considered as the first form of interpretution of formulas o os
mappings aq in suitable algebras 4. For the case of the Meyting and Lowis propo-
gitional caloulus, see especially MeKinsey [1], MeKinsoy and Tarslki [1-37], Rieger
[1]. The interpretation of formulas « (in the Ileyting predicate caloulus) us map-
pings ar was first used by Mostowski [1] to prove the non-deducibility of somae
formulas. For systematic applications of this interpretation to the proof of the eom-
pleteness of the classical and non-classical predicate caleuli and related quostions,
see Henkin [1], Rasiowa [1-8], Rasiowa and Sikorski [1-4], Rieger [2], Sikorski [11,
Stone [1].

(2) Halmos [1-3]; Henkin [2], Tarski [1], Tarski and Thorapson [1]. Algebraic
aspects of Logic have been the subject of many papers, See o, g. Lo [1], Robinson [1}.
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interested in algebraic methods in Mathematical Logie (%). It has seemed
ugeful to collect and systematize these ideas in a paper. The notion of
X-algebras which plays a fundamental role in the investigation of pre-
dicate calculi seems to be the only essentially mew notion in this paper.

TERMINOLOGY AND NOTATION

The words mapping and function have always the same meaning
in this paper. We write f: X — ¥ to indicate that f is a mapping defined
on a get X with values in a set Y. Usually, if f denotes & mapping, then
f(w) is used to denote the value of f at & point . Sometimes we alyo write
fo or f, instead of f(a). If, for every weX, y, is an element in a get Y, then
the funetion y, which assigng to every weX the element y,, will also be
denoted by {¥z}mx. The set of all such funetions y = {¥,}sx, i. e. the
set of all funetions y: X — ¥, will be denoted by Y*, Clearly ¥* ig the
Uartesian product of X replicas of the set ¥. The elexnent v, will sometimes
be called the m-th coordinate of the point y = (Yulpex ¢ Y*. I X i the
set of the integers 1,...,m, then woe write Y™ instead of XY=,

If ~ is an equivalence relation in a set X, then, for every # X, |u|
denotes the set of all #" such that @ ~ ', i. e. the equivalence clags con-
taining @, and 4/~ denotes the set of equivalence classes |#|, »«X. If ~ is
another equivalence relation in X, the corresponding equivalence classes
are denoted by |z|.

In the sequel we shall examine a fixed set & whose elements will be
called signs. A finite sequence formed from. signs $;e% (¢ = 1, ..., n) will
be written.

8185008y

Pinite sequences of signg will usually be denoted by Greek letters «, B,
y, v (with indices if necessary) and oalled ewpressions.

If o denotes an expression ¢,...8, and p denotes an expression
814, 8y, then af will denote the expression

’ 7
E TR WY ST .

() For instance, during the preparation of this paper I listened to a talle of
A, Mostowski al the Polish Mathematical Society, who suggested also a similar
interpretation of quantifiers as infinite operations (without introduweing the X-alge-
bras).

Some ideas and notation in this paper are the result of my discussions with
II. Rasiowa during the preparation of our book Mathematics of Metamathematios
(to appear in Monografie Matematyoczne).
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The meaning - of notation like

afy, asf, sas'B,

(where a, 8,y ay, ..., & are expressions and s, s’ arve signs) is similar.
Let a be an expression

Soy0,.. 0y,  Obc.

0y 83 C8pes e Oy Sy Oy 1

where $,,...,8, are signg and ay,..., 4, are finite gequences of signs
(some of which may bo empty), and let £y, ..., B, bo cortain expressions.
The expression

21 ﬂl g 132 e a‘nﬁ'n Uyl

is said to be obtained from a by the simultancous replacement of the
oceurrences of signs s; (¢ =1,...,%) in o by expressions By, ..., fu.

Let o be an expression, let s,, ..., 8, be signs, and let 8, ..., 8, be
expressions. The expression obtained from o by the simultaneous repla-
cement of every occurrence of s, by By, of every occurrence of s, by f,, ...,
and of every occurrence of s, by B, will be denoted by

(1) a(31/.817 “'18m/ﬁm)'

Bxpression (1) will be called, the result of the substitution of £y, ..., B for
81y -rey Sy M

Sometimes, in order to emphasize that an expression o contains,
perhaps, some 8igns 8, ..., 8,, we shall denote it by

a(S1y eny Spm)-
Then substitution (1) will also be denoted, more suggestively, by
a(Bry ey Bm)-

The letter M will always denote the set of all non-negative integers.

PART I
ALGEBRA OF FORMALIZED LANGUAGES OF THE ZERO ORDIER

§ 1. Abstract algebras. We agsume that the reader iy familiar with
the notion of abstract algebra. We recall only some fundamental defini-
tions to fix the terminology.

Any mapping 0: 4™ — 4 iy called an m-argument operation in a set A
(m =20,1,2,...). The case m = 0 is admisgible: a 0-argument operation
is a constant oeAd.

A subset A’ C A iy said to be closed wnder an m-argument operation o
in A provided

(@, oory ap)ed’  for all  a,..., ¢yed’,

ALGRBRA OF PORMALIZED LANGUAGES I3

By an abstract algebra or, simply, algebra we understand any pair
(1) {4, {05) yos)

where A is & non-empty sot and, for every pe®, o, is an operation in A,
The cardinal of @ may be arbitrary; in particular, the set & may be
empby.

To simplify notation, wo shall not strietly distinguish between alge-
bra (1) and the sot A4 of its elements.

Any subset A'C A elosod with rospect to all the operations o,
(pe®) in called a subalgebra of algobra (1). A sot G C A is said to generats
the algebra A (see (1)), or: to be a sel of generators for 4 provided A is the
only subalgebra containing @. .

Let (1) and

(2) {Bi {Olm}wm’}

be abstract algebras, o, and o, being respectively an m,-argument opera-
tion and an m,-argument operation. If @' = ¢ and m, = m,, for every g,
then algebrag (1) and (2) are said to be similar. Usually, if (2) is similar
to (1), then the corresponding operations o, will be denoted by the same
gymbol o,, i ¢. wo ghall then write

(3) {B’ {Om}wfl)}
ingtead of (2).

A mapping h:A ~ B i said to be & homomorphism from an algebra
(1) into a similar algebra (3) provided

7"(001(“17 ey a’m,,,)) = ow(h(al) IR h(“m,,,))

for all pe® and all a,, ..., a,m,weA. A one-to-one homomorphism from A4
onto B is said o be an dsomorphism. If there exists an isomorphism A
from 4 onto B, then A and B are said to be isomorphie, and A~* is an
igomorphism from B onto 4.

1. If 4, B,0 are similar algebras, and

hid -»B, ¢:B-~C
are homomorphismg, then the superposition
gh: A - C

18 also a homomorphism.

1.2, Let @ be o set of generators for an algebra A, and let B be an algebra
similar 1o 4. If & mapping f: G — B can be ewtended o a homomorphism
hi A — B, then this homomorphio omtension h is unique.

Let & Lo a clags of gimilar algebrag., An algebra 4 <R is said to be
R-fres if it contains a set G of generators such that every mapping
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f: @ - B, where B is any algebra in &, can be extended to a homomorphism
h: A - B. Then & is said to be a set of R-free generators for A.

1.3, If A and A’ are R-free algebras with sets G and G of K-free gener-
ators respectively, and the sets @, G’ have the same cardinal, then A and A’
are tsomorphic. More precisely: every one-to-one mapping from G onto G
can be extended to an isomorphism from A onto A’.

§ 2. Formalized languages of the zero order.
the zero order we shall understand any ordered pair

By an  alphabet of

oy = {V7{-(pm]'an} )

where
1° V, &y, &y, Dy, ... are digjoint sets,
2° the set V is not empty.
Elements of the set

=V Gudubyo...

are called signs of the alphabet «7,. Elements in V will be called variables
and denoted by v. Elements in

D=@P,u P Dyu...

are called functors or connectives and denoted by o. More precisely, any
0e®, iy called an m-argument functor or connective.

As wag stated on p. 3, we can form expressions from signs in &,
i. e. finite sequences of signs of &,. Let J be the smallest set of finite
sequences 7 of signs of 7, such that

a) all one-element sequences », where v is in V, are in J7;

b) if 0D, and 7,, ..., 7, are in 7, then the expression or,...7,, i8
algo in 7.
By a), V is a subset of 7.

If clements o<®P are called connectives, then expressions in J aro
usually called formulas (more precisely: formulas of the mero order). 1f
olements oe¢® are called functors, then the exproessions in 7 are usually
called torms.

The orcdered pair

&y = |y, T}

is said to be a formalized lunguage of the zero order. More precigely, £, is
said to be the formalized language based on the alphabet o7,

Example 1. Suppose that V is infinite, @, contains only one sign N called the
negation sign, P, contains only three signs D, C, X called respectively the disjunation
sign, the conjunction sign and the implication sign, the remaining sets By, Py, Dy, ...
being empty. Then 7 iy the set of all formulas of a propositional calonlus (in the
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sense usually adopted in Mathematical Logic), ¥V being the set of all propositional
variables. Moroe exaclly, 7 is tho set of formulas of a propositional caleulus where
Lukasiowicz’s parenthesis-loss notation is applied.

Another important interpretation of 7~ will be given in § 5, Example 4.

The set Z can be conceived as an abstract algebra

(1) {ﬁ"’ {o}oa'l’}

with the following definition of operations: if 0<®,,, then the expression
07;... T, 18 8aid to bo the result of the m-argument operation o performed
on elemoents (expressions) vy, ..., v, in J. In symbols,

(2) O(Tyy v ooy Ti) == 0T 0 Ty, for 7, Tped .

In other words, every m-argument functor o determines, in a natural
way, an m-argument oparation (2) in 7. This operation is denoted by the
same symbol o. Algebra (1) is the get 7 with all the operations determined
by functors.

Algobra (1) is called the algebra of formulas in &,, or the algebra of
terms, according to the name adopted for expressions in 7.

Tt 8y be the clags of all algebras similar to the algebra 7. Aceording
to tho convention on p. b, if A4,¢®R,, then the operation in A which
corresponds to operation (2) in & will be denoted by the same symbol o,
i e. any algebra 4d,e¢R, will be written in the form

{-Ao’ {o}oaw} .

2.1. The algebra {7, {0}oe) s Ryfres, the set V being the set of K-
free generators.

In fact, every mapping f:V — A, (4,¢8;) can be extended to
o mapping h: I - A, defined by induction on the length of re7, as
follows:

(i) for every » in V, h(v) = f(v);

(@) if h(w) is defined for some 7,7, 4 =1,
expression ovy...7,, where 0¢®,,, then

ey h’("f‘m))'

The uniqueness of () follows from the fact that v can be represented
in the form or...7, in exactly one way.

Tt follows from. (i) that h is an extension of f. It follows from. (ii)
that % is & homomorphism from J into 4,. It follows from a) and b)
that V is a set of generators for . This proves 2.1.

Congider now the case where 4, is the algebra J itself. Any mapping

(3) aV T

«ovy My and if v is the

hiz) = ofh(z),
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is called a substitution in the language &,. By 2.1, the mapping (3) can be
uniquely extended to a homomorphism denoted by the same letter &:

(4) 8: T -7,

The value of the homomorphism ¢ at an element v <.7” will be denoted by $7.
Suppose that #;,..., v, are all variables appearing in a v, and
denote = by v(v;,...,%,;) (sec p.4). Then

(8) 87 = 7(3vy, ..., V)

(see p. 4). In fact, both expressions, considered as funetions of ves,
are homomorphisms from 7 into itself. They coincide on the sot V of
generators for 7. By 1.2 they are equal.

Identity (5) means that homomorphism (4) coincides with the ope-
ration of substitution for variables in the sense definoed on p. 4. This
remark can be formulated in the form of the following theorem:

2.2. Twery substitution (4) in 2, 48 a homomorphism from the algebra
T into itself.

§ 3. Interpretation of formulas as mappings. Let £, bo the formalized
language of the zero order from § 2, and let

{40y {0}000]
be an algebra similar to the algebra

{'?_’ {O}OE(D}

discusged in § 2.

Every expression v in .77 determines, in a natural way, a funetion
(of several variables) in 4, with values in 4,. This function will be denoted
by T4, - TO obtain 74, it suffices

A) to interpret variables appearing in v ag variables ravning through
Ao;

B) to interpret signs oe® in v ay signy of the corvesponding opera-
tions o in 4,.

By this definition, T4, I8 & mapping

Ty A7 Ay,

where V., ig Eho sob of all variables appearing in = However, every
mapping f: dg° - 4y, where V' = (v, ...,9,) is 8 subset of ¥, can bo
. . 3 i

interpreted. as a mapping f: 4] - 4, on assuming

f(o) = f(bvu ey D‘u,,,)

for every element » = {9,},,pcd) . The element f(v) deponds, of course,
only on coordinates Dy ooy 0y, of 1.

n
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In. particular, T4, can be conceived as a mapping
(1) Tayt A7~ 4y

which to every ved; assigns an element v (0)ed,.

Elements v = {v,},,7, i. e. the mappings
(2) v:V - 4,
will be called valuations in A,.

In this paper we shall replace the above intuitive definition of T4y
by another definition, equivalent but more precise and more algebraic
(see (4) below), which will be used as the sterting point for further in-
vestigations.

Lot v e a fixed valuation (2). By 2.1, v can be uniquely extended
to & homomorphism from the algebra  into the algebra 4,. Denote this
homomorphism by v, . Thus, for every 77,

(3) 4, (7)
is a well defined element in 4,. If v iy fixed and b is variable, then the
element (3) is a function of ved). Denote this funetion by 74, By defi-
nition,
(4) T4, (V) = 04,(7).
That is the mapping 7, in (1). The easy proof of the equivalence of defi-
nitions (1) and (4) is omitted because we shall use only definition (4).

Lxample 2. Let %, be the formalized language of a propositional caleculus
described in § 2, Example 1. Let 4, be a Boolean algebra. For any a, bed,, let Na
denote the complement of a, let Dab and Cadb denote the meet and join of ¢ and b
respectively, and let Iab = DNab. Let \/ denote the unit element of .A. Then, for
every formula v in 7, 7., is identically equal to V in every Boolean algebra 4,
(or: in the two-element Boolean algebra Ay) if and only if = is a propositional
tautology. The verification whether 74, is identically equal to the unit element in
a two-element Boolean algebra A4, is another formulation of the well-known truth-
table method.

The following theorems express fundamental properties of =, .

To formulate the first theorem, let us suppose that

‘Bo: {O}ow}

iy another algebra similar to {77, {0},.s) and that h: 4, — B, is a homo-
morphism. For every valuation v = {v,},,p in 4, let kv be the valuation
{h(9)}yer in B,. Thus hv is the superposition of »:V — 4, and
h:d, ~ B,. Under the above hypotheses the following theorem holds:

3.1. For every te7,
(5) TBO (hb) = h(TAn(b))'

In fact, for every fixed valuation v, both sides of (5), considered as
functions of veJ, are homomorphisms from the algebra J into the


GUEST


10 R. SIKORSKI

algebra B, by (4) and 1.1. These homomorphisms coineide on thoe set V
of generators for 4. Thus they are equal by 1.2.

Now let ¢ be a substitution in 2, (seo § 2, p. 8). The substitution ¢
induces a mapping
(6) 8.4yt AL - AT

defined as follows: for every valuation v = {U},p i A, 84,0 ig the

valuation {804 (D))o - We recall that $v is the value of 8 at veVy, i, 0.

an expression in 7, and $v, is the mapping determinoed by the expres-
sion 8v. Thus 8, v iy a point in 4] whoso o-th coordinate iy oqual to the
value of the mapping $v,, at v. Under the above notation the following
theorem holds:

3.2. For every e,

(M) 87,4, (V) = T4,{(84,9)-

The left side of (7) is the value of the mapping Sz, determined by
the expression $v (the result of the substitution 3 in » — see p.8) ab
the point v.

The proot of 3.2 is similar to that of 3.1. By (4), 2.2 and 1.1 the left
side of (7), congidered as a function of 7, is & homomorphism from
into 4,. By (4) tho right side of (7)is also & homomorphism from 7~ into 4,.
By the definition of (6), both homomorphisms coincide on the set V' of
generators for 7°. By 1.2 they are equal.

Suppose now that ~ is an equivalence relation in & and that with
every 0c¢®,, (m = 0,1,2,...) there is associated an m-argument opera-
tion in 7 j~, denoted by the same letter o, in such a way that the natural
mapping

(8) h(v) = |v|eT |~  (ved)

is a homomorphism from the algebra {7, {0},.) onto the algebra
{7 |~ {o}m,}. Tvery substitution 8:7V - 7 induces & corresponding
valuation &' in the algebra T'/~, viz.

(9) - {|§1J|}1,,V.
The letter ¢ will denote the identity swhstitution:
(10) ) V-,

Under the above hypotheses the following theorem. holds:
3.3. For every v in 7,

(11) vy (8)) = 187,
In particular, ‘

(12) oy (V) = 7]

icm
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In fact, both sides of (11), when congidered as functions of 7, are
homomorphisms from the algebra 7 into the algebra Z /[~ on account
of (4), (8), 2.2 and 1.1. Since they coincide on the set V of generators
for 7, they are equal by 1.2,

Example 3. Lot %, bo the langnage of a propositional caleulus described

in § 2, Example 1. Write 7, ~7, for v,, 7, ¢ 7 il and only if both formulas Ir,7, and
Iz, ave -propositional tautologies. Then the equalities

N{lz]) == N[,

Cllzyls Iml) = |Cry 7y,

DUTH: [Tgn el \DHTz!,
Tz ls Ivpl) == [Trymyl

defines some operations N, D, G, I in 7 /~, corresponding to the operation N, D, C, I
in 7. Mapping (8) is & homomorphism. Note that '/~ is a Boolean algebra with
complementation N, join D and meet C. Identities (11) and (12) play a fundamental
role in the Boolean proof of the completeness theorem for the propositional calculus.

PART II
ALGEBRA OF FORMALIZED LANGUAGES OF THE FIRST ORDER

§ 4. Generalized abstract algebras. Let 4 be a non-empty set. By
a generalized operation in A we shall understand any mapping

0:D - A

where D is a class of non-void subsets of A. Thus O asgigns to every set
SeD an element O e 4. The clags D is called the domain of the generalized
operation O in question, according to the terminology assumed generally
for mappings. Sets S<D are called sefs admissible for the operation O.
It is important that sets § in D can be infinite. To underline this fact
we also call O an infinite operation in A (operations defined on p. 4
are called finite operations). If a set 8¢ D iy given in the form of an indexed
sel {a}sr, then we write

(1) Oty
ingtead of OS.
A subsot A’ C A is said 10 be closed rwith respect to a generalized opera-
tion O in. 4 provided that, for every set SC A',
8e¢D implies 0Sed’.

By a goneralized abstraot algebra, or simply: generalized algebra, we
shall understand any triple

(2) {Av {0p}geos {Ow}w'ﬂ}

where 4. is a non-empty set, o, is a finite operation in 4 for every ge®,
and O, is an infinite operation in 4 for every we¥. The cardinals of the
sets @ and W can be arbitrary; in particular, the set @ or ¥ can be empty.
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To simplify the notation, we shall not strietly distinguish between
algebra (2) and the set 4 of its elements.
Of course, if (2) is a generalized algebra, then

(3) {A’ (Ow}wm}

ig ap algebra in the sense defined in §1, p. 5.

Any subset A'C A closed with respect to all the operations o,
(pe®) and all the generalized operations 0, (ye¥) is called a subalgebra
of the generalized algebra (2). A set @ C A is said to generate the generalized
algebra (2), or: to be a set of generators for (2), provided 4 is the only sub-
algebra containing G.

Let (2) and

(4) {Ba {ol}qaerm {O:p}WW’}

be generalized algebras, Algebras (2) and (4) are said to be simdlar if
Y =¥ and the algebras

{A’ {Oov}waw}: {B7 {0;}wfb'}

are similar in the sense defined in § 1, p.5 (the last condition implies
that @' = @). Usually, if (4) is similar to (2), then the corresponding
operations oy, will be denoted by the same symbol o,, and the correspond-
ing generalized operations O, will be denoted by the same symbols O,
a§ in 4, i.e. we ghall write

(8) {B7 {00} ey {Ow}wa!!’}

ingtead of (4).

A mapping h: A - B is said to be a homomorphism from algebra (1)
into a similar algebra (5) provided it is & homomorphism of the algebra
{4, {0)}pe} into the algebra {B,{0,}se) in the sense defined in §1,
p. b, and, moreover, for every ye¥,

(6) (0,8) = 0,h(8)

for every set S admissible for 0,. The lagt condition should be understood

a8 follows: If § is admissible for 0, in 4, then the set A (9) is admissible

for the corresponding operation 0, in B, and equality (6) holds.
The following gemeralizations of 1.L and 1.2 are true:

4.1. If A, B,C are generalized algebras, and
h:A-»B, ¢g:B~>0
are homomorphisms, then the superposition

ghi A - ¢
8 also a homomorphism.

icm
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4.2, Let G be a set of generators for o generalized algebra A, and let B
be a generalized algebra similar to A. If a mapping f: G » B can be extended

" to a homomorphism h: A - B, this homomorphic extension h is unique.

Let & be a class of similar generalized algebras. A generalized alge-
bra A similar to algebras in R is said to be a generalized K-free algebra
if it contains a set & of generators such that every mapping f: G — B,
where B is any algebra in &, can be extended to a homomorphism
h: A - B. Then @ is said to be a set of generalized R-free generators for A.

Note that, in contrast to an analogous definition on p. 6-7, we do
not require here that 4<RK. Consequently no analogue of 1.3 holds for
generalized R-free algebras.

A generalized algebra {A’, {0p}ee0) {Op}yew} i8 5aid to be an extension
of a similar algebra {4, {0,}pw) {Op}yer} Drovided 4 is a subset of A’ and

1° for every pe® and for all elements a,, ..., aycd

4 (al" -y Om) =O/(a’17" “m)
0, and o, being supposed to be m-argument operations (m = 0,1,2,...);

20 for every weW, if a set S C A is admissible for 0, then it is also
admissible for 0, and

0,8 =0,8.

A generalized algebra {4, {0,}p0, {Op}pew] 18 s2id to be. a complete
algebra provided the class of all non-empty subsets of A is the common
domain for all the generalized operations O, in A.

Hvery generalized algebra {A, {00} e s { w]v,s.,,] can be extended
to a similar complete algebra {A {02} pars {Op)yew} In various ways.
Note the following special way of extension: Let a, be a fixed element,
apdd, and let A’ = A U (a,). Operations in A’ are defined as follows:

, 0p(tyy vy ) i @y ..., aned,
0p(@yy v vy Q) =

@y otherwise,
7
™ 0’8 0,8 if 8CA and 8 iy admissible for 0,
LA PR otherwise.

In other words, the result of a finite or infinite operation in A4’ is equal
t0 @, unless the operation in question is feasible in 4.

According to the convention on p.12, if 4’ is an extension of 4,
then corresponding finite and infinite operations in A’ will often be de-
noted by the same symbols as operations in 4.

§ 5. Formalized languages of the first order. By an alphabet of the
first order we shall understand an ordered system

A = lV; {qjm}mgM; {Hm}nmnla {Om}meM7 Q7 7},
where


GUEST


14 R. SIKORSKI

10V, @y, Oyy By, ooy Iy, Iy, My ooy Oy Ofy Oyy ooy @, F are dis-
joint sets,

22V, dyo Il ol o...and Oy v €y o Oy u ... are not empty sots,

3° if the set @ is not empty, then the set ¥ is infinite.

We shall uge the notation

D=Dy Dy Pyo...,, O=I, oI ilou...,
C=0,u0,uCu..., F=VodolluoCugu¥.

Elements in ¥ will be ealled variables or, more precisely, free indi-
vidual variables and will be denoted by » with indices. Klements in @
will be ealled functors and denoted by o; more precisely, elements in @,
will be ecalled m-argument funciors. Elements in @, will algo be ecalled
individual constants. Blements in I7 will be called predicates and denoted
by II; more precisely, elements in I7,, will be called m-argument predicates.
Rlements in ¢ will be ealled conneotives and denoted by o; more precisely,
elements in C,, will be called m-argument connectives. Blements in @ will
be called gquantifiers and denoted by O. Elements in 7 will-be called
bound individual variables and denoted by &, 7, L.

All elements in & are called signs of the alphabet ..

It follows from 1°, 2° that the ordered pair

Ay = {V7 {q)m}mﬂn[’

ig an alphabet of the zero order, with the set &, = V' U @ of signs. By
§3 a), b), we can form the corresponding set J of formulas of the order
zero and the language &, = {%,, 7} of the order zero. In Part IT of this
paper, expressions in 7~ will always be called terms and denoted by r.

By means of signs in & we will also form other expressions, called for-
mulas of the first order, or gimply: formulas. Viz. the set & of all formulas
of the first order is the smallest set of expressions formed from signs
in &, such that

A) if well, and 7,...,7, are in ., then the expression

(1) Ty oo T
is in &F;
B) if 0eC,, and a,..., a, are in &, then the expression
00+ Cy,
is in &
C)If 0@, eV, a(v) is an expression in F, and &<V doos not appoear
in a(v), then the expression
O%a(f)
is in &#.
Formulas of form (1) are said to be elementary.
Formulas in & will be denoted by a, g, ».

icm
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The triple
Y = oA, T, F)

ig said to be a formalized language of the first order. More precisely, & is
said to be the formalized language based on the alphabet /. The language

Lo = {aly, T}
is called the language of terms of 2.

Bxample . Suppose that ¥ and ¥ are infinite sets, 0; contains only one sign N,
called the negation sign, (', contains only three signs: D, G, I, called respectively the
disjunction gign, the conjunction sign and the implication sign, all the sets 0y, Oy, C,, ...
being empty. Suppose also that @ containg only two gigns E and U called respectively
the ewistential quantifier and the universal quantifier, and that @ and IT are any sets
satisfying hypotheses mentioned in 1° and 2°. Then J and # are respectively the
et of all terms and the set of all formulas (in the sense usually adopted in Mathema-
tical Logie) of the predicate caleulus based on the alphabet .7, Lukasiewicz’s paren-
thesis-less notation being adopted.

By § 2, the set 7 of all terms will be conceived as an abstract algebra

(2) {‘7? {o}oafﬂ}

with operations defined by § 2 (2). This algebra will now be called the
algebra of terms of the language 2.

The set # of all formulas can also be considered as an abstract algebra,
viz. a8 the algebra

(3) {ﬂ—v [O}oao}

with the following definition of operations: if 0e¢C,,, then the formula
00y...ay is 82id to be the result of the m-argument operation o performed
on elements (formulas) o, ..., ap in #. In symbols,

(4) 0(Qpy eevy Op) = 001 . Oy -

. In other words, every m-argument connective o determines an m-argument

operation (4) in &. This operation is denoted by the same symbol o.
Algebra (3) is the set & with all the operations determined by connectives.

Howevcr, algebra (3), called the algebra of formulans of £, does not
play any cssontial part in the examination of the formalized language %
of the first order because it does not take into consideration the quan-
tifiers which should also be interpreted as operations on formulas (see O)).
To include quantifiers into algebraic consideration, we. shall define in
§§ 6 and 7 two kinds of generalized algebras which play an essential part
in the algebraic investigation of the language .# of the first order.

§ 6. The Q-algebra of formulas. Formulas o, # in & are said to be
syntactioally equivalent, in symbols

an~f,
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provided there exigts a formula y in & such that

v a = 7(4‘1/517 seey Cn/én);
B =y(lifn,..., Cu[1m)

(see the notation on p.4) where &, ..., &, 71,...y o, Ciyvvey by are
bound individual variables. In other words, a and 8 are syntactically
equivalent if and only if one of them can be obtained from the other by
changing some bound variables.

E. g. if a(v) is & formula (veV), then formulas

(1) 0%a(£), Ona(n)

(where O€@Q, £, neV, & 9 do not appear in a(v)) are syntactically equi-
valent, but formulas a(v) and Ofa(£) are not. Similarly, if «(vy, v,) is
a formula, then

0&0na(é,m), OnOéa(n, §)
are syntactically equivalent, but
0&0na(é, n), 0n0&a(é, n)
are not. .
It is easy to see that ~ is an equivalence relation in #. Let
(2) F=F|~.

We recall (see p.3) that /' is compoged of all equivalence classes |qf
of the relation ~ (a in #).
We shall always consider the set F' as a generalized algebra

(3) {F: {0}osrs {0}0«41}

with the following definition of operations:

(i) Bvery m-argument eonnective o<(,, (m=0,1,2,...) determines
an m-argument operation in ¥, denoted by the same symbol o. The result
o(laaly ..., @) of the operation ¢ performed on some elements ley],
<ouy || €I i8 the element |oa, . .. | ' determined by the formula oay... .
In symbols,

(4) oflaaly ooy loml) = |0y o]  for a, ey Oy inF,

(i) Bvery quantifier 0eQ determines an infinite operation. in M,
denoted by the same symbol 0. All these infinite operations O have the
same domain D. A subset § of F' is in the domain D if and only if there
exists a formula «(v) (with veV) such that § is composed of all the ole-
ments

(5) la(z)]eF, where v ig. any term in .
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Roughly speaking, the only sets (5) admissible for O are sets of substitu-
tions of all terms for a fixed individual variable v in a fixed formula a(v).
The elements (5) of an admissible set §eD are indexed, in a natural way,
by ve7". Therefore the result of an operation O (0 <Q) performed on the
set 8 of all the elements (5) will be denoted by

Oz |a(7)]
according to §4 (1). The result is defined by the equality
(6) O la(7)] = |0&a(8)],

where & is any bound individual variable which does not appear in a(v).
Thus the result is the element in F which ig determined by the formula
O&a(é) (see §5 C)). The element |0%a(£)| does not depend on the choice
of & (see (1)).

Algebra (3) will be called the guantifier algebra of the formalized
language &, or briefly the Q-algebra of Z.

Observe that if « is an elementary formula (i. e. is of the form § 5 (1))
and a ~ g for a formula fe&, then g is identical with a. Thus, if a is ele-
mentary, the equivalence class |a| containsg only the formula «. In the
sequel we shall not distinguish between o and || if a is elementary. The
set of all elementary formulas in & will be denoted by &. By the above
convention,

¢CF.

The following theorem is an analogue of 2.1:

6.1. The Q-algebra (3) iz a generalized R-free algebra in the class K
of all complete algebras similar to (3), the set & of all elementary formulas
being the set of RK-free generators.

The proof of 6.1 is gimilar to that of 2.1. )

Observe that no analogue of 6.1 and 2.1 is valid for the algebra &
of formulas of % (see §5 (3)). )

Observe also that no analogue of 2.2 holds for the Q-algebra F (it
holds, however, for the algebra ). This i§ a serious defect of the Q-al-
gebra F, which causes some difficulties in applications of ¥ to problems
in Mathematical Logic. To avoid those difficulties (and also for some
other reasons) we shall introduce in § 7 another kind of generalized algebras
formed from formulas.

§ 7. The X-algebra of formulas. Let ¥ = {7, 7", %} be the formalized
language examined in §§ 5 and 6, and let X be & non-empty set. We shall
form a new alphabet .«/x and a new language .£x of the first order in the
following way.

Take a fixed set X', disjoint with the sets &,7,% of signs, terms
and, formulas in %, and such tha,}:spe cardinals of X’ and X are equal

Colloguium Mathematicum IX 2
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(if X is disjoint from &,7,%, we can assume X' = X; however, in
applications the set X can be identical with 7 — see § 9). Establish a one-
to-one correspondence between elements in X end X'. If # is an element
in X, then «' will denote the element in X', corresponding to #. Conge-
quently elements in X’ will be denoted by symbols 4’ where ¢ denotes
corresponding elements in X. The element #' is sometimes called the
name of zeX.

The alphabet o x mentioned above is obtained from the alphabet s
by adding the set X’ tio the set @, of all individual congtants in 7. Py i
the formalized language (of the first order) based on the alphabet o/x.
The sets of all terms and formulas in %y will be denoted by T x and Fyx
respectively. By definition, ¥y = (Zx, T, F x}.

As in § 6, we write

a~f

for some formulas ¢, § in Fx if thege formulas are syntactically equivalent.
Fx will denote the set #x/~ of all equivalence classes |a| where aeF .
We shall always consider the set Fx a8 a generalized algebra

(1) {FX! {0}0507 {O}OEQ}

with the following definition of the operations:

(i) The definition of finite operations ¢ is the same as in §6 (i).
Every m-argument connective oeC,, (m = 0,1,2,...) determines an
m-argument operation in Fy, denoted by the same symbol o and defined
by the equality

(2) o(laaly vy o) = |00y... 0|  for Ay oeny O ID Fy.

(if) Infinite operations O are defined in & slightly different way from
those in § 6 (ii). Every quantifier O «Q determines an infinite operation in
Fyx, denoted by the same symbol 0. All these infinite operations O have
the same domain D. A subset § of Fy is in the domain D if and only if
there exists a formula a(¢) in Fy (with ve V) such that § is composed of
all the elements

(3) la(z') eFx where a is any element in X'

R oughly speaking, the only sets (3) admissible for O are sets of substifu-
tions of all added individual constants (names) ' for a fixed variable v
in a fixed formula «(v) in&Fx. The elements (3) of an admissible set §eD
are indexed, in & natural way, by o' < X’. Therefore the result of an opera-
tion O (0 «Q) performed on the set § of all the elements (3) we denote by

. Ox’uX’ Ia(m’)[

~iom®
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aceording to §4 (1). The result is defined by the equality
(4) Opexla(@’)] = |0a(é)]

where £ is any bound individual variable which does not appear in a(v).

Definition (4) is correct in the case where the set X’ (i. e. the set X) has at least
two elements, since then set (3) determines uniquely the element on the right side
of (4). If X’ has only one element, say m;, i.e. if X has only one element z,, then
some modifications or further explanations are necessary because (4) then depends
on the way of interpretation of set (3) as an indexed set. For instance, for any = ell,,
|0fnézg| is the result of the operation O performed on the one-element set (wzyag)
considered as the indexed set {nz'zp}sex, and the element [O&wzpé| is the resuly
of the operation O performed on the same one-element set (nwy;) considered mow
ag the indexed set {ma",a;’},;;a +. Since we do not intend to complicate the main idea

by the particular case of one-element sets, we have given the definition in the above

form. The reader may suppose in the sequel tliat X always has at least two elements.

Ohserve that the hypothesis of a fixed one-to-one correspondence between sets
X’ and X is not essential in this paper. It can be replaced by the hypothesis of a fixed
transformation from X’ onto X, which maps 2'¢X’ onto xe¢X (some theorems will
then need obvious modifications). Then if X has only one element, we may suppose
that X’ has at least two-elements. Then the above difficulty in definition (4) does
not appear at all.

The generalized algebra (1) will be called the X-algebra of the lan-
guage £. Observe that the X-algebra of % does not coincide with the
Q-algebra of #x (see the difference between the admissible sets (3) and
§ 6 (5)). Both generalized algebras are similar to the Q-algebra F of #.

The symbol £x will denote the set of all elementary formulas in the
language £Lx. By a convention similar to that on p.17 we shall con-
sider £x as a subset of Fx.

The following theorem is an analogue of 6.1 and can be proved in
the same way:

7.1. The X-algebra (1) 8 a generalized K-free algebra in the class R
of all complete algebras similar to (1), the set &x of all elementary formulas
in Fx being the set of KR-free generators.

As in § 2, by a substitution in £ we shall understand every mapping
3:V -7, and by a substitution in Lx we shall understand any mapping
8:V - T x. Since every substitution in & is also a substitution in Zx,
it suffices to investigate substitutions in Px.

Let
(5) $:V Ty
be a substitution. If o is & formula in Fx, and v,, ..., v, are all free in-
dividual variables in a, then $’a will denote the formula

(01801, «o0y ¥, [80,)

(see the notation on p.4) where 8v iz the value of the mapping 8 at
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veV. Denoting, more suggestively, « by a(v,...,,) We can write the
definition of 8’a in the form of the equality

(6) 8" a(Dyy vuny Uy) = (801, ..., 50,).

By definition,

8 Fx >Fx.

Moreover, if 8 is a substitution in %, then §' maps & into &,
The equality

(7) 8" (lal) = [8"a] (e in Fx)
defines a» mapping
(8) 8" Fx - Fx.

The following theorem is an analogue of 2.2:

7.2. For every substitution (5), mapping (8) is a homomorphism from
the X-algebra of & imto diself.

The proof is by an easy verification.

Let Y be a non-empty set. In the same way we can form the lan-
guege Ly = {#y,T vy, Fy} by adding a set Y’, satisfying conditions
mentioned above, to the set @, of individual constants in the language £.
If y is an element in ¥, then gy’ denotes the corresponding element in ¥’
in the fixed one-to-one correspondence between Y and Y'.

Any mapping

) [ XY
induces two mappings:
(9) 19>y,
(10) ffFx > Fp.

The mappings (9) and (10) are defined as follows. If 7 is any term in 7,
and 3, ..., 2, are all elements in X’ which appears in a, then f'z is the
term. in Jy:

T(w;/yiy ---ym;b/y;%

where y; = f(z;) for 2 =1, ..., n (for notation, see p. 4). Similarly, if o
in any formula in #x and ai,..., #, are all the elements in X’ which
appear in a, then f*a is the formula

(@1 /Y1y ey BufYn)
where y; = f(w;) for i =1,...,n.
The mapping f* induces a mapping

(11) f*: Fx » Py

icm
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defined as follows:

(12) F*(ol) = If*e] for aePy.
Observe that

(13) fe=x for =ze7,

(14) ffa=a and f*(la))=]a] for ae#F. .

7.3. For every mapping f from X into (onto) Y, mapping (9) és a homo-
morphism of the algebra T x into (onto) the algebra T y.

7.4. For every mapping f from X onto ¥, mapping (12) is a homo-
morphism of the generalized algebra Fx onto the gemeralized algebra Fy.

The proof of 7.3 and 7.4 is by an easy verification. The hypothesis
that f maps X onto Y in 7.4 ensures that f** maps admissible sets onto
admissible sets.

§ 8. Realizations. The interpretation of formulas as mappings.
Let & = {«,7,%} be the formalized language of the first order, de-
seribed in § 5. The letter A will always denote a complete algebra similar
to the Q-algebra F of . According to the convention on p.18 we shall
denote operations in 4 by the same symbols as the corresponding opera-
tions in F. Thus A is a complete algebra

(1) {4, {0}oeos {O}ose} -

By a realization of the language & in a non-void set X and in a com-
plete algebra (1) we shall understand any mapping R defined on &Il
guch that

1° R assigns, to every m-argument functor ee®, (m =0,1,2,...),
an m-argument operation o in X, i. e. a mapping

ORZ.Xm - X.
2° R assigns, to every m-argument predicate mell,(m =0,1,2,...)
an m-argument function iy defined in X with values in 4, i. e. a mapping
ap: X" = A.
Every realization R of % in X turns out the set X into an abstract
algebra, viz. the algebra

(2) (X, (0nous)

Denote this algebra by Xy and consider the language £, = {%o,7}
of terms of # (see p. 15 and p.6). This language being of the zero
order, on account of § 3 every term v¢7 determines uniquely a mapping

(3) Txp! x¥ > X.
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We recall that elements » = {v,},., X" are called valuations in X.
For brevity, we shall denote mapping (3) by 7. By definition

(4) 12(0) = 1x,(0)eX for veX”.

The notation zyp i8 correct since R determines uniquely X and, conse-
quently, Xg.

Given any realization R of Z in a set X # 0 and in a complete
algebra 4 (see (1)), every formula o in % determines uniquely & mapping

(5) ag: X - 4,

where V, i3 the set of all free individual variables appearing in a (it V,
is empty, then ap is a constant element in A). To obtain ap it suffices:

A) to interpret all free and bound variables in « as variables running
through the set X;

B) to interpret every m-argument functor oe¢®P, (m =0,1,2,...)
appearing in « as the mapping op: X™ — X;

0).to interpret every m-argument predicate mell,, (m = 0,1,2,...)
appearing in a ay the mapping mgp: X™ — 4;

D) tomnterpret every m-argument connective 0eCy, (m = 0,1, 2,...)
a8 the corresponding operation o in 4;

E) to interpret every expression O& (where 0eQ and £¢7) as the
infinite operation O, x in 4.

Every mapping f: X — A, where V' = (v;,...,0,) is a subset
of V, can be interpreted as a mapping f: X7 - A on assuming

fv) =f<bvl7 sy Dv,n)

for every valuation v = {9,},,». The element f(v)
only on coordinates v, , ..., 1, of b.
In particular, mapping (5) can be interpreted as a mapping

(6) ag: XV > A.

depends, of course,

In this paper we shall replace the above intuitive definition of (6)
by another definition equivalent but more precise, (see (9) below) which
will be used as the starting point for further investigations. To formulate
this definition, it is more convenient to deal with the extended language
P« described in § 7, instead of £, and to define ap for all formulas « in Fx.

We assume all notations from § 7, in particular X’ is the set described
on p. 17-18. The languages % and #x have the same set II of predicates.
Their sets of functors are different: the set of functors of &y was obtained
from the set @ of functors of £ by adding the set X' of individual con-
stants (names of elements #¢X). Consequently, every realization R of %
in X and A determines, in a natural way, a corresponding realization R’
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of ¥y in X and 4 on assuming

2p =  for all a'eX,
o =0 forall oD,
g = mp for all mell.

We recall that # and ' are corresponding elements (in X and X’
respectively) in the fixed one-to-one eorrespondence between sets X
and X' (see p.18).

For simplicity, the natural extension R' of R wﬂl be denoted, in the
sequel, by the same letter R.

Every fixed valuation veX” determines uniquely & mapping

(M vp: €x = 4,

where &'y is the set of all elementary formulas in Lx; viz. for every ele-
mentary formula zz;...7, (see §5 (1)) we define

og(7T)... ) TnR(D))a

where, for any term 7, 7x(0) is defined by (4), the language ¥ being
replaced in (4) by Lx.

By 7.1, the mapping (7) can be uniquely extended to a homomorphism
from Fy into A. Denote this homomorphism by the same symbol vg,
and its value at an element |o]eFx by

®) v (|al).

For a fixed formula « in F 5, we can consider element (8) as a function of
veX”. Denote this function by az. By definition

Tm) = AR (TIR (v),

(9) ap(b) = p(la))
for aeFx and veX’. The mapping
(10) ag: XV o 4

just defined coincides, in the case where ae<# C #Fx, with mapping (6).
For arbitrary ae#x definition (10) is equivalent to definition (6) applied
to the language ¥y instead of £. We omit the easy proof of the equi-
valence of (6) and (10) since we shall nse, in the sequel, only definition (6).

Example 5. Let % be the formalized language of the first order described
in §5, Example 4, If 4 is a complete Boolean algebra, let N, D, C, I be operations
defined in § 3 Example 2, let V be the unit eloment of 4 and let E and U be the
infinite join and the infinite meet in A. Then, for every formula a in #, the following
gtatements are equivalent(%): (i) a is a tautology in the predicate calculus Z; (ii) ap
is identically equal to V for every interpretation B of 2 in every Boolean algebm A

(4 See Rasiowa and Sikorski [1], [3].
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and in every set X s£ 0; (iii) ag is identically equal to V for every realization R in
a fixed complete Boolean algebra A (having at least two elements) and in a fixed
infinite set X ; (iv) ag is identically equal to V for every realization R in the two-ele-
ment Boolean algebra and in a fixed infinite set X. The equivalence of (i) and (iv)
is the predicate analogue of the truth-table method for propositional caleuli men-
tioned in § 3, Example 2.

Fundamental properties of the mapping ap are formulated in theo-
rems 8.1, 8.2, 8.4 below. In applications only the case where a is in & is
important for the investigation of the language .. However, for purely
technical reasons, it is more convenient to prove them for all formulas «
in #x. ‘

Let

{B’ {O}Osc" {0}050}

be another complete algebra, similar to the Q-algebra F, and let h: 4 —» B

be a homomorphism. If R is a realization of & in X and 4, then the follow-

mg equalities define another realization (denoted by AR) of £ in X and B:
o, =0 for all o0e¢9,

(11)
myp = hng  for all amell.

Thus R and AR coincides on the set of functors. Consequently
(12) 7(v) = Tr(v) for every <<l and veX’.
If #x is an m-argument predicate, then m,x is the superposition of h and ng:
TR (B1y oovy G) = B(np(Bry .oy ) fOr @y, ..., DX,
8.1. For every formula aeFx and every valuation veXV
(13) g (v) = h(ag(v)).

For every fixed valuation v, both sides of (13), when considered as
function of |«|eFx, are homomorphisms from Fx into B on account
of (1) and 4.1. By (11) and (12) those homomorphisms have the same
value if « iy an elementary formula. Since the set &x of all elementary
formulag in #Fx generates the algebra Fx, both homomorphisms are
equal by 4.2.

For every substitution § in %x, let $’ have the meaning defined in
§ 7 (6). For every valuation veX?, let $zb be the valuation {Svg(0)},r.
Thus 8zb is an abbrevation for Sx,0 in the sense defined in § 3 (6).

8.2. For every formula o in Fx,

(14) ag(3rY) = §' ap(v).

Obviously the symbol on the right side of (14) denotes the value of
the mapping 8'ag, determined by the formula $'a, at the point v.

- fiom®
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To prove 8.2, consider both sides of (14) as functions of |a|eFx,
the valuation v being fixed. By (10), 7.2 and 4.1 these functions are
homomorphisms from the generalized algebra Fx into the complete alge-
bra A. By 3.2, these homomorphisms have the same value if « is an ele-
mentary formula. Since the set &x of all elementary formulas generates
Fy, both homomorphisms are equal on account of 4.2.

Let R be, as before, a realization of % in X and 4, and let R, be
another realization of % in a set ¥ = 0 and in the same algebra 4. Sup-
pose that f is a mapping from X onto Y such that

(15) f(oR(mli cery mm)) = oRo(f(ml)y 7f(mm)):
(16) AR %1y -y ) =”Ro(f(m17;a’m))

for every 0e®,, well,, @, ..., BneX (m = 0,1,2,...). For every valua-
tion v in X, fo denotes the superposition of v: V - X and f:X — Y,
i.e. fv is the corresponding valuation in Y.

Condition (15) means that f is a homomorphism from the algebra Xp
into the algebra Yg, (see p. 21). Thus, by 3.1 (where k = f, and 4, = Xg,
Bo = YR;,):
(7) TR, (fo) = fltr(v))
for every term 7e¢7 . More generally, using the notation § 7 (9), (10), (11),
(12), we have

8.3. For every term v in I x,

(18) I/ try (f0) = flra(®)).

Obviously, the symbol on the left side of (18) denotes the value
of th?, mapping f’'tg,, determined by the term f'reZy), at the point
foe¥’.

To prove (18) let us observe that both sides of (18), when interpreted
ag functions of v¢Z x, are homomorphisms from J x into Yy on account
of (15), 4.1, § 3 (4), and 7.3. They coincide on the get V of all individual
variables which generates 7 x. By 4.2, they are equal.

Observe that (17) is an immediate consequence of (18) on account
of §7 (13).

8.4. For every formula aeFx,

(19) T*ag, (f9) = ag(0).
In particular, for every ae#F,
(20) ag, (f0) = ar(v).

The symbol on the left side of (19) denotes, obviously, the value
of the mapping f*ag,, determined by the formmla f*a, at the point
foeX?”.
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To prove (19), observe that both sides of (19), when interpreted as
functions of |a|eFx, are homomorphisms from Fx into 4 on account of
(9), 4.1 and 7.4, By (18) and (16), they coincide on the set &x of elemen-
tary formulas which generates #x. By 4.2, both homomorphisms are equal.

(20) follows immediately from (19) on account of § 7 (14).

In the definition of realizations we have assumed that the gene-
ralized algebra A4 in question is always complete. The purpose of this
hypothesis was to ensure that all infinite operations appearing in calcula-
tion of ap(v) are feasible. Without this hypothesis we cannot state, in
the general case, that mapping (7) has a homomorphic extension. How-
ever, it can happen, for some special mappings E satisfying 1° and 2°,
that (7) has a homomorphic extension in spite of the fact that the genera-
lized algebra A in question is not complete. In this case, the mapping R
satisfying 1° and 2° will also be called & realization of & in X and A, and
formula (9) yields & definition of ag.

The above extension of the notion of realization and the mapping
ap i3, in a certain sense, not essential. In fact, we have geen on p.13
that every generalized algebra 4 can be extended to a complete similar
algebra, say A’. In this way, every realization R in the incomplete alge-
bra A can be considered as a realization in the complete algebra A’. In
other words, every realization in the sense just defined can be interpreted
a8 & realization in the sense defined on p. 23. However, if only elements
in A are values of ag, and only infinite operations in 4 are used to caleu-
late ag(b), there is no reason to introduce any completion A’ of 4, and
it is more natural to consider R as realization in 4.

The fact that any realization in an incomplete algebra 4 can be
conceived as & realization in & complete extension A’ of A has important
consequences because it enables us to apply to realizations in incomplete
algebras all theorems proved for realizations in complete algebras.

Sometimes it is convenient to assume as 4’ the extension defined in
§4 (7) (p-13). This extension 4’ is obtained from A4 by adding a new
element a, to A and by assuming e, as the valué of all finite or infinite
operations, except the case where the operation is feasible in 4. Hence
it follows that if R is any realization of % in X and 4', and ap(v)ed for
every formula o and every valuation v, then R is a realization of & in X
and 4.

- Some special realizations in incomplete algebras A will be examined
in §9. The reader can always assume that, in all reasonings, the incom-
Dplete algebra A is replaced by the complete algebra 4’ just mentioned.

§ 9. Realizations in the set of terms. Let ¥ = (&7, 7, %)} be the
formalized language (of the first order) described in § 5.
We shall first prove some theorems on the auxiliary language s,
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i. e. the language %y, where X is the set 7 of all terms in .#. The
language Zs is based on the alphabet /5 obtained by adding a set 7'
of individual constents (names of terms) to the alphabet ./ of the
language .%. The get 7’ is disjoint with &, 7 and #, and there is a fixed
one-to-one correspondence between all elements in 7~ and all elements
in 7. For any term 7 in 7, ¢’ denotes the corresponding element in &',
and conversely. '

According to the notation adopted on p.8, T is -the set of all
terms in £y, and Z is the set of all formulas in #5. By definition,

by = Ay, T g, Fs}.
Fg will denote the corresponding 7 -algebra of the language ., i. e. the
X-algebra Fx where X =7 (see § 7, p.18). Of course
. 7 CFy and FC Fy.

The letter ¢ will denote arbitrary terms in Z 5.
If ¢eJ s and the sequence ti, ..., ), is composed of all individual
constants from 4’ which appear in ¢, then the equality
(1) flo) = U(T{/TU ceey TnlTn)
defines a term 7 = f(o) in & (for notation, see p. 4). ;
9.1. The mapping
[: 75 >T

~

defined by (1) is & homomorphism of the algebra (Fs,{0),.0] of terms of
the language L5 onto the algebra |F, {0}, of terms of the language 2.
Moreover,

(2) JF(z) == for every torm v in I
Similarly, if « is a formula in %5, and the sequence 7i, ..., T, COIL-
taing all individual constants from ' which appear in e, then the equality
g(a) = a(vifm, -y T/Tn)

defines a formula y = g(a) in#. The mapping g:?’ 7 —F just defined has
the following property: if a«~ g, then g(a) ~ g(f). Consequently, the
mapping ¢ indnces a mapping hy: Fy — F, viz.

3) ho(la]) = lg(a)l

for ¢ in F5.

9.2, The mapping h, defined by (3) is a homomorphism of the T -algebra
{Fz, {0)oecs {O}oc0} omito the Q-algebra {F, {0}o,0s {0)oeq). Moreover,

(4) by (|70 .. 0m|) = |nf (01) .. f(om)|
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for every elemeniary formula in Ly (nellp, 01y..., opneT g), and
(5) ho(lal) = |a| for every a in ZF.

The proof of 9.1 and 9.2 is by an easy verification.

In the next theorem the set 5 will play the role of the set X in
realizations discussed in § 8. Thus by a valuation we shall now mean any
mapping v: V - J 5. In particular, every mapping v: V -7 is a reali-
zation.

Every realization is now simultaneously a substitution in #s. Con-
sequently valuations will be denoted by the letter 8. For every term r
in 75 and every formula o in #, the symbols 8z, 8’a and 8/ (|a|) have
the meaning defined §2 (4), (5), and §7 (6), (7) (where everything is
relativized to the language £ and the corresponding language of terms),
i. e. they are results of the substitution 8 in 7z and o respectively.

The letter i will denote the identity mapping from V onto itself,
interpreted as & mapping i:V — 7 or a mapping i: V — I 5, L. 6. as a sub-
stitution or a valuation.

Now let & be a homomorphism of the 7-algebra {Fz, {0}o0s {0}os)
into a gimilar generalized algebra {4, {0}e,0, {O)o.e). Let R be a mapping
defined on the set dvF'wIT of all functors and predicate in Zs as
follows:

a) for every m-argument functor oe¢®, (m =0,1,2,...)), og is
the corresponding operation in the algebra Js of terms of Zy, i.e.
OR(01y «ovy Op) = 001...0p

for oy, ..., op e T4; moreover,
TR=T
for every v'eJ"’.

b) for every m-argument predicate mell, (m = 0,1, 2,...), =z is the
funetion: :
| 7R (013 +o-y On) = {0y o) 4.
for any terms oy,...,0, in Js.

9.3. R is a realization of the language L in the set T of all terms

of Zg and in the generalized algebra A. Moreover, for every formuly a inFy
and for every valuation 3,

(6) er(8) = k(|8'a]).
In particular,
M ap (i) = k(|a)).

The right side of (6) can be written in the form %(8''(|al)). Thus
both sides of (6), when interpreted as functions of |a|eF,, are homo-
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morphisms from Fy into 4, on account of §8 (9), 41 and 7.2. By b),
§ 8 (7), and 3.2 (applied to the langunage of terms in £5), equality (6) holds
for every elementary formuls a. Since the set of all elementary formulas
generates the J-algebra Fg, both homomorphisms have the same values
for all formulas a.

(7) follows immediately from (6).

The following modification of 9.3 is important in applications.

Let ~ be an equivalence relation in the set # of all formulas of the
language ¢ such that

(8) it ¢ ~f, then a ~ §.
Thugs the equality
(9) hy(la]) = |l eF [~ (aeF)

defines a mapping h, from F =F |~ onto F/[~. Suppose that with
every o« Cy,, there is associated an m-argument operation in#|~, denoted
by the same letter o (m = 0,1, 2,...), and that with every O<Q there
is associated an infinite operation in % [~, denoted by the same letter O.
Suppose moreover that

(10) &, is a homomorphism from the Q-algebra {F,{0}eq,{0}oso} into

the generalized algebra {F/~, {0}o.c; {O}om}-

The set 7 of all terms in % will now play the role of the get X in
which realizations are defined. Thus by a valuation we shall now mean
any mapping $:V — & which is simultaneously a substitution in 2.

Let k be a homomorphism from {&F /=, {0}, {O)owe} into & similar
generalized algebra {4, {0}sc; {O}oco)- Let R, be a mapping defined on
the set @ v II of all functors and predicates in % as follows:

A) for every m-argument functor oeC,, (m =0,1,2,...), og, is the
corresponding operation in the algebra 7 of terms in %, i.e.

ORy (T1y veny Tm) = 071 Ty, fOT  Tyy 00y Tmed 5
B) For every m-argument predicate mell,, ng, i8 the function

TRy (T1y +oey Tm) = R{lmT1. .- Tmll)-

Under the above hypotheses,

9.4. R, is a realization of & in the set T of all terms and in the general-
ized algebra A. Moreover, for every formula a in F and every 3:V — T,

(11) agy (8) = R([8"al)).
In particular, for -the identity valuation i,
(12) agy (i) = h(llaf).
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Let %, be the homomorphism from the Z -algebra F, onto the
Q-algebra F, defined by (3). The mapping k:
k(lal) = h{hho(la))) ~ for

is a bomomorphism from Fy into A. Let E be the realization (of 5 in
the set 7 and the algebra A) defined by a) and b). It follows from (6)
that ‘

a in Fg

ap(8) = E(|%'al)

for every o in % and every mapping 8:V - . However,
ho(|8'a]) = [$'al e F

by (5) since 8’ac¥. Hence
ag(8) = h(||8'al)

by the definition of % and h,.

To complete the proof of (11) it suffices to show that
(13) _ ary(8) = ar(8).

This follows from 8.4 where X is the set J5, ¥ is the set 7 and f
is the mapping (1) (see 9.1). As the realization R in 8.4 we take the
realization R just defined, but restricted to the langnage .#, and as the
realization R, we take the realization R, defined by A) and B).

Hypothesis §8 (15) of 8.4 is satisfied by 9.1. Hypothesis §8 (16)
of 8.4 iy also satisfied since, for any terms o, ..., o,¢.7 g and any nell,,
we have

gy (£(01), -y F(om)) = B{llf (01)... Fom)}
= h(hl(ho(lﬂdlﬂ-o'm‘))) = k(|moy...onl) = wr(oy, ..., on)

by 9.2 (4). Hence, by 8.4, ag,(fS) = ar(8). Since $:V — .7, we have
fé =8 by (2). This proves (13).
(12) follows immediately from (11).

Example 6. Let & be the formalized language described in § 5 Example 4,
i. e. the language of a predicate caleulus. Write a ~ § if and only if both Ief and Ifu
are tautologies. Thus 4/~ is an incomplete Boolean algebra with operations defined
in & natural way. Hypotheses (9) and (10) are satisfied. Theorem 9.4 is the osgential
point in the algebraic proof of the Gédel completeness theorem and of other theorems
on the existence of models for consistent theories (5).
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