
COLLOQU IUM MATHEMAT ICUM
VOL. 86 2000 NO. 2

ROOTS OF

NAKAYAMA AND AUSLANDER–REITEN TRANSLATIONS
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Abstract. We discuss the roots of the Nakayama and Auslander–Reiten translations
in the derived category of coherent sheaves over a weighted projective line. As an appli-
cation we derive some new results on the structure of selfinjective algebras of canonical
type.

Throughout this paper K will denote a fixed algebraically closed field.
We work in the derived category Db(X) of the category cohX of coherent
sheaves on a weighted projective line X over K. We investigate whether,
for a positive integer d, one of the automorphisms

τT 2, ̺τT 2, τ,

that is, the Nakayama translation, a twisted Nakayama translation or the
Auslander–Reiten translation, respectively, has a dth root in the automor-
phism group of Db(X). Here, ̺ denotes a rigid automorphism, that is, an
automorphism of cohX—identified with a member of Aut(Db(X))—which
preserves all Auslander–Reiten components and also the slope of indecom-
posable objects; further, T denotes the translation shift in the derived cat-
egory Db(X). Let Pic0 X denote the torsion group of the Picard group of X,
and let AutX denote the automorphism group of X, identified with the group
of all isomorphism classes of selfequivalences of the category cohX fixing the
structure sheaf. It then follows from [9] that the rigid automorphisms form
a subgroup of Pic0X⋊AutX, and, moreover, this group is finite if X has at
least three exceptional points.

Throughout the paper, by an automorphism we mean the isomorphism
class of a selfequivalence of K-categories. When applied to a finite-dimen-
sional basic K-algebra A, this means to identify automorphisms that differ
by an inner automorphism. In particular, we say that an automorphism of
A is non-trivial if it is not inner.
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Our interest in the above problem is motivated by recent investigations
of the category Db(X) and by open problems in the representation theory
of finite-dimensional selfinjective algebras. With each tilting sheaf Σ on X
we may associate the finite-dimensional endomorphism algebra B = EndΣ
such that we have equivalences of the triangulated categories

mod B̂ ∼= Db(modB) ∼= Db(X),

where mod B̂ is the stable module category of the module category mod B̂
of the repetitive algebra B̂ of B and Db(modB) is the derived category of
bounded complexes in the module category modB of B (see [5]). Then the
automorphisms τT 2, ̺τT 2, τ are induced by the Nakayama translation ν

B̂
, a

twisted Nakayama translation ̺ν
B̂
, the Auslander–Reiten translation τ

B̂
on

mod B̂ on the stable level mod B̂. Moreover, for each admissible group G of

K-linear automorphisms of B̂, the orbit algebra B̂/G is a finite-dimensional
selfinjective algebra whose representation theory is closely related to the
representation theory of mod B̂, and consequently to the sheaf theory on
the weighted projective line X. We show, in particular, that our study has
applications leading towards the classification of selfinjective algebras of
tubular canonical type.

1. Background. Let X = X(p, λ) be a weighted projective line in the
sense of [4]. Roughly speaking, X is the projective line P1(K) with a finite
number λ1, . . . , λt of marked points with attached positive integral weights
p1, . . . , pt, respectively. The category cohX of coherent sheaves on X is an
abelian category which is hereditary and noetherian, and which has a tilt-
ing object. Since cohX is hereditary, each indecomposable object of the
bounded derived category Db(X) has the form X[n] with X ∈ cohX, and
hence the structure of Db(X) is explicitly known to the same extent as cohX
is known.

The weight type of X is denoted by p = (p1, . . . , pt), and we put p =
lcm(p1, . . . , pt). The Picard group PicX of X is isomorphic to the rank one
abelian group L(p) on generators ~x1, . . . , ~xt with relations

~c := p1~x1 = . . . = pt~xt.

The natural isomorphism σ : L(p) → PicX maps each member ~x of L(p) to
the associated line bundle shift σ(~x) sending X to X(~x). Hence the torsion
group Pic0 X of the Picard group is isomorphic to the torsion group tL(p) of
L(p), which agrees with the kernel of the degree homomorphism δ : L(p) →
Z, given on the generators by δ(~xi) = p/pi. Because p~x = δ(~x)~c for each ~x,
an element ~x ∈ L(p) is torsion if and only if the order of ~x is a divisor of p.

Lemma 1.1. The torsion group tL(p) of L(p) has order p1 . . . pt/p.
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Pr oo f. We put L = L(p). Since the degree map δ : L → Z is surjective
there is an element ~u of degree one, and hence L = tL ⊕ Z~u. The formula
p~x = δ(~x)~c is valid for any ~x ∈ L, so p~u = ~c. By means of δ the subgroups
Z~u and Z~c are thus mapped isomorphically onto Z and its subgroup pZ,
respectively. Therefore, [Z~u : Z~c ] = p. In view of the relations for L we get
L/Z~c =

∏t
i=1 Z/piZ, hence

p1 . . . pt = [L : Z~c ] = [L : Z~u ][Z~u : Z~c ] = |tL|p,

which implies the claim.

Let ~ω denote the dualizing element ~ω = (t − 2)~c −
∑t

i=1 ~xi. We note
that the line bundle shift σ(~ω) equals the Auslander–Reiten translation of
Db(X) [4, Corollary 2.3]. To emphasize the dependence on the weight type
we also write δ(p) for the degree δ(~ω) = (t−2)p−

∑t
i=1 p/pi of the dualizing

element, and call this integer the discriminant of p.

2. The non-tubular case. We first investigate the non-tubular case,
that is, assume δ(p) 6= 0. Let K0(X) denote the Grothendieck group of
the category cohX. The rank is the unique surjective linear form rank :
K0(X) → Z which is non-negative on (classes of) objects from cohX. Let
O denote the structure sheaf of X. The degree deg : K0(X) → Z is a linear
form which maps (the class of) each line bundle O(~x) to δ(~x), hence each
indecomposable sheaf of rank zero to a positive integer. It follows [4] that
each indecomposable object X in Db(X) has a non-zero rank or a non-zero
degree, and hence a well defined slope µ(X) = degX/rankX ∈ Q ∪ {∞}.
(By contrast, a decomposable non-zero object X in Db(X) may have zero
rank and degree, so that the slope of X is not defined.) Recall also that
an automorphism ̺ of Db(X) is called rigid if ̺ preserves Auslander–Reiten
components and the slope of indecomposable objects.

The following is taken from [10]:

Proposition 2.1. Let X be non-tubular , that is, δ(~ω) 6= 0. Then for

each automorphism α of Db(X) there is an integer d(α), the degree of α,
such that

µ(αX) = µ(X) + d(α)

for each indecomposable object X of Db(X).

In particular, each rigid automorphism ̺ has degree d(̺) = 0.

Corollary 2.2. Let d ≥ 2 and assume there exists an automorphism

σ of Db(X) such that σd equals a twisted Nakayama translation ̺τT 2 for

some rigid automorphism ̺. Then d equals two and δ(~ω) is even.

Pr oo f. It follows from [9] that there is a unique representation σ = αT n

for some automorphism α of cohX and n ∈ Z. Since T belongs to the center
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of Aut(Db(X)) we get

̺τT 2 = σd = αdT dn,

hence dn = 2 and αd = ̺τ . Since d ≥ 2, this implies d = 2 and n = 1.
Moreover, passing to degrees in α2 = ̺τ implies 2d(α) = d(̺) + d(τ). Since
d(̺) = 0 and d(τ) = δ(~ω) (see [4, Corollary 2.3]), this shows 2d(α) = δ(~ω),
hence δ(~ω) is even.

The case of δ(~ω) even is easily characterized:

Lemma 2.3. Let p = (p1, . . . , pt). The discriminant δ(p) = δ(~ω) is even

if and only if for a fixed integer m ≥ 1 we have:

(i) an even number of pi’s has the form 2mqi for some odd number qi,

(ii) the other pj ’s have the form 2lqj, where 0 ≤ l < m and the numbers

qi are odd.

Pr oo f. The discriminant δ(p) =
∑t

i=1(pi−1)p/pi−2p is even if and only
if there are an even number of odd summands (pi−1)p/pi. Now, (pi−1)p/pi
is odd if and only if pi is even and p/pi is odd. The latter means that the
2-part of pi equals the 2-part 2m of p. Hence an even number of pi’s have
this maximal 2-part 2m of p.

We put N(p) = 2+
∑t

i=1(pi − 1), which is the rank of the Grothendieck
group K0(X).

Remarks. (i) If δ(p) < 0, which corresponds to domestic type, then
δ(p) is even if and only if we are in one of the following two cases:

(a) p = (2, 2, 2n + 1), in which case N(p) = 2(n+ 2) is even,

(b) p = (2mp, 2mq) with p and q odd, in which case N(p) = 2m(p+ q) is
also even.

(ii) None of the minimal wild canonical types

(2, 3, 7), (2, 4, 5), (3, 3, 4), (2, 2, 2, 3), (2, 2, 2, 2, 2)

yields an even discriminant. In fact, all these cases yield discriminant one.

(iii) On the other hand, the weight sequence

p = (2, . . . , 2), with r entries,

has discriminant δ(p) = r − 4, hence it is even if and only if r is even, in
which case N(p) = r + 2 is also even.

(iv) For the weight sequence p = (2, 4, 2m+1), m ≥ 1, we have N(p) =
2(m + 3) and δ(p) = 2m − 3. Note that the 2(m + 3), m ≥ 1, exhaust all
even numbers ≥ 8, and the 2m−3, m ≥ 2, exhaust all odd natural numbers.

(v) For the weight sequence p = (2m + 1, 2m + 1, 2m + 1), m ≥ 1, we
have N(p) = 2(3m+ 1) and δ(p) = 4m− 1.
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(vi) For the weight sequence p = (2, 2, 3, 3) we have N(p) = 8 and
δ(p) = 2. Note that the category cohX has wild representation type.

We next investigate when the Auslander–Reiten translation τ in Db(X)
has a dth root. We interpret the Picard group PicX as the group of auto-
morphisms of Db(X) induced by the shift automorphisms X 7→ X(~x) with
~x ∈ L(p).

Proposition 2.4. Assume that X has non-tubular weight type p. Then:

(i) If σd = τ for some automorphism σ, then d is a divisor of δ(p).
(ii) Conversely , let d be a divisor of δ(p) and assume d and p1 . . . pt/p

are coprime; then there exists a unique σ ∈ PicX such that σd = τ .

Pr oo f. Assertion (i) follows from Proposition 2.1 on passing to degrees
of automorphisms. Concerning (ii) we consider the following commutative
diagram with exact rows:

0 → tL(p) → L(p)
δ
→ Z → 0

∼=↓ ·d ↓ ·d ↓ ·d

0 → tL(p) → L(p)
δ
→ Z → 0

↓ ↓ ↓

0 → C
∼=
→ Z/Zd

↓ ↓

0 0

By the assumption on d the vertical map on the left side is an isomorphism
and the remaining two are monomorphisms. Moreover, the dualizing element
~ω is sent to zero under the composition L(p) → Z → Z/Zd, hence is sent to
zero under L(p) → C. By exactness of the middle vertical column this yields
a unique element ~x from L(p) with d~x = ~ω. Consequently, σ(~x)d = σ(~ω) = τ ,
and the claim follows.

Corollary 2.5. Let p = (2, . . . , 2) with r entries and δ := δ(p) = r−4.
Then τ has a δth root if δ, or equivalently r, is odd. More generally , for
p = (q, . . . , q) with r entries and q prime we get δ(p) = (q − 1)r − 2q and

|tL(p)| = qr−1. Hence, if q ∤ r then τ has a δ(p)th root.

3. The tubular case. We start with a general result and note that the
automorphisms of Db(X) of finite order form the subgroup Pic0X⋊Aut(X)
(see [9]).

Proposition 3.1. Assume that X is tubular and let σ be a dth root ,
d ≥ 1, of a twisted Nakayama translation ̺(τT 2). Then d ∈ {1, 2, 3, 4, 6}.
Moreover , each rigid automorphism of Db(X) has finite order.
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Pr oo f. Note that σ induces an automorphism of K0(X) = K0(D
b(X)),

preserving the Euler form. Let R denote the radical of K0(X), that is, the
radical of the quadratic form attached to the Euler form. Then restriction
to R yields an automorphism σR of R preserving the Euler form. Note that
T induces the map (identity) on K0(X). Moreover, each automorphism of
finite order of D(X) induces the identity map on R (see [9, Theorem 6.3]).
Hence ̺R = 1, τR = 1, and our assumption on σ implies that σd

R = 1.
By tubularity of X, R ∼= Z2 and we get Aut(R) ∼= SL2(Z), since the Euler

form is skew-symmetric and non-degenerate on R (see [8]). Thus σR becomes
an element of finite order of SL2(Z) and it is well known and elementary to
prove that the only possible orders are 1, 2, 3, 4 and 6. Hence the order d′

of σR belongs to the set {1, 2, 3, 4, 6} and divides d, so that d = d′d′′ for a
positive integer d′′. Since the automorphism σd′ induces the identity on R,
it preserves the slope and thus σd′ = αβT r, where α ∈ Pic0X, β ∈ Aut(X)
and r ∈ Z (see [9, Proposition 4.4]). Since T induces −1R on R and αR = 1,
βR = 1, it follows that T r induces the identity on R, and r is even. Next it
follows that

̺τT 2 = σd = (αβ)d
′′

T rd′′ ,

which implies rd′′ = 2, hence r = 2 and d′′ = 1. Thus d = d′ and the first
claim follows.

Concerning the second claim we recall from the first part of the proof that
a rigid automorphism ̺ preserves the slope, hence induces the identity map
on the radical R. Hence by the above argument ̺ has the form αβT r for some
α ∈ Pic0 X, β ∈ Aut(X) and r ∈ Z. Since ̺ preserves all Auslander–Reiten
components it follows that r = 0.

We now investigate—first on the stable level—whether actually a twisted
Nakayama translation has a dth root. We invoke a result from [9]:

Proposition 3.2. If X is tubular of weight type p, then there are tubular

mutations L and S of Db(X) such that LSL = SLS and the subgroup 〈L,S〉
of the automorphism group of Db(X) is isomorphic to the braid group on

three strands. Moreover ,

(LS)3 = (SL)3 =

{
γT if p = (3, 3, 3),
τ−3T else.

Here, γ exchanges the two exceptional points not invoked in the construction

of the tubular mutation S, hence γ2 = 1.

The equivalences L and S play a central role in the classification of inde-
composable bundles in the category cohX, or equivalently of indecomposable
objects in the derived category Db(X); see [8] for further information.

We next discuss, separately for each tubular weight type (2, 2, 2, 2),
(3, 3, 3), (2, 4, 4) and (2, 3, 6), whether a (twisted) Nakayama translation
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can actually have a dth root for d ∈ {2, 3, 4, 6}. Observe that τ and T are
always central in the automorphism group of Db(X). Note also that in view
of Proposition 3.2 and the braid group relations SLS = LSL we have

(LSL)4 = (LSLS)3 = (LS)6 = τ−6T 2.

Case (2, 2, 2, 2). Here, τ2 = 1. Hence σ1 = τ(LS)2 is a 3rd root of the
Nakayama translation τT 2. Further, σ2 = LS is a 6th root and σ3 = LSL
is a 4th root of the twisted Nakayama translation τ−1(τT 2). It is more
difficult, in this framework, to establish a square root of the Nakayama
translation itself: Recall that σ(~x) denotes the line bundle shift associated
with ~x ∈ L(p). Moreover, following [8] we have S = σ(~x4). Then

φ = (Lσ(~x1 − ~x2)S)(Lσ(~x1 − ~x3)S)(Lσ(~x2 − ~x3)S)

is an automorphism with φ2 = τT 2. The proof is analogous to [9, Proposition
7.2]. Note that ~x1 − ~x2, ~x1 − ~x3 and ~x2 − ~x3 belong to the torsion group of
L(p).

Case (3, 3, 3). Here, τ3 = 1. Hence σ1 = τLSL is a 4th root and σ2 =
τ2T , σ3 = τ2γT are 2nd roots of the Nakayama translation τT 2. Finally,
σ4 = (LS)2 is a 3rd root and σ5 = LS is a 2nd root of the twisted Nakayama
translation ̺(τT 2), ̺ = τ−1.

Case (2, 4, 4). Here, τ4 = 1. Then σ1 = τ(LS)2 is a 3rd root of the
Nakayama translation τT 2. Further, σ2 = LS is a 6th root and σ3 = LSL
is a 4th root of the twisted Nakayama translation τ(τT 2).

Case (2, 3, 6). For this weight type we refer to the next proposition.

Proposition 3.3. Assume that X has tubular type (2, 3, 6). Then each

rigid automorphism of Db(X) is a power of τ . Moreover , the twisted stable

Nakayama translation τ s(τT 2) has a square root , a 3rd root , a 4th root or a

6th root exactly if s is a member of E2 = {1, 3, 5}, E3 = {2, 5}, E4 = {1, 3, 5}
or E6 = {5}, respectively. In particular , the stable Nakayama translation

τT 2 does not have a non-trivial root.

Pr oo f. For the type (2, 3, 6) the torsion group Pic0X of the Picard
group has order 6, hence it is the cyclic group generated by τ . Since the
three weights are pairwise different, we moreover get Aut (X) = 1, hence
Pic0X⋊Aut (X) = 〈τ〉. In particular, each rigid automorphism of Db(X) is
of the form ̺ = τ s for some s = 0, . . . , 5.

In view of Proposition 3.1 it suffices to investigate when there is a dth
root of the twisted stable Nakayama translation ̺(τT 2), where ̺ = τ s and
d ∈ {2, 3, 4, 6}. Now assume

σd = ̺(τT 2) = τ s+1T 2.
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Since Pic0X ⋊ Aut(X) = 〈τ〉, the automorphism σ has the form σ = τmw
where w belongs to the braid group 〈L,S〉 (see [9, Theorem 6.3]). Therefore,
τ s+1T 2 = σd = τdmwd.

Since τ and T are central in Aut(Db(X)) it follows that wd is a central
element of the braid group 〈L,S〉, and hence is a power of (LS)3, say wd =
(LS)3l. This last assertion is well known [3, p. 63] and follows from the
easily established fact that (LS)3 is central in 〈L,S〉 and the factor group
〈L,S〉/〈(LS)3〉 ∼= P SL2(Z) has trivial center. Taking things together we
obtain, by Proposition 3.2,

τ s+1T 2 = τdm(LS)3l = τdm−3lT l.

This in turn implies l=2, and further dm≡s+1 (mod 6). For d ∈ {2, 3, 4, 6}
this congruence yields the solution sets Ed listed above.

Conversely, the following list yields dth roots of the twisted Nakayama
̺(τT 2), where ̺ = τ j with j ∈ Ed:

σ1 = τ(LS)3 is a square root with ̺ = τ ,

σ2 = τ2(LS)3 is a square root with ̺ = τ3,

σ3 = (LS)3 is a square root with ̺ = τ5,

σ4 = τ(LS)2 is a 3rd root with ̺ = τ2,

σ5 = (LS)2 is a 3rd root with ̺ = τ5,

σ6 = τ2L SL is a 4th root with ̺ = τ ,

σ7 = τL SL2 is a 4th root with ̺ = τ3,

σ8 = L SL is a 4th root with ̺ = τ5,

σ9 = LS is a 6th root with ̺ = τ5.

4. Selfinjective algebras of canonical type. By an algebra we mean
a finite-dimensional associative K-algebra with an identity, which we shall
assume to be basic and connected. For an algebra A, we denote by modA
the category of finite dimensional (over K) right A-modules and by D :
modA → modAop the standard duality HomK(−,K). An algebra A is
called selfinjective if A ∼= D(A) in modA, that is, AA is injective. Moreover,
A is called symmetric if A and D(A) are isomorphic as A-A-bimodules. An
important class of selfinjective algebras is formed by the algebras of the form
B̂/G, where B̂ is the repetitive algebra (locally finite-dimensional, without
identity) [7]

B̂ =




. . .
. . .

Qm−1 Bm−1
Qm Bm

Qm+1 Bm+1
. . .

. . .
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of an algebra B, where Bm = B and Qm = BD(B)B for all m ∈ Z, the
algebras Bm are placed on the main diagonal of B̂, all the remaining entries
are zero, the matrices in B̂ have only finitely many non-zero elements, ad-
dition is the usual addition of matrices, multiplication is induced from the
B-bimodule structure of D(B) and the zero map D(B)⊗B D(B) → 0, and
G is an admissible group of K-linear automorphisms of B̂ (considered as
the corresponding K-category). Recall that a group G of K-linear automor-
phisms of B̂ is called admissible if its action on the objects of B̂ is free and
has finitely many orbits. Then the orbit algebra B̂/G is a finite-dimensional
selfinjective algebra. Denote by ν

B̂
the Nakayama automorphism of B̂ shift-

ing Bm to Bm+1 and Qm to Qm+1 for all m ∈ Z. Then the infinite cyclic
group (ν

B̂
) is admissible, and B̂/(ν

B̂
) is the trivial extension B ⋉D(B) of

B by D(B), and so it is symmetric. We note that if B has finite global
dimension, then the stable module category mod B̂ is equivalent, as a trian-
gulated category, to the derived category Db(modB) of bounded complexes
over modB (see [5]).

Let X = X(p, λ) be a weighted projective line, depending on a weight
sequence p = (p1, . . . , pt) of positive integers, and a parameter sequence λ of
pairwise distinct elements from the projective line over K. Then X has a tilt-
ing bundle whose endomorphism algebra is a canonical algebra Λ = Λ(p, λ)
in the sense of [14], and in view of the equivalence Db(modΛ) ∼= Db(cohX)
(see [4]), the finite-dimensional representation theory of Λ is then completely
determined by the sheaf theory on the weighted projective line X. An algebra
B is called concealed-canonical (respectively, almost concealed-canonical) of
type Λ (or X) if B is the endomorphism algebra of a tilting bundle (re-
spectively, tilting sheaf) on the weighted projective line X = X(p, λ). More
generally, B is called derived canonical of type Λ (or X) if Db(modB) is
equivalent to Db(cohX) ∼= Db(modΛ).

Finally [11], keeping the notation above, by a selfinjective algebra of

canonical type Λ (or X) we mean an algebra of the form B̂/G, where B is a
derived canonical algebra of type Λ, andG is an admissible torsion-free group
of K-linear automorphisms of B̂. In fact, it is known that then B̂ = B̂′ for
an almost concealed-canonical algebra B′ of type Λ and G is infinite cyclic
(see [1, 11, 12, 15]). On the other hand, a complete understanding of the
generators of G is strongly related to the problem whether there are certain
roots of the twisted Nakayama automorphisms ̺ν

B̂
of B̂.

The representation type of a selfinjective algebra A of canonical type
Λ = Λ(p, λ) is completely determined by the discriminant

δ(p) = p

(
(t− 2)−

t∑

i=1

1

pi

)
,

where p = l.c.m.(p1, . . . , pt). Namely, A is tame if and only if δ(p) ≤ 0.
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More precisely, if δ(p) < 0 then A is a domestic selfinjective algebra of Eu-
clidean type, while, for δ(p) = 0, A is a non-domestic polynomial growth
selfinjective algebra of tubular type. We also note (see [15]) that the class of
tame selfinjective algebras of canonical type coincides with the class of all
representation-infinite polynomial growth selfinjective algebras which admit
simply connected Galois coverings. We refer to [1, 12, 15] for the represen-
tation theory of this class of selfinjective algebras.

The structure of admissible (infinite) cyclic groups of automorphisms
of the repetitive algebras of almost concealed-canonical algebras with neg-
ative discriminant (equivalently, tilted algebras of Euclidean type) is well
understood [10, 15]. We shall now derive some consequences of the facts
established in the previous sections to some other cases.

We have the following fact concerning selfinjective algebras of wild canon-
ical type.

Theorem 4.1. Let A be a selfinjective algebra of wild canonical type

Λ = Λ(p, λ) such that δ(p) or N(p) is odd. Then A ∼= B̂/(ϕνm
B̂
), where B

is an almost concealed-canonical algebra of type Λ, m is a positive integer ,
and ϕ is a K-linear automorphism of B̂ induced by an isomorphism of B.

In particular , the stable Auslander–Reiten quiver Γ s
A of A has 2m P1(K)-

families of stable tubes of tubular type p.

Pr oo f. We know from [11, Theorem 3.7] that A ∼= B̂/G where B is
an almost concealed-canonical algebra of type Λ = Λ(p, λ) and G is an
infinite cyclic group of K-linear automorphisms of B̂. Moreover, if σ is a
K-linear automorphism of B̂ such that σd = ̺ν

B̂
for some d ≥ 2 and a rigid

automorphism ̺ of B̂ then it follows from Corollary 2.2 that d = 2 and
δ(p) is even. But if σ2 = ̺ν

B̂
then K0(B) is of even rank, and so N(p) is

even. Therefore, invoking [11, Lemma 3.6], we deduce that G = (ϕνm
B̂
) for

some positive integer m and a rigid automorphism ϕ of B̂. The final claim
is a direct consequence of the facts that ΓA is the quotient Γ

B̂
/(ϕνm

B̂
), the

separating tubular families in the stable Auslander–Reiten quiver of B̂ have
the same tubular type p, and the stable Auslander–Reiten quiver of the
trivial extension B ⋉ D(B) has exactly two P1(K)-families of stable tubes
(see [11, Section 3] for details).

Applying [16, Theorem 3.2] and [17, Corollary 3.9] (see also [13, Theo-
rem 2] we obtain the following consequence of the above theorem.

Corollary 4.2. Let A be a selfinjective algebra of wild canonical type

Λ = Λ(p, λ) such that δ(p) or N(p) is odd. Then A is symmetric if and only

if A ∼= B ⋉D(B) for an almost concealed-canonical algebra B of type Λ.

We end this section with some examples illustrating our considerations.
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Example 4.3. Let r, s, t be positive integers. Consider the algebra
B(r, s, t) given by the quiver

◦
α2
←− ◦ . . . ◦

αr
←− ◦ ◦

σ2
←− ◦ . . . ◦

σr
←− ◦

α1
ւ

αr+1
տ

σ1
ւ

◦
β1
←− ◦

β2
←− ◦ ◦

βs
←− ◦

βs+1
←− ◦

ξ1
←− ◦

ξ2
←− ◦ . . . ◦

ξs
←− ◦

տ
γ1

ւ
γt+1

տ
η1

◦ ←−
γ2
◦ . . . ◦ ←−

γt

◦ ◦ ←−
η2
◦ . . . ◦ ←−

ηt

◦

bound by αr+1αr . . . α1 + βs+1βs . . . β1 + γt+1γt . . . γ1 = 0, σ1αr+1 = 0,
ξ1βs+1 = 0 and η1γt+1 = 0. Then B = B(r, s, t) is an almost concealed-
canonical algebra of type (2r + 1, 2s + 1, 2t + 1), and it is easy to see that
B̂ admits a K-linear automorphism ϕ such that ϕ2 = ν

B̂
.

Example 4.4. Let p, q ≥ 2 be two integers and a an element of K\{0, 1}.
Consider the algebra B(p, q, a) given by the quiver

◦
α2
←−◦ . . .◦

αp−1
←− ◦ ◦

σ2
←−◦ . . .◦

σp−1
←− ◦

α1
ւ

αp

տ
σ1
ւ

◦ ◦
տ
β1

ւ
βq

տ
η1

◦←−
β2

◦ . . .◦ ←−
βq−1

◦ ◦←−
η2
◦ . . .◦ ←−

ηq−1
◦

bound by σ1αp . . . α1 = σ1βq . . . β1 and η1αp . . . α1 = aη1βq . . . β1. Then
B = B(p, q, a) is an almost concealed-canonical algebra of type (p, p, q, q),
and it is easy to see that B̂ admits a K-linear automorphism ϕ such that
ϕ2 = ν

B̂
.

We note that if B=B(r, s, t) or B=B(p, q, a) then A= B̂/(ϕ) is a sym-
metric algebra non-isomorphic to the trivial extension B⋉D(B), because the
rank of K0(A) is half the rank of K0(B ⋉D(B)). Moreover, the Auslander–
Reiten quiver ΓA of A has exactly one P1(K)-family of quasi-tubes (that
is, the stable parts are tubes), and this family contains projective modules.
For example, if B = B(2, 3, a) then A = B̂/(ϕ) is the algebra given by the
quiver

◦
β1

ւ

◦

α1

⇄
α2

◦ ↑β2

ց
β3

◦

bound by the following relations: α1α2α1 = α1β3β2β1, β1α2α1 = aβ1β3β2β1,
α2α1α2 = β3β2β1α2, α2α1β3 = aβ3β2β1β3, α1α2α1β3 = 0, β1β3β2β1α2 = 0,
and β2β1β3β2β1β3β2 = 0.
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We do not know any selfinjective algebra of wild canonical type whose
Auslander–Reiten quiver has only one P1(K)-family of quasi-tubes, and all
quasi-tubes in this family are stable tubes. It is equivalent to find a wild
concealed-canonical algebra B such that B̂ admits a K-linear automorphism
ϕ such that ϕ2 = ̺ν

B̂
for some rigid automorphism ̺ of B̂. Note that for

such an algebra B, the unique tubular family in ΓB does not contain simple
modules.

5. Selfinjective algebras of tubular type. Let B be an algebra and
e1, . . . , en be a complete set of primitive orthogonal idempotents of B such
that 1 = e1+. . .+en. Denote by QB the (Gabriel) quiver of B with the set of
vertices 1, . . . , n corresponding to the set e1, . . . , en. For each vertex i ∈ QB ,
denote by PB(i) the indecomposable projective B-module eiB and by IB(i)
the indecomposable injective B-module D(Bei). Then, for a sink i ∈ QB , the
reflection S+

i B of B at i is the quotient of the one-point extension B[IB(i)]
by the two-sided ideal generated by ei. The quiver σ+

i QB of S+
i B is called

the reflection of QB at i. Observe that the sink i of QB is replaced in σ+
i QB

by a source i′. Moreover, we have

B̂ ∼= Ŝ+
i B.

A reflection sequence of sinks is a sequence i1, . . . , it of vertices of QB such
that is is a sink of σ+

is−1 . . . σ
+
i1
QB for 1 ≤ s ≤ t (see [7, (2.8)]). We have the

following fact, proved in [12, Section 4], describing the relationship between
tubular algebras with isomorphic repetitive algebras.

Theorem 5.1. Let B be a tubular algebra with QB having n vertices.

There is a sequence of natural numbers 1 ≤ t1 < t2 < . . . < tr+1 = n,
uniquely determined by B, and a reflection sequence of sinks i1, . . . , it1 ,
it1+1, . . . , itr , itr+1, . . . , in in QB such that the following statements hold :

(a) S+
in
. . . S+

i1
B ∼= ν

B̂
(B) ∼= B.

(b) S+
itj

. . . S+
i1
B, 1 ≤ j ≤ r, are tubular algebras of the same tubular type

as B.

(c) Every tubular algebra D with D̂ ∼= B̂ is isomorphic to S+
itj

. . . S+
i1
B

for some 1 ≤ j ≤ r + 1.

Following [15] the tubular algebra B is said to be normal if the tubu-
lar algebras S+

itj
. . . S+

i1
B, 1 ≤ j ≤ r + 1, are pairwise non-isomorphic, or

equivalently B 6∼= S+
itj

. . . S+
i1
B for any 1 ≤ j ≤ r. Otherwise, B is said to be

exceptional . It follows from [15, Section 3] that B is exceptional if and only
if there exists an automorphism ϕ of B̂ such that ϕd = ̺ν

B̂
for some d ≥ 2

and a rigid automorphism ̺ of B̂ induced by an automorphism of B.
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Proposition 5.2. If B is derived canonical of tubular type and ϕ is an

automorphism of B̂ with ϕd = ̺ν
B̂
, where ν

B̂
is the Nakayama translation

of B̂ and ̺ is a rigid automorphism of B̂, then d ∈ {1, 2, 3, 4, 6} and d is

a divisor of the rank of the Grothendieck group K0(X).

Pr oo f. By Happel’s theorem the stable category mod B̂ is equivalent to
Db(X) for a weighted projective line X of tubular type, and hence passage
to the stable category yields the first result, by Proposition 3.1. For this we
observe that in the tubular case each rigid automorphism of B̂ preserves the
slope of indecomposable objects in the stable category of B̂. For the second
assertion we refer to [15, Lemma 3.8].

We shall give a complete description of all selfinjective algebras of tubular
type (2, 3, 6). Consider the following family of algebras:

B1

B2 B3

B4

B5 B6

B7 B8
B9

B10 B11
B12
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B13 B14

B15

B16 B17

B18

B19 B20

B21

B22

B23 B24

B25 B26 B27
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B28

B29 B30

B31 B32 B33

B34 B35

We note that the algebras B1, . . . , B35 are pairwise non-isomorphic, B4
∼=

Bop
1 , B5

∼= Bop
2 , B6

∼= Bop
3 , B10

∼= Bop
7 , B11

∼= Bop
8 , B12

∼= Bop
9 , B16

∼= Bop
13 ,

B17
∼= Bop

14 , B18
∼= Bop

15 , while Bi 6∼= Bop
j for i, j ∈ {19, . . . , 35}.

Theorem 5.3. (a) The algebras B1, . . . , B35 are tubular algebras of type

(2, 3, 6).

(b) The repetitive algebras B̂1, . . . , B̂35 form a complete family of pairwise

non-isomorphic repetitive algebras of tubular type (2, 3, 6) having a non-

trivial rigid twist.

(c) B35 and Bop
35 are—up to isomorphism—the unique exceptional tubular

algebras of type (2, 3, 6).

Pr oo f. A straightforward checking shows that each of the algebras Bi,
1 ≤ i ≤ 35, is a tubular extension or a tubular coextension, of tubular type
(2, 3, 6), of a tame concealed algebra of one of the Euclidean types Ã3, Ã5,
Ã7, D̃6, or D̃8, and consequently it is a tubular algebra of type (2, 3, 6), by
[14, Section 5]. Moreover, observe that the algebras B21 and B22 admit a
natural automorphism of order 3, while the algebras Bi, i 6= 21, 22, admit a
natural automorphism of order 2. Let B be a tubular algebra of type (2, 3, 6)
such that there exists a non-trivial automorphism ϕ of B. We shall prove
that then B̂ ∼= B̂i for some i ∈ {1, . . . , 35}.
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We know that B is a tubular extension of a (unique) tame concealed
algebra C. Clearly, we then have ϕ(C) = C. We have the induced automor-
phisms ϕ : B̂ → B̂, ϕ : mod B̂ → mod B̂. Denote by ̺ the automorphism of
mod B̂ = Db(modB) = Db(X) induced by ϕ on the stable level, where X is
the weighted projective line of type (2, 3, 6). Since ̺ is a rigid automorphism
of Db(X) we know that ̺ = τ s for some s = 0, 1, . . . , 5.

Our next observation is that we may take C of Euclidean type different
from Ẽ8. Indeed, suppose C is of type Ẽ8. Then B is a one-point extension
of C by an indecomposable module lying on the mouth of the unique stable
tube of rank 5 in ΓC , and consequently ϕ fixes the extension vertex of this
one-point extension. Next, a simple inspection of the Bongartz–Happel–
Vossieck list [2, 6] of tame concealed algebras shows that, if ϕ fixes all
vertices of QC , then in fact ϕ is trivial, a contradiction. Therefore, there are
vertices x 6= y in QC such that ϕ(x) = y. Since ϕ is a rigid automorphism of
B̂, then the indecomposable projective B̂-modules P

B̂
(x) and P

B̂
(y) lie in

the same P1(K)-family of quasi-tubes in Γ
B̂
, and obviously ϕ shifts P

B̂
(x)

to P
B̂
(y). Invoking now [12, Sections 3 and 4] we conclude that there exists

a tubular extension D of a tame concealed algebra C ′ such that B̂ ∼= D̂, and
hence D is a tubular algebra of type (2, 3, 6), and x, y are vertices of QD

but not of QC′ . Clearly, C ′ is not of type Ẽ8 and we are done. Therefore, we
may assume that C is not of type Ẽ8 and that there are two vertices x and
y of QB but not of QC with ϕ(x) = y.

Assume that C is of type Ẽ7. Then the set of vertices of QB consists of
the vertices of QC and two extra vertices x and y such that the maximal C-
submodules of the indecomposable projective B-modules PB(x) and PB(y)
lie on the mouth of the unique stable tube of ΓC of rank 4. Then it follows
that the indecomposable B̂-modules X = radP

B̂
(x) and Y = radP

B̂
(y) lie

in one of the stable tubes of rank 6 of the stable Auslander–Reiten quiver
Γ s

B̂
of B̂. Since ϕ is a non-trivial automorphism of B, ̺ is a non-trivial rigid

automorphism of mod B̂, and so ̺ = τ s for some s ∈ {1, 2, 3, 4, 5}. On the
other hand, ̺ acts on the set {X,Y }, and so ̺ = τ3 and X = ̺Y , Y = ̺X.
Therefore, we conclude that B is a tubular extension of C by two non-
isomorphic indecomposable modules lying on the mouth of the stable tube
of rank 4. Moreover, a simple inspection of the Bongartz–Happel–Vossieck
list shows that ϕ is an automorphism of order two.

Assume now that C is of type Ẽ6. Then the set of vertices of QB consists
of the vertices of QC and three extra vertices x, y, z such that the maximal
C-submodules of PB(x), PB(y) and PB(z) lie on the mouth of one of the
stable tubes of rank 3 in ΓC . Then it follows that the indecomposable B̂-
modules X = radP

B̂
(x), Y = radP

B̂
(y) and Z = radP

B̂
(z) lie in stable

tubes of rank 6 of Γ s

B̂
. Again, ̺ is a non-trivial rigid automorphism of mod B̂,
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and so ̺ = τ s for some s ∈ {1, 2, 3, 4, 5}. Since ϕ acts on the set {x, y, z}, ̺
acts on the set {X,Y,Z}, and then we deduce that ̺ = τ2, that X, Y , Z lie
in one stable tube of rank 6 in Γ s

B̂
, and that

Y = τ2X, Z = τ2Y, X = τ2Z,

after a permutation of X, Y , Z. Hence, B is a tubular extension of C by
all indecomposable modules lying on the mouth of one of the stable tubes
of rank 3 in ΓC . A simple inspection of the Bongartz–Happel–Vossieck list
shows also that ϕ is an automorphism of B of order 3.

Finally, we note that if C is of type Ãm, then C is one of the quivers

because B is a tubular extension of C of tubular type (2, 3, 6) and ϕ is a
non-trivial automorphism of B.

Next we calculate the tubular algebras whose repetitive algebra is iso-
morphic to one of B̂i, 1 ≤ i ≤ 35. According to Theorem 5.1, these tubular
algebras are obtained by suitable reflections of the algebras B1, . . . , B35. This
is a straightforward procedure, and we illustrate it only by three reflection
sequences representing all situations which can occur.

For B1 we have the following reflection sequence of tubular algebras:

10

98

4 5

2 3

1

6 7 S
+

1
-

1′

6
10

7
8 9

4 5

2 3

S
+

5
S
+

4
S
+

3
S
+

2
-

10

9 8

1′

4′ 5′

2′ 7 6 3′



226 H. LENZING AND A. SKOWROŃSKI

S
+

9
S
+

8
-

1′

2′ 7 6 3′

4′ 5′

9′8′

10

S
+

7
S
+

6
-

1′

2′ 3′

4′ 5′

8′ 9′

10

6′ 7′

S
+

10
-

10′

9′8′

4′ 5′

2′ 3′

1′

6′ 7′

with D1 = S+
1 B1, D2 = S+

5 S
+
4 S

+
3 S

+
2 D1, D3 = S+

9 S
+
8 D2, D4 = S+

7 S
+
6 D3

and B1 = S+
10D4 forming a complete list of pairwise non-isomorphic tubular

algebras of type (2, 3, 6) whose repetitive algebra is isomorphic to B̂1. Note
that the opposite algebra B4 = Bop

1 does not occur in this sequence, and

consequently B̂1 6∼= B̂4. Clearly, the reflection sequence of tubular algebras
produced by B4 consists of B4, D

op
4 , Dop

3 , Dop
2 and Dop

1 .

The same holds for the remaining dual pairs B2 and B5, B3 and B6, B7

and B10, B8 and B11, B9 and B12, B13 and B16, B14 and B17, B15 and B18.
For B34 we have the following reflection sequence of tubular algebras:

10

8 9

5 6 7

32 41

S
+

3
S
+

2
-

10

8 9

6 75

41

2′3′

S
+

7
S
+

6
S
+

5
-

10

2′ 3′1

9 8

4

5′ 6′ 7′

S
+

9
S
+

8
-

10

2′ 3′

5′ 6′ 7′

1 9′ 48′

S
+

10
S
+

4
S
+

1
-

9′

5′ 7′

3′1′ 2′ 4′

6′

8′

10′
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with E1 = S+
3 S

+
2 B34, E2 = S+

7 S
+
6 S

+
5 E1, E3 = S+

9 S
+
8 E2, B34 = S+

10S
+
4 S

+
1 E3

forming a complete list of pairwise non-isomorphic tubular algebras of type
(2, 3, 6) whose repetitive algebra is isomorphic to B̂34. Observe that E3 =
Bop

34 , and consequently B̂op
34

∼= B̂op
34

∼= B̂34. In fact we have B̂op
i

∼= B̂op
i

∼= B̂i

for i = 19, . . . , 34.
For B35 we have the following reflection sequence of tubular algebras:

8 9 10

6 7

3 4 5

1 2

S
+

2
S
+

1
-

2′ 1′

8 9 10

6 7

3 4 5

S
+

5
S
+

4
S
+

3
-

5′ 4′ 3′

2′ 1′

8 9 10

6 7

S
+

7
S
+

6
-

7′ 6′

5′ 4′ 3′

2′ 1′

8 9 10

S
+

10
S
+

9
S
+

8
-

10′ 9′ 8′

7′ 6′

5′ 4′ 3′

2′ 1′

Observe that F1 = S+
2 S

+
1 B35 = Bop

35 , F2 = S+
5 S

+
4 S

+
3 F1 = B35, F3 =

S+
7 S

+
6 F2 = Bop

35 , and S+
10S

+
9 S

+
8 F3 = B35. Therefore, B35 and Bop

35 are excep-

tional tubular algebras of type (2, 3, 6) and B̂op
35

∼= B̂op
35

∼= B̂35. Hence any

tubular algebra F with F̂ ∼= B̂35 is isomorphic to B35 or Bop
35 . Moreover, the

shift ϕ : B̂35 → B̂35 induced by the isomorphism B35 → F2 = S+
5 S

+
4 F1 is

an automorphism of B̂ such that ϕ2 = ̺ν
B̂35

, where ̺ is the natural rigid

automorphism of B̂35 of order 2. Clearly, we also have (̺ϕ)2 = ϕ2 = ̺ν
B̂
.

Calculating the reflection sequences of tubular algebras for all algebras
B1, . . . , B35 we conclude that:
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(α) For any two distinct members i and j from {1, . . . , 35}, the reflection
sequences of tubular algebras produced by Bi and Bj are disjoint.

(β) The algebras B1, . . . , B34 are normal.
(γ) The tubular algebras which are produced by all reflections from the

algebras B1, . . . , B35 exhaust all possible tubular extensions, of tubular type
(2, 3, 6), of tame concealed algebras of Euclidean type Ãm, D̃n, Ẽ6, Ẽ7 which
admit a non-trivial automorphism.

Invoking now the first part of the proof, we conclude that B̂1, . . . , B̂35

form a complete family of pairwise non-isomorphic repetitive algebras of
tubular type (2, 3, 6) which admit a non-trivial rigid automorphism. More-
over, any non-trivial rigid automorphism of B̂i, 1 ≤ i ≤ 35, is a natural
automorphism of order 2 or 3. This shows (b).

For (c), suppose B is an exceptional tubular algebra of type (2, 3, 6).
Then there exists an automorphism ϕ of B̂ such that ϕd = ̺ν

B̂
for some

proper divisor d of the rank of K0(B) and a rigid automorphism ̺ of B̂.
Since K0(B) is of rank 10, we have d = 2 or d = 5. But d = 5 is excluded
by Proposition 3.1. If ̺ is trivial then d = 2 is excluded by Proposition 3.3.
Finally, if ̺ is non-trivial, then B̂ admits a non-trivial rigid twist. Therefore,
B ∼= B35 or B ∼= Bop

35 , and (c) follows.

The following classification of selfinjective algebras of tubular type is
now a direct consequence of the above theorem and [15, Proposition 3.9].

Theorem 5.4. Let A be a selfinjective algebra. Then A is of tubular type

(2, 3, 6) if and only if A is isomorphic to one of the algebras:

(a) B̂/(νm
B̂
), where B is a tubular algebra and m is a positive integer ,

(b) B̂/(̺νm
B̂
), where B is one of the algebras B1, . . . , B35, ̺ is the twist

of B̂ induced by the corresponding twist of B of order 2 or 3, and m is a

positive integer.

(c) B̂/(ϕm) or B̂/(̺ϕm), where B = B35, ̺ is the twist of B̂ induced by

the corresponding twist of B of order 2 such that ϕ2 = ̺ν
B̂
, and m is an

odd number.

We obtain the following direct consequence of the above theorem.

Corollary 5.5. Let A be a selfinjective algebra of tubular type (2, 3, 6).
Then A is symmetric if and only if

A ∼= B ⋉D(B)

for a tubular algebra B of type (2, 3, 6).

In [15, (3.3), (3.4)] there are exhibited exceptional tubular algebras: Λ1

of type (2, 2, 2, 2), Λ2 of type (2, 2, 2, 2), and Λ3 of type (3, 3, 3) for which
there exist K -linear automorphisms ϕ1 : Λ̂1 → Λ̂1, ϕ2 : Λ̂2 → Λ̂2 and
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ϕ3 : Λ̂3 → Λ̂3 such that ϕ2
1 = ν

Λ̂1

, ϕ3
2 = ν

Λ̂2

and ϕ4
3 = ν

Λ̂3

. We do not know

whether there exists a tubular algebra B of type (2, 4, 4) and a K-linear
automorphism ϕ of B̂ such that ϕ3 = ̺ν

B̂
for a rigid automorphism ̺ of B̂.

Observe that on the stable level mod B̂, ν
B̂

= τT 2 admits a 3rd root, as
shown in Section 3.
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