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SYMMETRIC PARTITIONS AND PAIRINGS
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Abstract. The lattice of partitions and the sublattice of non-crossing partitions of
a finite set are important objects in combinatorics. In this paper another sublattice of
the partitions is investigated, which is formed by the symmetric partitions. The measure
whose nth moment is given by the number of non-crossing symmetric partitions of n
elements is determined explicitly to be the “symmetric” analogue of the free Poisson law.

1. Preliminaries. For a linearly ordered set S, π = {V1, . . . , Vp} is a
partition of S if the Vi are pairwise disjoint (non-empty) sets with union S.
The sets Vi are called the blocks of the partition. We call the partition
π crossing if in π there are two blocks Vi and Vj (i 6= j) and elements
v1, v2 ∈ Vi, w1, w2 ∈ Vj such that v1 < w1 < v2 < w2. Otherwise the
partition is called non-crossing . A partition π of S is called a pair-partition

or pairing if every block of π contains exactly two elements of S. Of course
the number of elements in S must be even if S admits such a partition.

It is well known (and can be verified easily) that the number of all
partitions of a set of n elements is given by the nth Bell numberBn satisfying

B0 = 1, Bn+1 =

n∑

k=0

(
n

k

)
Bk,

while the number of all pair-partitions of a set of 2n elements is (2n)!/(2nn!)
(see [2] for example).

An interesting fact about the non-crossing partitions is that the number
of non-crossing partitions of a set of n elements equals the number of non-
crossing pair-partitions of a set of 2n elements, which is the nth Catalan
number ck = 1

n+1

(
2n
n

)
(see [4] and [6]).

One can define a partial order structure on the set of partitions (or non-
crossing partitions) of an n-element set in the following way: let π1 ≤ π2 if
and only if each block of π1 is contained in a block of π2. With this order
both the set of all partitions and the set of non-crossing partitions of an
n-element set become lattices (see [4] and [2]).
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It is also interesting to see the connection between the number of cer-
tain partitions and certain probability distributions. The most important
examples are the following. It is easy to check that the nth moment of the
standard Gaussian law is given by the number of pair-partitions of a set of
n elements. On the other hand, the number of non-crossing pair-partitions
of a set of n elements gives the nth moment of the standard Wigner law (it
is also called the semicircle law), which is the analogue of the Gaussian law
in free probability theory (see e.g. [3]). The nth moment of a Poisson law
of mean λ is a polynomial of λ in which the coefficient of λi is the num-
ber of all partitions of a set of n elements into i blocks. Again, taking the
polynomial of λ in which the coefficient of λi is the number of non-crossing
partitions of a set of n elements into i blocks, we get the nth moment of the
Marchenko–Pastur distribution, which from many points of view is the free
analogue of the Poisson law (see [5]).

2. Combinatorial results. In this paper we examine another special
type of partition which is given by the following

Definition 2.1. A partition π of a linearly ordered set S = {s1, . . . , sn}
is symmetric if whenever si and sj are in the same block, then so are sn+1−i

and sn+1−j.

The reason to call these partitions symmetric is that their linear repre-
sentation (where instead of S we take the subset {1, . . . , n} of the real line,
and the blocks of π are represented by “bridges” connecting the elements of
the same block) is symmetric with respect to its center, or (what means the
same) inverting the order in S does not change the linear representation. In
Fig. 1 one can see the linear representations of π1 = {{1, 4}, {2}, {3, 5, 6}}
and π2 = {{1, 6}, {2, 3}, {4, 5}} of {1, 2, 3, 4, 5, 6}, the latter being symmet-
ric.

Fig. 1

Note that from the linear representation of a partition it can also be
seen immediately whether it is crossing or non-crossing. If it is possible
to draw the bridges corresponding to the blocks without crossing one an-
other, then the corresponding partition is non-crossing (as for example π2

of Fig. 1), while if it is impossible, the partition is crossing (as for example
π1 of Fig. 1). It is also easy to see from the linear representation whether
the given partition is a pairing, as for example π2 of Fig. 1.
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Note that just as in the case of all partitions, both the set of all symmetric
partitions and the set of non-crossing symmetric partitions of an n-element
set form lattices with respect to the usual partial order ≤ of partitions.

Proposition 2.1. Both the number of non-crossing symmetric parti-

tions of a set of n elements and the number of non-crossing symmetric

pair-partitions of a set of 2n elements are
(

n
[n/2]

)
(the numbers in the center

of the Pascal triangle).

P r o o f. Let An denote the number of non-crossing symmetric partitions
of n elements. First we show the following recursion:

A2l+1 = 2A2l − cl for l = 0, 1, 2, . . . ,

A2l+2 = 2A2l+1 for l = 0, 1, 2, . . . ,

where cl is the lth Catalan number (the number of all non-crossing partitions
of l elements), with A0 = c0 = 1.

If π is any non-crossing symmetric partition of S0 = {1, 2, . . . , l,
l+2, . . . , 2l+1}, then π̃ = π∪{{l+1}} is a non-crossing symmetric partition
of S = {1, . . . , 2l + 1}. Starting from different partitions of S0 we clearly
get different partitions of S. This way we get A2l non-crossing symmetric
partitions of S.

We get different—still symmetric and non-crossing—partitions of S if
we let the inserted central element l + 1 be the member of the block which
contains the greatest element i0 ≤ l together with its “symmetric counter-
part” 2l + 1 − i0. The only case when such a block does not exist is when
every element of any block is in the same half of the set, and as in this case
the partition of the first l elements defines the partition of the last l ele-
ments (because of the requirement of symmetry), the number of these cases
is cl, the number of non-crossing partitions of l elements. This gives another
A2l − cl partitions, as starting from different partitions of S0 we clearly get
different partitions of S again. It is also clear that these A2l − cl partitions
differ from the A2l partitions obtained before; to check this it is enough to
take the block of the central element.

What is left is to show that any symmetric non-crossing partition ν of
S can be obtained by one of those two methods. The element l + 1 can
either form a block by itself, or can be the central element of a block which
contains both smaller and greater elements, in a symmetric arrangement.
In the first case it is clear that the partition ν can be obtained by the first
method from the partition ν0 = ν \ {l + 1} of S0. In the second case, as
the partition is non-crossing, the block which contains the greatest element
i0 ≤ l together with its “symmetric counterpart” 2l + 1− i0 is the block of
the central element. So now the partition ν can be obtained by the second
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method from the partition of S0 which arises by eliminating the central
element from its block (and from the set itself).

Now starting from any non-crossing symmetric partition of 2l + 1 ele-
ments, we can obtain a non-crossing symmetric partition of 2l+ 2 elements
in two different ways again. Duplicating the central element (sl+1), we can
put the two elements in the same block or in different ones. (In the first case
the number of blocks does not change, while in the second case it increases
by one.) Starting from different partitions both procedures give different
partitions of the resulting 2l + 2 elements, and of course the two methods
can never give the same partition; to check this it is enough to take the
block(s) of the two central elements.

We show that any symmetric non-crossing partition η of 2l+2 elements
can be obtained by one of those two methods. The elements sl+1 and sl+2

can be either in the same block or in different ones. In the first case it is
clear that η can be obtained by the first method from the partition η0 of
2l + 1 elements which arises by fusing the elements sl+1 and sl+2. In the
second case the partition η can be obtained from the same partition η0 of
2l + 1 elements by the second method.

The fact that the sequence
(

n
[n/2]

)
satisfies the same recursion with the

same starting element can be verified directly.
For the second part of the statement we recall a well known natural

bijection between the set of non-crossing partitions of n elements and the
set of non-crossing pair-partitions of 2n elements. Let π = {V1, . . . , Vk}
be a non-crossing partition of S = {s1, . . . , sn}. Let Ŝ be the ordered set
{s−1 , s+1 , . . . , s−n , s+n }, and let π̂ be the partition whose blocks are defined in
the following way: whenever Vi = {si1 , . . . , sim} ∈ π, let {s−i1 , s

+
im

}, {s+i1 , s
−
i2
},

{s+i2 , s
−
i3
}, . . . , {s+im−1

, s−im} ∈ π̂. (For an example see Fig. 2.) It is obvious
that this map preserves symmetry, which completes the proof.

Fig. 2

We note that for the number of all symmetric partitions and all sym-
metric pair-partitions we could not find any useful expressions apart from
obvious recurrences.

3. Solution of the moment problem in the case of symmetric

partitions. In this part we consider the question whether the numbers of
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non-crossing symmetric partitions of n elements (n = 0, 1, 2, . . .) can form
the moment sequence of some probability measure µ.

Theorem 3.1. The moment sequence of the probability distribution

µ =
1

2π

√
2 + x

2− x
χ(x)dx,

where χ stands for the characteristic function of the interval [−2, 2], is

{An}n∈N, that is, the sequence of numbers of all non-crossing symmetric

partitions of n elements (n = 0, 1, . . .).

P r o o f. Denote the nth moment of µ by mn. Integration by parts gives

m2l =
1

2π

2\
−2

x2l

√
2 + x

2− x
dx =

1

2π

[
2π4l − 4l

2\
−2

x2l−1 arcsin(x/2) dx
]
,

m2l+1 =
1

2π

2\
−2

x2l+1

√
2 + x

2− x
dx =

1

2π
(2l + 1)

2\
−2

x2l
√

4− x2 dx.

Another integration by parts (applied to the expression obtained for m2l)
gives m2l = 2m2l−1. (In the integral we recognize the above forms of m2l

and m2l−1, leading to m2l = 4lm2l−1 − (2l − 1)m2l, which yields the given
result.) In a similar manner, integration by parts applied to the expression
obtained for m2l+1 gives

m2l+1 =
2l + 1

l + 1
m2l.

m0 and m1 can be computed directly; one gets m0 = 1 and m1 = 1. The
fact that the sequence

(
n

[n/2]

)
satisfies the same recursions with the same

starting element can be verified directly, which completes the proof.

Remark 3.2. A constructive way to obtain the measure µ is via its
moment generating series. The moment generating series defined by the
numbers An is

M(x) =

∞∑

n=0

Anx
n =

∞∑

k=0

A2kx
2k +

∞∑

k=0

A2k+1x
2k+1

Applying the recursions A2k = 2A2k−1 and A2k+1 = 2A2k − ck one gets

M(x) =
1− xW (x)

1− 2x
,

where W (x) stands for the moment generating series
∑∞

n=0 cnx
2n of the

standard Wigner law:

W (x) =
1−

√
1− 4x2

2x2
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(see e.g. [3]). Solving the above equation for M(x) one gets

M(x) =
2x+

√
1− 4x2 − 1

2x− 4x2
,

which gives the Cauchy transform of the corresponding probability measure:

G(z) =
1

z
M

(
1

z

)
=

1

2

[√
z + 2

z − 2
− 1

]
.

According to the Stieltjes inversion formula this determines the correspond-
ing measure:

dµ

dx
= lim

y↓0

[
− 1

π
ImG(x+ iy)

]
=

1

2π

√
2 + x

2− x
χ(x).

From these results one can check that

G(z) =
1

z − 1−Gw(z)
,

where

Gw(z) =
z −

√
z2 − 4

2

is the Cauchy transform of the standard Wigner law, having the continued
fraction form

Gw(z) =
1

z − 1

z − 1

. . .

(see e.g. [3]), so we obtain

G(z) =
1

z − 1− 1

z − 1

z − 1

. . .

,

which in turn gives the recursion for the orthogonal polynomials for µ:

P0(x) = 1,

P1(x) = x− 1,

xPn(x) = Pn+1(x) + Pn−1(x) (n ≥ 1).

We note that there is no probability distribution with moments equal to
the numbers of (non-crossing) symmetric pair-partitions of n elements (n =
0, 1, 2, . . .). A necessary condition for a sequence {ai}i=0,1,... of numbers to
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be the moment sequence of some probability measure is that the determinant
∣∣∣∣∣∣∣

a0 a1 . . . ak
a1 a2 . . . ak−1

. . . .
ak ak+1 . . . a2k

∣∣∣∣∣∣∣

should be non-negative for every k = 0, 1, . . . (see e.g. [1]). Calculating the
corresponding 4×4 determinants we get negative numbers in both (crossing
and non-crossing) cases. (In the non-crossing case the same follows from the
fact that for the probability measure µ of Theorem 3.1, suppµ * [0,∞).)

Theorem 3.3. The moment sequence of the probability distribution with

parameter λ (λ > 0) defined by

µλ =





1

2π

√
(1 + λ) + x

(1 + λ)− x
(1− (1− λ)2

x2
)χ(x)dx if λ ≥ 1,

(1− λ)δ0 +
1

2π

√
(1 + λ) + x

(1 + λ)− x
(1− (1− λ)2

x2
)χ̃(x)dx if λ < 1,

where χ is the characteristic function of [−1−λ, 1−λ]∪ [−1+λ, 1+λ] and
χ̃ is the characteristic function of [−1− λ,−1 + λ]∪ [1− λ, 1 + λ], is given
by

m(λ)
n =

n∑

i=1

A(i)
n λi,

where A
(i)
n is the number of non-crossing symmetric partitions of a set of n

elements into i blocks.

P r o o f. First one has to derive a recursive formula for A
(i)
n . This can be

done following the ideas of the proof of Proposition 2.1, arriving at

A
(0)
0 = A(1)

n = A(n)
n = 1 if n ≥ 1,

A(k)
n = 0 if 0 ≤ n < k or k = 0 < n,

A
(2k)
2n+1 = A

(2k−1)
2n +A

(2k)
2n −Q(k)

n if 1 ≤ k ≤ n,

A(k)
n = A

(k−1)
n−1 +A

(k)
n−1 if 1 ≤ k ≤ n and (n is even or k is odd),

where Q
(k)
n means the number of non-crossing partitions of a set of n ele-

ments into k blocks.
From this one easily gets the following recursion for the moments:

m
(λ)
2n = (1 + λ)m

(λ)
2n−1 for n = 1, 2, . . . ,

m
(λ)
2n+1 = (1 + λ)m

(λ)
2n − m̃(λ)

n for n = 0, 1, . . . ,

m
(λ)
0 = 1,
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where m̃
(λ)
n is the nth moment of the free Poisson law with parameter λ2

(see [5]), that is,

m̃(λ)
n =

n∑

i=1

Q(i)
n λ2i.

For the moment generating series defined by the numbers m
(λ)
n one gets

Mλ(x) =

∞∑

n=0

m(λ)
n xn =

∞∑

k=0

m
(λ)
2k x2k +

∞∑

k=0

m
(λ)
2k+1x

2k+1.

(The moment generating series of the free Poisson law or the classical Poisson
law with parameter λ clearly majorize this power series. As those series are
absolutely convergent for sufficiently small values of x, the same holds for
Mλ(x).)

Applying the above recursions, passing to the Cauchy transform

Gλ(z) =
1

z
Mλ

(
1

z

)

and using the known fact that the Cauchy transform of the free Poisson law
with parameter λ2 is

G̃λ2(z) =
z + (1− λ2)−

√
(z − 1− λ2)2 − 4λ2

2z

(see e.g. [3] or [7]) one gets

Gλ(z) =
1

2

[
1− λ

z
− 1 +

√
z + (1 + λ)

z − (1 + λ)
(1− (1− λ)2

z2
)

]
.

Applying the Stieltjes inversion formula, after some easy calculation one gets
µλ as stated above.

Remark 3.4. Note that if λ = 1 then µλ coincides with the probability
distribution µ given in Proposition 3.1.

Calculating the orthogonal polynomials for µλ one gets

P0(x) = 1,

P1(x) = x− λ,

xPn(x) = Pn+1(x) + (−1)n(λ− 1)Pn(x) + λPn−1(x) (n ≥ 1).

This can be shown by verifying the equality

Gλ(z) =
1

z − λ− Fλ(z)
,



SYMMETRIC PARTITIONS AND PAIRINGS 101

where Fλ(z) is defined by the formula

Fλ(z) =
λ

z + (λ− 1)− λ

z − (λ− 1)− Fλ(z)

.

(Computation was carried out by MAPLE.)

The probability measure µλ given in Proposition 3.3 can be considered
as the “symmetric analogue” of the free Poisson law of mean λ. We have seen
that the “symmetric analogue” of the Wigner law and that of the Gaussian
law do not exist (as probability distributions). Finally we have to mention
that we could not derive a “symmetric analogue” of the Poisson law of mean
λ (whose nth moment would be a polynomial of λ in which the coefficient
of λi is the number of all symmetric partitions of a set of n elements into i
blocks), neither could we prove that it does not exist.
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