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INFINITE FAMILIES OF NONCOTOTIENTS

BY

A. F LAMMENKAMP AND F. L UCA (BIELEFELD)

Abstract. For any positive integer n let φ(n) be the Euler function of n. A positive
integer n is called a noncototient if the equation x − φ(x) = n has no solution x. In
this note, we give a sufficient condition on a positive integer k such that the geometrical
progression (2mk)m≥1 consists entirely of noncototients. We then use computations to
detect seven such positive integers k.

For any positive integer n let φ(n) be the Euler φ function of n. A
positive integer n is called a noncototient if the equation x−φ(x) = n has no
solution. For example, n = 10, 26, 34, 50, 52, 58, 86, 100 are all noncototients.
Sierpiński and Erdős (see B36 in [3]) conjectured that there are infinitely
many noncototients.

An affirmative answer to the above conjecture was given by Browkin and
Schinzel in [1]. In the above mentioned paper, they showed that 2n · 509203
is a noncototient for all positive integers n. Their proof used the number
509203 in an essential way. In this work, we extend the result of [1] by giving
a general method for finding numbers k such that 2nk is a noncototient for
all positive integers n. As a corollary of our method, we have the following:

Theorem. Let m ≥ 1 be a positive integer. Then each of the numbers
n=2mk, where k∈{509203, 2554843, 9203917, 9545351, 10645867, 11942443,
65484763}, is a noncototient.

The following proposition provides the theoretical background for our
Theorem.

Proposition. Let k be a positive integer satisfying the following four
conditions:

(i) k is an odd prime.
(ii) k is not a Mersenne prime.
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(iii) The number 2tk − 1 is composite for all integers t ≥ 1.
(iv) The number 2k is a noncototient.

Then the number 2mk is a noncototient for all positive integers m.

P r o o f. Assume that 2mk is a cototient for some m ≥ 1. Write

(1) x− φ(x) = 2mk.

Clearly, x > 2. In particular, φ(x) is even. From equation (1), it follows
that x is even.

Write x = 2αy where y is odd. If y = 1, we get

2mk = x− φ(x) = 2α − 2α−1 = 2α−1,

which is impossible. So, y > 1. We distinguish two cases:

Case 1: y is squarefree. If y = p is prime, we get

2mk = x− φ(x) = 2αp− 2α−1(p− 1) = 2α−1(p + 1).

It now follows that m ≥ α− 1 and p = 2tk − 1, where t = m− α + 1. This
contradicts condition (iii).

Assume now that y = p1 . . . ps, where p1 < . . . < ps are odd primes and
s ≥ 2. We get

2mk = 2αp1 . . . ps − 2α−1(p1 − 1) . . . (ps − 1).

It now follows that m ≥ α− 1 and

(2) 2p1 . . . ps − (p1 − 1) . . . (ps − 1) = 2tk,

where t = m − α + 1. Since s ≥ 2, the product (p1 − 1) . . . (ps − 1) is a
multiple of 4. Since 2p1 . . . ps is a multiple of 2 but not of 4, from equation
(2) it follows that t = 1. Now, if we set z = 2p1 . . . ps, equation (2) becomes

z − φ(z) = 2k,

which contradicts condition (iv).

Case 2: y is not squarefree. Let pβ‖y for some odd prime p and some
β > 1. Since pβ−1 |φ(x), it follows that

pβ−1 | (x− φ(x)) = 2mk.

Since p is odd and k is prime, it follows that p = k and β = 2. Now write
y = k2z for some odd squarefree integer z such that k - z. If z = 1, we get

(3) 2mk = x− φ(x) = 2αk2 − 2α−1k(k − 1) = 2α−1k(k + 1).

Equation (3) implies that m ≥ α− 1 and k + 1 = 2t, where t = m− α + 1.
This contradicts (ii).

Assume now that z > 1. Write z = p1 . . . ps for some odd primes p1 < . . .
. . . < ps. We get

2mk = 2αk2p1 . . . ps − 2α−1k(k − 1)(p1 − 1) . . . (ps − 1),



INFINITE FAMILIES OF NONCOTOTIENTS 39

or
(4) 2kp1 . . . ps − (k − 1)(p1 − 1) . . . (ps − 1) = 2t.

Since s > 1, the product (k− 1)(p1 − 1) . . . (ps − 1) is a multiple of 4. Since
2kp1 . . . ps is even but is not a multiple of 4, it follows that t = 1. If we
write w = 2kp1 . . . ps, equation (4) becomes

(5) w − φ(w) = 2.

The only solution of (5) is w = 4, which is impossible since w is a multiple
of k.

The Proposition is therefore completely proved.

Proof of the Theorem. It suffices to construct numbers k with properties
(i)–(iv) of the above Proposition. We first look at (iii). The first one to
prove the existence of infinitely many positive integers k fulfilling (iii) was
H. Riesel [4]. Since then, such numbers have been called Riesel numbers.
The smallest Riesel number known is k = 509203 and it is conjectured
(see [6]) that this is the smallest Riesel number. Four years later, W.
Sierpiński (see [5]) showed that there exist infinitely many positive inte-
gers k such that 2mk + 1 is composite for all m ≥ 1. The proofs of both
Riesel’s result and Sierpiński’s result rely on an idea from a 1950 paper of
Erdős (see [2]).

In what follows, we shall explain this idea in the case of the existence of
Riesel numbers.

Suppose that (ai,mi)s
i=1 is a covering system of congruences, that is,

every positive integer n satisfies at least one congruence n ≡ ai (mod mi)
for some i = 1, . . . , s. Moreover, assume that the moduli mi are chosen in
such a way that

∏s
i=1(2

mi − 1) is divisible by at least s distinct primes. By
Hall’s theorem, one can exhibit a set of s different primes pi for i = 1, . . . , s
such that pi | (2mi − 1). Hence, in order to assure that a positive integer k
fulfills (iii), it suffices to choose k such that

(6) 2aik − 1 ≡ 0 (mod pi).

Indeed, if condition (6) is satisfied, then 2mk−1 is always divisible by some
pi, hence it can never be prime. The fact that the system of congruences (6)
is solvable is an immediate consequence of the Chinese Remainder Lemma.
Moreover, the Chinese Remainder Lemma guarantees that all solutions of
the system of congruences (6) form an arithmetical progression with first
term k0 and difference

∏s
i=1 pi. Clearly, k0 is coprime to

∏s
i=1 pi. In partic-

ular, by Dirichlet’s theorem, one can find infinitely many k’s fulfilling both
conditions (iii) and (i). From density arguments, it follows that most of the
primes fulfilling (i) and (iii) are not Mersenne primes. The only condition
that is left to check is therefore (iv).
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A few words about computations. If one starts with the covering sys-
tem of congruences (0, 2), (0, 3), (1, 4), (3, 8), (7, 12), (23, 24), then one can
choose the six primes pi to be {3, 7, 5, 17, 13, 241}, resulting in the following
system of congruences for k:

k ≡ 1 (mod 3), k ≡ 1 (mod 7), 2k ≡ 1 (mod 5),

8k ≡ 1 (mod 17), 27k ≡ 1 (mod 13), 223k ≡ 1 (mod 241).

This leads to the arithmetical progression for k with first term k0 = 509203
and difference 3 · 5 · 7 · 13 · 17 · 241. A quick computer check revealed that
509203 satisfies conditions (i), (ii) and (iv) as well. Condition (iv) needed 2
sec of CPU-time. The next number in the above progression which satisfies
conditions (i), (ii) and (iv) is 65484763. Condition (iv) now needed 40 min
of CPU-time.

The other 5 values of k claimed by the Theorem were found choosing
other systems of covering congruences.

Finally, a few words about checking for condition (iv). Suppose that 2k
is a cototient. If x is a solution of

(7) x− φ(x) = 2k,

then, since φ(x) is even, it follows that x is even as well. Moreover, it is
easy to see that x is squarefree. Since φ(x) ≤ x/2 whenever x is even, any
solution of (7) satisfies x ≤ 4k. Since the largest value of k tested satisfies

x ≤ 4k ≤ 4 · 65484763 <

10∏
i=1

qi = Q,

where q1, . . . , q10 are the first 10 primes, it follows that

φ(x) >
φ(Q)

Q
· x > 0.163588x

in the tested range. Hence, if x satisfies equation (7), then

2k = x− φ(x) < (1− 0.163588)x,

or x > 2.39k. To summarize, in order to check (iv), we wrote a computer
program which checked that equation (7) has no even squarefree solution
in the interval [2.39k, 4k] for every Riesel number k satisfying conditions (i)
and (ii).

The Theorem is therefore proved.

Remark. It is interesting to point out that all the known noncototients
are even. To see why this is not coincidental, assume that y is an odd
noncototient. If y − 1 can be written as a sum of two distinct primes p and
q, then

pq − φ(pq) = y,
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which contradicts the fact that y is a noncototient. Since y − 1 is even,
Goldbach’s conjecture asserts that y − 1 can be written as a sum of two
primes, at least when y ≥ 5 (notice that 1 and 3 are not noncototients).
Of course, in Goldbach’s conjecture one allows the two primes to be equal.
However, a conjecture of Hardy and Littlewood asserts that every large
enough even number (probably larger than 12) can be written as a sum of
two primes in more than one way. In particular, it can be written as a sum
of two distinct primes. Thus, it seems reasonable to conjecture that, in fact,
there are no odd noncototients. Notice also that since

pk − φ(pk) = pk−1,

for all k ≥ 1 and all prime numbers p, it follows that a noncototient can
never be a power of a prime.

We also point out that the authors of [1] asked for the lower density of
the set of noncototients. The above heuristic reasoning seems to indicate
that the upper density of this set is at most 0.5.
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