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SINGULAR INTEGRALS

WITH HIGHLY OSCILLATING KERNELS ON PRODUCT SPACES

BY

ELENA PRE ST I N I (ROMA)

Abstract. We prove the L2(T2) boundedness of the oscillatory singular integrals

P0f(x, y) =
\
Dx

ei(M2(x)y
′+M1(x)x

′)

x′y′
f(x− x′, y − y′) dx′ dy′

for arbitrary real-valued L∞ functions M1(x),M2(x) and for rather general domains
Dx ⊆ T

2 whose dependence upon x satisfies no regularity assumptions.

Introduction. Convergence properties of Fourier series are linked to
singular integrals. In one dimension, the convergence relates to the Hilbert
transform [1], [3], [4]. In several dimensions the theory of singular integrals
on product spaces was developed in [6]–[8] and [11] having in mind some
open problems of convergence a.e. of multiple Fourier series [9], [10].

In particular in [6] we proved the Lp boundedness, 1 < p < ∞, of the
following operator defined as a principal value:

∞∑

h=0

ψh(y
′)

∑

2−k≤r(h,x)

ψk(x
′) ∗ f(x, y)

for any measurable 0 < r(h, x) ≤ 1, where ψk(x
′) = 2kψ(2kx′), ψh(y

′) =
2hψ(2hy′) with ψ(x′) aC∞ function supported on {|x′| ≤ 2π} such that
1/x′ =

∑∞

k=0 ψk(x
′), for |x′| ≤ π. Here (x, y) ∈ T

2 and T = [0, 2π]. The
operator norm turned out to be independent of the choice of r(h, x).

Moreover in [8] we proved the L2 boundedness of the operator

(1)

∞∑

h=0

eiM(x)y′

ψh(y
′)

∑

2−k≤r(h,x)

ψk(x
′) ∗ f(x, y)

for any bounded real-valuedM(x). The operator norm is independent of the
choice of r(h, x) and furthermore of the choice of M(x) and its L∞ norm.
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The purpose of this paper is twofold. First we point out that the L2

boundedness holds for operators more general than (1). Indeed we shall
prove the following

Theorem. Let M1(x) and M2(x) be bounded real-valued functions.

Then the operator

P0f(x, y) =

∞∑

h=0

eiM2(x)y
′

ψh(y
′)

∑

2−k≤r(h,x)

eiM1(x)x
′

ψk(x
′) ∗ f(x, y)

is bounded from L2(T2) to itself with norm independent of any measurable

0 < r(h, x) ≤ 1 and of M1(x),M2(x) and their L∞ norms. Moreover the

maximal operator P̃0 satisfies the following pointwise inequality :

P̃0f(x, y) = sup
h0

∣∣∣
∑

h≤h0

eiM2(x)y
′

ψh(y
′)

∑

2−k≤r(h,x)

eiM1(x)x
′

ψk(x
′) ∗ f(x, y)

∣∣∣

≤ c{My′ C̃x′f(x, y) +My′P0f(x, y)}.

Here My′ denotes the Hardy–Littlewood maximal function acting on the

y′ variable and C̃x′ denotes the Carleson maximal operator

C̃x′g(x) = sup
k0

∣∣∣
∑

k≤k0

eiM(x)x′

ψk(x
′) ∗ g(x)

∣∣∣.

Equivalently C̃ can be defined as the linear operator

C̃x′g(x) =
∑

k≤k0(x)

eiM(x)x′

ψk(x
′) ∗ g(x)

with k0(x) arbitrarily depending upon x. It is known that

C̃x′g(x) ≤Mg(x) +MCg(x)

where C denotes the Carleson operator [5]. See also Lemma 1 of [6] and [7].

Second we wish to point out that the Lp boundedness, 1 < p <∞, of the
operator (1) is still an open problem since the proof in [2] is inconclusive.

The paper is organized as follows: in Section 1 we prove the Theorem; in
Section 2, concerning the Lp theory, we summarize the known results and
point out the unproven claims of [2].

1. The proof of the theorem is not significantly different from the one
for the operator (1) in [8]. We sketch it below. The goal is to break up
the binding between the integration in dx′ and dy′ given by r(h, x) and
to neutralize M2(x). This is obtained by an application of the Plancherel
theorem on the y variable.
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Proof of the Theorem. It is easy to check that
∑∞

h=0 |ψ̂h(η)| ≤ c. Then
for almost every x fixed we have\
|P0f(x, y)|

2 dy =
\
|P̂0f(x, η)|

2 dη

=
\∣∣∣∑

h

ψ̂h(η−M2(x))
( ∑

2−k≤r(h,x)

ψk(x
′) ∗ f(x, ·)

)∧

(η)
∣∣∣
2

dη

≤
\∑

h

|ψ̂h(η−M2(x))| sup
k0

∣∣∣
∑

k≥k0

ψk(x
′) ∗ f̂(x, η)

∣∣∣
2

dη

≤ c
\
|C̃x′ f̂(x, η)|2 dη.

Now by switching the order of integration we obtain\\
|P0f(x, y)|

2 dy dx ≤ c
\\

|C̃x′ f̂(x, η)|2 dx dη

≤ c
\\

|f̂(x′, η)|2 dx′ dη ≤ c
\\

|f(x′, y′)|2 dx′ dy′.

The role played by H̃x′ in [8] is now taken by C̃x′ .

Similarly the proof of the pointwise inequality follows the same steps of
the proof of Theorem 2 in [6].

2. The Lp boundedness, p 6= 2, of P0 is known under additional assump-
tions. We list three cases.

Case 1: The domain of integration is a rectangle. In this case P0 equals

P1f(x, y) = eiM2(x)yHy′(e−iM2(x)y
′

Cx′f(x, y′))(y).

The domain of integration might even depend arbitrarily upon x, that is,
|x′| ≤ A(x) and |y′| ≤ B(x). Then P0 is equal to

P2f(x, y) = eiM2(x)yHy′(e−iM2(x)y
′

C̃x′f(x, y′))(y)

with Hy′ denoting a fixed truncation (depending upon x) of the Hilbert
transform.

Remark. We point out that already in the case of P1 the order of in-
tegration is crucial. Let us write P1 explicitly with the “wrong” order of
integration:

(2)

π\
−π

eiM1(x)x
′

x′

( π\
−π

eiM2(x)y
′

y′
f(x− x′, y − y′) dy′

)
dx′.

Only ifM2(x) is a constant the operator is equal toCx′Hy′f(x, y). Otherwise
it is not immediately decodable.
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Case 2: M2(x) is a constant. The proof of the boundedness of the cor-
responding P0 can be found in [7], p. 278, or else one can follow the steps

of the proof of Theorem 3 of [6], replacing H̃x′ by C̃x′ .

Case 3: If M2(x) = M1(x) and r(h, x) = 2−h or M2(x) = M2
1 (x) and

r(h, x) = 2−hM1(x) then P0 is bounded from Lr(T2) to Lp(T2), 1 < p <
r ≤ 2 (see [11]).

Now we come to [2]. The proof is subdivided in three cases p = 2, p > 2,
p < 2. In all of them the natural order of integration in (1), i.e. dx′ first
and dy′ second, is reversed. The next step, in [2], is more easily seen by
considering (2) with M1(x) = 0 for all x and M2(x) =M(x), that is,

π\
−π

1

x′

( π\
−π

eiM(x)y′

y′
f(x− x′, y − y′) dy′

)
dx′.

To evaluate the Lp(dx) norm of the above operator, the boundedness of
the Hilbert transform, acting on x′, cannot be used (the inner core—the
operator acting on y′—varies arbitrarily with x, due to the phase M(x),
and the variable x is saturated in the integration). In [2] (line 7 from below
on p. 299, line 4 from below on p. 300 and (6)), apparently, to dominate
from above the Lp(dx) norm of the operator (1), the phaseM(x) is replaced
by M(x′) to be integrated together with f(x′, ·) in dx′ (which is equivalent
to keepingM(x), replacing f(x′, ·) by f(x, ·) and integrating in dx, precisely
as in [2]).
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