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RANDOM WEIGHTED SIDON SETS

BY

KATHRYN E. H A R E (WATERLOO, ON)

Abstract. We investigate random Sidon-type sets in which the degrees of the repre-
sentations are weighted. These variants of Sidon sets are of interest as there are compact
non-abelian groups which admit no infinite Sidon sets. In this note we determine the
largest weight function such that infinite random weighted Sidon sets exist in all infinite
compact groups.

1. Introduction. In 1927 Sidon ([13]) proved the delightful result that
if E was a lacunary set of positive integers and f was a continuous func-
tion on the circle whose Fourier transform was non-zero only on E, then f
had summable Fourier coefficients. Generalizations of this result have been
studied by many authors, and today any subset of the dual of a compact
group which has the property that every (randomly) continuous function
whose Fourier transform is supported on the subset has summable Fourier
coefficients, is known as a (random) Sidon set. Sidon sets have proven to be
quite useful, as well as ubiquitous in duals of abelian groups (see [7], [8] and
the references cited therein). Indeed, every infinite subset of the dual of a
compact abelian group contains an infinite Sidon set.

In contrast, it is known that there are non-abelian compact groups whose
duals admit no infinite Sidon sets ([4], [11]). Since this is due, in part, to
the existence of representations of unbounded degrees, Sidon-type sets, but
with the degrees of the representations weighted in different ways, have been
considered by a number of authors (cf. [3], [6]).

Motivated by these generalizations, a study of random weighted Sidon
sets was initiated in [2]. In this note we determine the largest weight func-
tion such that random Sidon-type sets with respect to this weight exist in all
compact groups. Furthermore, we show that such sets are plentiful: any set of
representations with degrees growing sufficiently rapidly is a set of this type.

2. Definitions and notation. Let G be a compact group and Ĝ denote
its dual object, a maximal set of irreducible, pairwise inequivalent, unitary
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representations. The degree of σ ∈ Ĝ will be denoted by dσ. The Fourier
transform of an integrable function f is given by f̂(σ) =

T
G
f(x)σ(x) dx for

σ ∈ Ĝ where the measure is Haar measure on G. When E ⊂ Ĝ, we will write
TrigE(G) for the set of all trigonometric polynomials on G whose Fourier
transform is non-zero only on E.

Definition 2.1. Let w : N→ R+. We will say E ⊂ Ĝ is a (w, p) Sidon
set if there exists a constant c = c(w, p) such that(∑

σ

w(dσ) Tr |f̂(σ)|p
)1/p

≤ c‖f‖∞

for all f ∈ TrigE(G). We will call E a local (w, p) Sidon set if there exists a
constant c = c(w, p) such that

(w(dσ) Tr |Aσ|p)1/p ≤ c‖dσ TrAσσ‖∞
where σ ∈ E and Aσ is any dσ × dσ matrix.

The (a, p) Sidon sets of [6] are the special case when the weight function
w(n) = na. In this paper we will restrict our attention to the case p = 1 and
refer to (w, 1) Sidon sets as simply w-Sidon sets, or weighted Sidon sets if
we do not wish to specify the weight function w. Notice that the classical
definition of Sidonicity is the case when the weight function is the identity.

When the set E consists of representations of bounded degree then there
is no distinction between the classes of weighted Sidon sets. Furthermore,
it is known that an infinite set of representations of bounded degree always
contains an infinite Sidon subset [10], thus our interest is primarily in the
case when E consists of representations of unbounded degree.

The concept of a random Sidon set was important in solving the union
problem for Sidon sets [12]. To define random Sidon sets we need further no-
tation: Let U(n) be the set of n×n unitary matrices and U∞ =

∏
σ∈Ĝ U(dσ).

If f ∈ L2(G) and W = (Wσ)
σ∈Ĝ ∈ U

∞, then we will write fW for the L2

function whose Fourier transform is given by f̂W (σ) = f̂(σ)Wσ. A function
f ∈ L2 is called randomly continuous if fW is continuous for almost every
W ∈ U∞. Equipped with the norm

[[f ]] =
\

U∞

‖fW ‖∞ dW,

the space of all randomly continuous functions on G forms a Banach space.

Definition 2.2. We will say E ⊂ Ĝ is a (local) random w-Sidon set if
there exists a constant c = c(w) such that∑

σ

w(dσ) Tr |f̂(σ)| ≤ c[[f ]]

for all f ∈ TrigE(G) (respectively, for all f = dσ TrAσσ, σ ∈ E).
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Notice that [[f ]] ≥ inf{‖fW ‖∞ : fW is continuous}|, consequently any
w-Sidon set is a random w-Sidon set. The converse is known to be true in
the classical case when the weight function is the identity [12], but otherwise
is open.

Pisier’s characterization of Sidon sets, in terms of the size of the Lp norms
of certain functions, generalizes to the following characterization which is
key to our work.

Theorem 2.3. A subset E of Ĝ is a (local) random w-Sidon set if and
only if there exists a constant C such that for every p ≥ 2 and for every
f ∈ TrigE(G) (respectively , f = dσ TrAσσ, σ ∈ E),

‖f‖p ≤ C
√
p

(∑ d3σ
w(dσ)2

Tr |f̂(σ)|2
)1/2

.

P r o o f. The proof for Sidon sets can be found in [9], and by making the
obvious modifications the result for general weights can be obtained. The
details can be found in [1].

3. Existence of weighted Sidon sets. Clearly, it is easier to be a
(random) w-Sidon set as w decreases, and any (random) w-Sidon set is
local (random) w-Sidon. Because

Tr |f̂(σ)| ≤ (dσ Tr |f̂(σ)|2)1/2 = ‖dσ Tr f̂(σ)σ‖2 ≤ ‖dσ Tr f̂(σ)σ‖∞,

the entire set Ĝ is local 1-Sidon. It is also known that every infinite subset
of Ĝ contains an infinite n−ε-Sidon set for any ε > 0; and if G is a compact,
connected, simple Lie group, then every local nε-Sidon set, for ε > 0, is
finite (see [6]).

To partially bridge this gap, Adams and Grow [2] have shown that any
infinite subset of the dual of any compact group contains an infinite random
1-Sidon set. Our goal is to prove that this assertion remains true if the
weight w = 1 is replaced by w(n) = O(

√
log n), and that this is optimal.

First, we will prove that the assertion is not (universally) true for any
larger weight function.

Proposition 3.1. Suppose G is a compact , connected , simple Lie group
and E ⊂ Ĝ is a local random w-Sidon set. Then there exists a constant C
such that w(n) ≤ C

√
log n for all n ∈ {dσ : σ ∈ E}.

P r o o f. Suppose E is a local random w-Sidon set. The characterization
theorem implies that for all p ≥ 2 and σ ∈ E,

‖Trσ‖p ≤ C
√
p

dσ
w(dσ)

.

On the other hand, it is known ([5]) that if G is a compact, connected,
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simple Lie group, then for all σ ∈ Ĝ and p ≥ 2 we have

‖Trσ‖p ≥ CGd1−dimG/p
σ ,

where CG is a constant which depends only on the group G, and dimG is
the dimension of the Lie group G.

Taking p = (dimG)(log dσ) gives the conclusion that w(dσ) ≤ C1

√
log dσ

for C1 = Ce
√

dimG/CG.

It is also straightforward to prove that the entire dual object Ĝ is always
local random

√
log n-Sidon.

Proposition 3.2. If G is any compact group then Ĝ is local random
w-Sidon for any weight function w satisfying w(n) ≤ C

√
log n.

P r o o f. If Aσ is a dσ × dσ matrix and q < 2 then

(Tr |Aσ|q)1/q ≤ d1/q−1/2σ (Tr |Aσ|2)1/2.

Applying this inequality with q = p′, the conjugate index to p, together with
the Hausdorff–Young inequality, shows that for any p ≥ 2,

‖dσ TrAσσ‖p ≤ (d4/p
′−1

σ Tr |Aσ|2)1/2 = (d3−4/pσ Tr |Aσ|2)1/2.

By the characterization theorem it suffices to establish that

‖dσ TrAσσ‖p ≤ C
√
p

(
d3σ

log dσ
Tr |Aσ|2

)1/2

for some constant C. Thus we need only verify the inequality

log x

x4/p
≤ Cp for all x ≥ 1,

and this is a routine calculus exercise.

More interesting is to find examples of random
√

log n-Sidon sets. We will
show that any set of representations whose degrees form a suitably sparse set
of integers is such a set.

Theorem 3.3. Let G be any compact group and E any subset of Ĝ con-
sisting of representations of unbounded degrees. Then E contains an infinite
random

√
log n-Sidon set.

P r o o f. The infinite subset of E will be chosen according to the following
procedure. Select any σ1 ∈ E and assume inductively that σ1, . . . , σk−1 have
been picked. Choose any σk ∈ E with degree sufficiently large to satisfy the
following three conditions:

(1) if dσk−1
∈ (22

n−1

, 22
n

] then dσk ≥ 22
n+1

;

(2) dσk ≥ e
√
2k/4; and

(3) if dσk−1
= e
√
p1/4 then dσk ≥ ep1 .
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Condition (2) ensures that

|{σj : dσj ≤ e
√
2k/4}| ≤ k for all k,

and the reader can readily verify that (3) guarantees that for any p,

|[e
√
p/4, ep) ∩ {dσk}∞k=1| ≤ 1.

It is convenient for the proof to analyze the behaviour of the function

gp(x) = x−4/(p−2)(log x)p/(p−2) for p ≥ 4.

One can easily check that gp increases to its maximum value of gp(e
p/4) =

e−p/(p−2)(p/4)p/(p−2), and then decreases. Since p2/(p−2) → 1 as p → ∞, it
follows that

gp(x) ≤ gp(ep/4) ≤ C1p

for some constant C1. One can similarly show that gp(x) ≤ C2
√
p if x ≤

e
√
p/4.
Next, temporarily fix p ≥ 4 and suppose dσk ≥ ep. Suppose also that

dσk ∈ (22
n(k)−1

, 22
n(k)

]. Then dσk+1
≥ 22

n(k)+1

, and as gp is a decreasing func-

tion for x ≥ ep/4 we have gp(dσk) ≥ gp(2
2n(k)

) and gp(dσk+1
) ≤ gp(2

2n(k)+1

).
Hence

gp(dσk)

gp(dσk+1
)
≥ (2−2

n(k)

)4/(p−2)(log 22
n(k)−1

)p/(p−2)

(2−2n(k)+1)4/(p−2)(log 22n(k)+1)p/(p−2)

= (22
n(k)+1−2n(k)

)4/(p−2)
(

2n(k)−1

2n(k)+1

)p/(p−2)
≥ 22

n(k)4/(p−2)2−2p/(p−2).

Since 22
n(k) ≥ dσk ≥ ep,

22
n(k)4/(p−2)2−2p/(p−2) ≥ e4p/(p−2)2−2p/(p−2) ≥ 4.

This means
∑
dσk≥ep

gp(dσk) is a geometric series with ratio at most 1/4,

and consequently ∑
dσk≥ep

gp(dσk) ≤ 2 max gp(x) ≤ 2C1p.

We are now ready to establish that {σk} is a random
√

log n-Sidon set.
We first remark that it clearly suffices to prove

‖f‖p ≤ C
√
p

(∑ d3σ
w(dσ)2

Tr |f̂(σ)|2
)1/2

for p = 2n and all n ≥ 2. Fix p = 2n and let q be the conjugate index. We
will use the Cauchy–Schwarz inequality in the form∑

di Tr |AiBi| ≤
(∑

di Tr |Ai|2/q
)q/2(∑

di Tr |Bi|(2/q)
′
)1/(2/q)′

.
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Together with the Hausdorff–Young inequality this gives∥∥∥∑ dσk TrAkσk

∥∥∥
p
≤
(∑

dσk Tr |Ak|q
)1/q

=

(∑ d3σk
log dσk

Tr

(
log dσk
d2σk

|Ak|q
))1/q

≤
(∑ d3σk

log dσk
Tr |Ak|2

)1/2

×
(∑ d3σk

log dσk
Tr

∣∣∣∣ log dσk
d2σk

Idσk

∣∣∣∣2/(2−q))(2−q)/2q

.

Simplifying, we obtain∥∥∥∑ dσkTrAkσk

∥∥∥
p
≤
(∑ d3σk

log dσk
Tr |Ak|2

)1/2

×
(∑

d−4/(p−2)σk
(log dσk)p/(p−2)

)(p−2)/2p
.

Because p−1/p is bounded, if we can prove∑
d−4/(p−2)σk

(log dσk)p/(p−2) ≤ Cp,(1)

then we would have the desired inequality(∑
d−4/(p−2)σk

(log dσk)p/(p−2)
)(p−2)/2p

≤ (Cp)1/2−1/p ≤ C0
√
p.

It is in estimating this sum that our study of the function gp is helpful,
for what we need to show in order to prove (1) is that

∑
gp(dσk) ≤ Cp. We

write this sum as∑
dσk≤e

√
p/4

gp(dσk) +
∑

dσk∈(e
√
p/4, ep)

gp(dσk) +
∑

dσk≥ep
gp(dσk).

Recall that |{σj : dσj ≤ e
√
2n/4}| ≤ n and that p = 2n. Thus∑

dσk≤e
√
p/4

gp(dσk) ≤ nmax{gp(x) : x ≤ e
√
p/4} ≤ nC2

√
p ≤ C2n.

Since |[e
√
p/4, ep) ∩ {dσk}| ≤ 1, the second summand is at most max gp ≤

C12n. The third summand is the geometric series which we saw above
summed to at most 2C12n. Combining these three parts gives the desired
result, completing the proof that this subset of E is a random

√
log n-Sidon

set.

An easy consequence of this theorem is to demonstrate that random√
log n-Sidon sets are as plentiful as Sidon sets are in the abelian setting.
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Corollary 3.4. LetG be any compact group. Then every infinite subset
of Ĝ contains an infinite random w-Sidon set for w(n) =

√
log n.

P r o o f. Let E be an infinite subset of Ĝ. If E contains a infinite sub-
set of representations of bounded degree then E contains a Sidon set [10].
Otherwise, E consists of representations of unbounded degrees and we may
appeal to the previous result.
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