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LACUNARY SERIES ON COMPACT GROUPS

BY

KATHERINE ADAMS AND DAVID GROW (ROLLA, MO)

Abstract. A theorem of Sidon concerning absolutely convergent Fourier series is
extended to compact groups.

1. Introduction. Sidon [15] proved the following theorem concerning
Fourier series of functions defined on the unit circle:

Let E = {nk}∞k=0 be an infinite sequence of positive integers satisfying

(1) inf
k≥0

nk+1

nk
> 1.

If
∑

(αk exp(inkx)+βk exp(−inkx)) is the Fourier series of a bounded func-

tion then
∞∑

k=0

(|αk|+ |βk|) <∞.

Numerous authors have extended this result in a variety of ways. For
example, the Hadamard lacunary condition (1) has gradually been rec-
ognized as a manifestation of the more natural group-theoretic criterion
that E be expressible as a finite union of quasi-independent sets [16, 14, 6,
11, 10]. This has led to a generalization of Sidon’s theorem with the unit
circle replaced by an arbitrary compact abelian group G and the integers
replaced by the group Γ dual to G [8(2.19), 10(2.13)]. In this setting, it
has been discovered that the phrase “bounded function” can be replaced
with “continuous function” [2] or even “randomly continuous function” [12]
without changing the class of sets E.

For compact (possibly nonabelian) groups, however, generalizations
of Sidon’s theorem encounter fundamental obstacles; there exist compact
groups whose only classical Sidon sets E are finite [5(37.21)(b), 1]. In this
paper we extend Sidon’s theorem to compact groups by showing that a cer-
tain class of infinite lacunary subsets always exists when the group is infinite
(Theorem 1). When the group is abelian, these lacunary subsets reduce to
classical Sidon sets [12]. Furthermore, for SU(2) we show that the lacunary
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subsets include all subsets in the dual which are expressible as a finite union
of quasi-independent sets (Theorem 2).

2. The main lacunary result. Let G be a compact group with Haar
integral

T
G
. . . dx. If f ∈ L1(G) then the Fourier series of f is

f(x) ∼
∑

σ∈Ĝ

d(σ) tr(f̂(σ)σ(x))

where Ĝ, the dual of G, is a maximal set of inequivalent continuous irre-
ducible unitary representations of G, d(σ) denotes the degree of the repre-

sentation σ, and f̂(σ) is the linear transformation

f̂(σ) =
\
G

f(x)σ(x−1) dx.

If f̂(σ) = 0 for all σ 6∈ E ⊆ Ĝ then f is called an E-spectral function.

For σ ∈ Ĝ, let U(d(σ)) denote the compact group of d(σ)-by-d(σ) com-
plex unitary matrices, and form the compact product group

U∞ =
∏

σ∈Ĝ

U(d(σ)).

If F is a complex function on U∞, let
T
U∞

F (W) dW denote its Haar integral.

If f ∈ L2(G) and W = {Wσ}σ∈Ĝ ∈ U∞, let fW be the function in L2(G)
such that

f̂W(σ) = f̂(σ)Wσ (σ ∈ Ĝ).

A function f ∈ L2(G) is called randomly continuous on G provided fW is
a continuous function on G for almost every W ∈ U∞. Equipped with the
norm

[[f ]] =
\

U∞

sup
x∈G

|fW(x)| dW,

the space of all randomly continuous functions on G forms a Banach space.
For unexplained notation and results, see [5] or [9].

Theorem 1. If G is a compact group then every infinite set in Ĝ con-

tains an infinite subset E with the property that

(2)
∑

σ∈E

tr |f̂(σ)| <∞

for all randomly continuous functions f on G.

P r o o f. Let A be an infinite subset of Ĝ. First, suppose sup{d(σ) :
σ ∈ A} < ∞. A theorem of Hutchinson [7] ensures that A contains an
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infinite Sidon set E, i.e. a set E such that
∑

σ∈E

d(σ) tr |ĝ(σ)| <∞

for all E-spectral continuous functions g on G. Consequently [5(37.25)],
there exists a constant K > 0 such that

‖f‖Lq(G) ≤ K
√
q ‖f‖L2(G)

for all E-spectral functions f in L2(G) and all q > 2. Let P denote the
projection of L2(G) onto the subspace of E-spectral functions in L2(G). By
the proof of Theorem VI.2.3 in [9], there exists a constant L > 0 such that

∑

σ∈E

d(σ) tr |f̂(σ)| =
∑

σ∈Ĝ

d(σ) tr |P̂ f(σ)| ≤ L[[f ]]

for all randomly continuous functions f on G, and (2) follows.
Thus, we may suppose sup{d(σ) : σ ∈ A} = ∞. In this case, an appeal

to the following lemma concludes the proof of Theorem 1.

Lemma 1. Let E = {σj}∞j=1 be a sequence of representations from Ĝ

with the property that d(σj) ≥ 2j for j ≥ 1. Then
∞∑

j=1

tr |f̂(σj)| <∞

for all randomly continuous functions f on G.

It will be convenient to separate the demonstration into two distinct
lemmas which together imply Lemma 1. LetM denote the central multiplier
from L2(G) to L2(G) defined by

(Mf)∧(σ) =
1

d(σ)
f̂(σ)

for σ ∈ Ĝ and f ∈ L2(G).

Lemma 2. Let S be a subset of Ĝ with the property that

(3) ‖Mg‖Lq(G) ≤ C
√
q ‖g‖L2(G)

for some constant C > 0, all q > 2, and all S-spectral functions g in L2(G).
Then there exists a constant D > 0 such that∑

σ∈S

tr |f̂(σ)| ≤ D[[f ]]

for all randomly continuous functions f on G.

Lemma 3. Let E ⊆ Ĝ be as in Lemma 1. Then

‖Mg‖Lq(G) ≤ (4 ln(2))−1/2√q ‖g‖L2(G)

for all E-spectral functions g in L2(G) and all q > 2.
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Proof of Lemma 2. It is well known that (3) is equivalent to the existence
of a constant B > 0 such that

‖Mg‖Lψ(G) ≤ B‖g‖L2(G)

for all S-spectral functions g in L2(G); here Lψ(G) denotes the Orlicz space
based on the function ψ(t) = exp(t2) − 1. A trivial modification of the
argument given on pages 119–120 of [9] accomplishes the proof.

Proof of Lemma 3. Let g be an E-spectral function in L2(G), let q > 2,
and let p−1 + q−1 = 1. The Hausdorff–Young–Riesz Theorem and Hölder’s
inequality imply

‖Mg‖Lq(G) ≤
( ∑

σ∈E

d(σ) tr

∣∣∣∣
1

d(σ)
ĝ(σ)

∣∣∣∣
p)1/p

(4)

≤
( ∑

σ∈E

d(σ) tr

∣∣∣∣
(

1

d(σ)

)p
Id(σ)

∣∣∣∣
2/(2−p))(2−p)/(2p)

×
( ∑

σ∈E

d(σ) tr |ĝ(σ)|2
)1/2

=
( ∑

σ∈E

(d(σ))4/(2−q)
)(q−2)/(2q)

‖g‖L2(G).

Since d(σj) ≥ 2j for j ≥ 1,

(5)

∞∑

j=1

(d(σj))
4/(2−q) ≤

∞∑

j=1

(24/(q−2))−j = (24/(q−2) − 1)−1.

Combining (4) and (5), and noting that

F (x) =
(24/(x−2) − 1)(2−x)/x

x

is increasing on (2,∞) with F (x) → 1/(4 ln 2) as x→ ∞, yields the desired
conclusion.

3. Lacunarity and quasi-independence for SU(2). For σ ∈ Ĝ, let
χσ(x) = tr(σ(x)) (x ∈ G) denote the character of σ. For ε ∈ {−1, 0, 1} define
χεσ to be χσ if ε = 1, 1 if ε = 0, and χσ if ε = −1. Following [17], a subset E

of Ĝ is called quasi-independent if, for all finite subsets {σ1, . . . , σn} of E,\
G

χε1σ1
(x) . . . χεnσn(x) dx > 0

for an n-tuple in {−1, 0, 1}n implies ε1 = . . . = εn = 0. When G is abelian,
this definition of quasi-independence agrees with Pisier’s [10].
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The special unitary group SU(2) is the compact group of 2-by-2 com-
plex unitary matrices with determinant 1. Following a standard conven-
tion [5(29.27)], we parametrize the dual of SU(2) by the nonnegative half-
integers:

̂SU(2) = {σ0, σ1/2, σ1, σ3/2, . . .}.
The representation σl has degree d(σl) = 2l+1 and its character χl = tr(σl)
is real-valued:

(6) χl(x) = χl(x) (x ∈ SU(2)).

The following consequence of the Clebsch–Gordon formula is useful in de-
composing products of the irreducible characters of SU(2):

(7) χlχl′ =

2l∑

j=0

χl′−l+j

for all half-integers 0 ≤ l ≤ l′. The general orthogonality relations for irre-
ducible characters imply

(8)
\

SU(2)

χl(x) dx =
{
1 if l = 0,
0 otherwise.

Theorem 2. If E is a finite union of quasi-independent subsets of the

dual of SU(2) then ∑

σ∈E

tr |f̂(σ)| <∞

for all randomly continuous functions f on SU(2).

P r o o f. Let A be a quasi-independent subset of the dual of SU(2) and
write A = {σlj} where 0 < l1 < l2 < . . . An elementary argument using (6),
(7), (8), and the definition of quasi-independence shows that lj+3 ≥ lj+1+ lj
for all j ≥ 1; consequently

d(σlj+3
) = 2lj+3 + 1 ≥ 2(2lj + 1) = 2d(σlj ).

It follows that A = A0 ∪A1 ∪A2 where

Ai = {τ (i)j }j≥1 = {σl3j−i}j≥1

and d(τ
(i)
j ) ≥ 2j for j ≥ 1.

Since E is a finite union of such sets A, there exists a finite collection
E1, . . . , EN of subsets of the dual object of SU(2) with the following prop-
erties:

• E =
⋃N
m=1Em;

• Em ∩ En = ∅ if 1 ≤ m < n ≤ N ;

• for each 1 ≤ m ≤ N , Em = {τ (m)
j }j≥1; and

• d(τ (m)
j ) ≥ 2j for all j ≥ 1.
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Let f be an E-spectral function in L2(G) and write f = f1 + . . . + fN
where each fm is an Em-spectral function in L2(G). For any q > 2, Lemma 3
yields

‖Mf‖Lq(G) ≤
N∑

m=1

‖Mfm‖Lq(G)

≤ (4 ln 2)−1/2√q
N∑

m=1

‖fm‖L2(G) ≤
(

N

4 ln 2

)1/2√
q ‖f‖L2(G).

Apply Lemma 2 to finish the proof.

4. Remarks. We know of no compact group G for which finite unions
of quasi-independent sets in Ĝ fail to have the property of Theorem 2. The
second author wishes to express his thanks to David Wilson for his gracious
hospitality during visits to the University of New South Wales in 1990 and
1992; the mathematical discussions of those visits ultimately bore fruit in
this paper. We also wish to acknowledge our indebtedness to [4] and to dis-
cussions with both its authors. Properties of the lacunary sets of Theorem 1,
and their generalizations, have been explored by the first author in a recent
Ph.D. dissertation [0]. Finally, we would like to pose a question which we
have been unable to resolve, even for the case G = SU(2):

Let G be an infinite compact group. Does Ĝ contain an infinite subset
E with the property that

∑

σ∈E

tr |f̂(σ)| <∞

for all E-spectral continuous functions f on G?
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