A NOTE ON THE CONSTRUCTION
OF NONSINGULAR GIBBS MEASURES

BY

MANFRED DENKER (GÖTTINGEN) AND MICHIKO YURI (SAPPORO)

Dedicated to the memory of Prof. Anzelm Iwanik

Abstract. We give a sufficient condition for the construction of Markov fibred systems using countable Markov partitions with locally bounded distortion.

0. Introduction. Let X be a compact metric space with metric d and $T : X \to X$ be a noninvertible piecewise C^0-invertible map, i.e. there exists a finite or countable partition $X = \bigcup_{i \in I} X_i$ such that $\bigcup_{i \in I} \operatorname{int} X_i$ is dense in X and

1. For each $i \in I$ with $\operatorname{int} X_i \neq \emptyset$, $T|_{\operatorname{int} X_i} : \operatorname{int} X_i \to T(\operatorname{int} X_i)$ is a homeomorphism and $(T|_{\operatorname{int} X_i})^{-1}$ extends to a homeomorphism v_i on $\overline{\operatorname{cl}(T(\operatorname{int} X_i))}$.

2. $T(\bigcup_{i \in I} \operatorname{int} X_i = \emptyset X_i) \subset \bigcup_{i \in I} \operatorname{int} X_i = \emptyset X_i$.

3. $\{X_i\}_{i \in I}$ generates \mathcal{F} with respect to T, where \mathcal{F} is the σ-algebra of Borel subsets of X.

We set $\overline{A} = \overline{\operatorname{cl}(int A)}$ ($A \subset X$) and define $\alpha = \{\overline{X_i}\}_{i \in I}$. Then α is a finite or countable partition of a dense subset of X which is not necessarily a disjoint family. We impose the Markov property on α:

4. $\operatorname{int}(\overline{X_i} \cap \overline{TX_j}) \neq \emptyset$ implies $\overline{TX_j} \supset \overline{X_i}$.

Let \mathcal{A} denote the set of all admissible sequences with respect to (T, α), i.e. $\forall \underline{i} = (i_1 \ldots i_n) \in \mathcal{A}, \operatorname{int}(v_{i_1} \circ \ldots \circ v_{i_n}(TX_{i_n})) \neq \emptyset$. We write $v_{i_1} \circ \ldots \circ v_{i_n} = v_{i_1} \circ \ldots \circ v_{i_n} (TX_{i_n}) = \overline{X_{\underline{i}}}$ for $\underline{i} \in \mathcal{A}$. Finally we let $|\underline{i}| = n$.

A measure m on X is called locally nonsingular if it is nonsingular with respect to the maps $v_{\underline{i}}^{-1} : \overline{X_{\underline{i}}} \to \overline{TX_{\underline{i}}}$ for each $\underline{i} \in \mathcal{A}$ and if the boundary of α has measure 0. If m is finite, the system $(X, \mathcal{F}, T, m, \alpha)$ is called a Markov map (Markov fibred system) (cf. [2] or [4]). There are some canonical examples for this notion: Markov shifts and maps of the interval (e.g.

continued fraction algorithm, Jacobi’s algorithm [8]), maps originating from higher dimensional flows (e.g. [3]), parabolic rational functions ([4], [5]) or real piecewise differentiable maps of \(\mathbb{R}^2 \) (see [11]–[14]). In many cases, the measure \(m \) is Lebesgue measure. More general examples are obtained in [7] when the partition \(\alpha \) is Bernoulli (i.e. \(T \mathbf{X}_i = \mathbf{X} \) for all \(\mathbf{X}_i \in \alpha \)). Considering this system as an iterated function system one can show that the Hausdorff measure is a good candidate for such a measure.

No general method seems to be known to construct Markov maps as described above. Here we show that for piecewise \(C^0 \)-invertible maps there exist such measures in quite general situations. In fact, for every Hölder continuous function \(\phi : X \to \mathbb{R}^+ \) satisfying some regularity condition (see §1) we construct a measure with the property that the Jacobian \(\frac{d(m \circ T)}{dm} \) of the measure is \(\exp[P(\phi) - \phi] \), where \(P(\phi) \) denotes the topological pressure of \(\phi \) (as defined in §1). In [6] these measures were called conformal. It may be more convenient to call them (non-invariant) Gibbs measures. In addition, we shall prove that these measures have the local bounded distortion property (which is sometimes called the Schweiger property) in case \(T \) is conservative. Let \(\psi'_j = \frac{d(m \circ \psi_j)}{dm} \). Then \((X, F, T, m, \alpha)\) has the Schweiger property if for some constant \(C \geq 1 \) the system of sets

\[
\mathcal{R} = \{ \mathbf{X}_i : i \in A, \psi'_i(x) / \psi'_i(y) \leq C \ \text{m} \times \text{m} \ a.e. \ x, y \in \bigcup \mathcal{X}_i \}
\]

has the strong playback property and generation property (see [1], pp. 143 ff., [8] or [4]).

1. Main Theorem. In this section we assume in addition to (1)–(4) that the Markov partition \(\alpha \) is irreducible and that

\[
\{\psi_j\}_{j \in I} \text{ is an equicontinuous family of partially defined uniformly continuous maps.}
\]

For \(A \in \alpha \) with \(\text{int} A \neq \emptyset \), let \(\psi \) denote the first return time to \(A \), i.e.

\[
\psi(x) = \begin{cases}
\inf \{ n \geq 1 : T^n(x) \in A \} & \text{if exists,} \\
\infty & \text{otherwise,}
\end{cases} \quad x \in A.
\]

Let \(T_\psi = T^{\psi} \) denote the induced transformation on \(\{ \psi < \infty \} \subset A \). By the Markov property there exists a partition of the set \(A_1 = \{ x \in A : \psi(x) = 1 \} \) for each \(k \geq 1 \) so that \(T^k \), restricted to the interior of each element of the partition, is a homeomorphism onto its image \(\text{int} A \). Let \(I_A \) denote the set of all indices corresponding to such elements of the partition of \(\bigcup_{k \geq 1} A_k \). Then \(\{\psi_j : j \in I_A\} \) is a family of extensions of local inverses of \(T_A \). We shall identify \(j \in I_A \) with elements of \(A \). The next condition can be easily verified for some parabolic examples (e.g., inhomogeneous diophantine transformation [14], Brun’s map [13], parabolic rational maps [5], and complex continued fractions (see §3)):
(6) there are $0 < \gamma < 1$, $0 < \Gamma < \infty$ such that $\sup \text{diam} \mathcal{X}_n \leq \Gamma \gamma^n$.

For a given piecewise Hölder continuous potential $\phi : X \to \mathbb{R}$ (with exponent θ) with respect to α, define the topological pressure for ϕ by

$$P_{\text{top}}(\phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{(i_1, \ldots, i_n) \in A} \sup_{x \in A} \left[\sum_{k=0}^{n-1} \phi(v_{i_{k+1}} \ldots i_n(x)) \right].$$

For $s \in \mathbb{R}$, $j \in I_A$, and $x \in A$ define

$$\phi_A^{(s)}(v_j(x)) = \sum_{i=0}^{|j|-1} \phi(v_{j_{i+1}} \ldots i_j(x)) - s|j|.$$

Then the topological pressure for $\phi_A^{(s)}$ is

$$P_{\text{top}}(\phi_A^{(s)}) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{(j_1 \ldots j_n) \in I_A} \sup_{x \in A} \left[\sum_{k=0}^{n-1} \phi_A^{(s)}(v_{j_{k+1}} \ldots j_n(x)) \right].$$

The next condition gives a weak Hölder type condition on $\phi_A^{(s)}$:

(7) (Local bounded distortion with respect to α) For all $j = (j_1 \ldots j_n) \in I_A$ and all $0 \leq i < |j|$ there is $0 < L_{\phi}(j, i) < \infty$ satisfying

$$|\phi(v_{j_{i+1}} \ldots j_n(x)) - \phi(v_{j_{i+1}} \ldots j_n(y))| \leq L_{\phi}(j, i) d(x, y)^\theta \quad (\forall x, y \in A),$$

$$\sup_{j \in I_A} \sum_{i=0}^{|j|-1} L_{\phi}(j, i) < \infty.$$

Define

$$\hat{T}_\phi f(x) = \sum_{i \in I} f(v_i(x)) \exp[\phi(v_i(x))], \quad x \in X,$$

whenever the series converges for $f : X \to \mathbb{R}$ and define

$$\hat{T}_{\phi_A^{(s)}} g(x) = \sum_{j \in I_A} g(v_j(x)) \exp[\phi_A^{(s)}(v_j(x))], \quad x \in A,$$

whenever the series converges for $g : A \to \mathbb{R}$.

We shall prove the following theorem.

Theorem. Let $T : X \to X$ be a piecewise C^0-invertible map on a compact metric space satisfying (1)–(5). Suppose that the Markov partition α is irreducible. Let $\phi : X \to \mathbb{R}$ be a piecewise Hölder continuous potential (with exponent θ) with respect to α such that $P_{\text{top}}(\phi) < \infty$. Suppose that there is $A \in \alpha$ satisfying (6) and (7). Then for all $s \in \mathbb{R}$ with $\hat{T}_{\phi_A^{(s)}} 1 \in C(A)$ and $P_{\text{top}}(\phi_A^{(s)}) = 0$ there exists a σ-finite measure m on X.
with the Schweiger property such that $\hat{T}_s m = (\exp s) m$. In particular, if m is finite, (X, B, T, m, α) is a Markov map with the Schweiger property, and if $P_{\text{top}}(\phi_A^{(P_{\text{top}}(\phi))}) = 0$, then $\hat{T}_s m = (\exp P_{\text{top}}(\phi)) m$.

Remarks. (1) If m is a probability measure and $\inf\{m(TA) : A \in \alpha\} > 0$, then there exists an absolutely continuous invariant measure.

(2) m is exact (see [4]).

2. Proof of the main theorem

Lemma (cf. [13]). There exists $0 < D < \infty$ such that for all $x, y \in A$ and $j \in I_A$,

$$|\phi_A^{(s)}(v_j(x)) - \phi_A^{(s)}(v_j(y))| \leq D d(x, y)^\theta.$$

Proof. A direct computation shows that it suffices to choose

$$D = \sup_{j \in I_A} \sum_{i=0}^{\lfloor |j| - 1 \rfloor} L_\phi(j, i) < \infty.$$

Proof of Theorem. It follows from the Lemma that there exists $C \geq 1$ such that

$$\sup_n \sup_{j, \ldots, j_n \in I_A} \sup_{x, y \in A} \exp[\sum_{k=0}^{n-1} \phi_A^{(s)}(v_{j_k+1} \ldots j_n(x))] \leq C.$$

Therefore $\{\phi_A^{(s)} \circ v_j : j \in I_A\}$ forms a strong Hölder family of order $-\log \gamma$ (cf. (6)) in the sense of [7]. Now $\hat{T}_s^{\phi_A^{(s)}}$ acts on all continuous functions on A and so $\hat{T}_s^{\phi_A^{(s)}}$ acts on $C(A)^\ast$. Hence there is an eigenvalue λ and a probability μ on $\{\psi < \infty\}$ satisfying

$$\hat{T}_s^{\phi_A^{(s)}} \mu = \lambda \mu$$

and by Lemma 2.4 of [7] we have $\log \lambda = P_{\text{top}}(\phi_A^{(s)})$. Then our assumption gives $\lambda = 1$.

Applying [10], Lemma 9, we obtain $\mu(\text{int } A) = 1$ (alternatively use Lemma 2.1 of [4]). Since μ is nonsingular, it follows that the boundary of $\overline{A} \cap \alpha_0^s$ is a null set with respect to μ.

Let σ denote the shift, i.e., $\sigma(i_1 \ldots i_n) = (i_2 \ldots i_n)$ and $\sigma^k(i_1 \ldots i_n) = (i_{k+1} \ldots i_n)$ for $k = 1, \ldots, n - 1$. For $k = n$ we define $\sigma^k(i_1 \ldots i_n) = \emptyset$. Let A^\ast be the subset of A defined by $A^\ast = \{i \in A : A \cap v_{\sigma^k i}(A) = \emptyset \} (k = 0, \ldots, |i| - 1)$. For $i \in A$, we define

$$\phi_A^{(s)}(x) = \sum_{k=0}^{\lfloor |i| - 1 \rfloor} \phi(v_{i_k+1} \ldots i_{i})(x) - |i| s.$$
In particular, if $|i|$ is the empty word, we put $\phi^{(s)} = 0$. We define a measure m (which may be infinite, but σ-finite) on X via μ as follows:

$$\int f(x) \, m(dx) = \sum_{i \in A^*} \int f(v_i(x)) \exp[\phi^{(s)}(x)] \mu(dx) + \int f(x) \, \mu(dx)$$

where f is a continuous function on X.

The Perron–Frobenius operator for T and m is defined by

$$\hat{T}_\phi f(x) = \sum_{T(y) = x} f(y) \exp(\phi(y) - s) = \sum_{l \in I} f(v_l(x)) \exp(\phi(v_l(x)) - s) 1_{TX_l}(x).$$

In fact we shall show that $\int \hat{T}_\phi f \, dm = \int f \, dm$ so that

$$\frac{d(\mu \circ v_l)}{dm}(x) = \exp[\phi(v_l(x)) - s] \quad \text{for a.e. } x \in X.$$

We have

$$\int \hat{T}_\phi f(x) \, dm(x) = \sum_{i \in A^*} \int \hat{T}_\phi f(v_i(x)) \exp[\phi^{(s)}(x)] \mu(dx) + \int \hat{T}_\phi f(x) \, \mu(dx)$$

$$= \sum_{i \in A^*} \sum_{l \in I} f(v_l(x)) \exp[\phi(v_l(x)) - s]$$

$$\times 1_{TX_l}(x) \exp[\phi^{(s)}(x)] \mu(dx)$$

$$+ \int \sum_{l \in I} f(v_l(x)) \exp[\phi(v_l(x)) - s] 1_{TX_l}(x) \mu(dx)$$

$$= \sum_{A \, i \in I_A} f(v_i(x)) \exp[\phi^{(s)}(A)(v_i(x))] \mu(dx)$$

$$+ \sum_{A \, i \in I_A} f(v_i(x)) \exp[\phi^{(s)}(x)] \mu(dx).$$

Since

$$\int \sum_{A \, i \in I_A} f(v_i(x)) \exp[\phi^{(s)}(A)(v_i(x))] \mu(dx) = \int \hat{T}_\phi f \, d\mu = \int f \, d\mu,$$

we have

$$\int \hat{T}_\phi f(x) \, dm(x) = \int f \, d\mu + \sum_{i \in A^*} \int f(v_i(x)) \exp[\phi^{(s)}(x)] \, d\mu(x)$$

$$= \int f(x) \, m(dx).$$

The Schweiger property follows from irreducibility and (6) and (7).
3. Examples

Example 1 (A real two-dimensional map which is related to a complex continued fraction expansion defined in [9]). Let $\alpha = 1 + i$. We set $X = \{ z = x_1 \alpha + x_2 \overline{\alpha} : -1/2 \leq x_1, x_2 \leq 1/2 \}$ and define $T : X \to X$ by $Tz = 1/z - [1/z]_1$, where $[z]$ denotes $[x_1 + 1/2] \alpha + [x_2 + 1/2] \overline{\alpha}$ for a complex number $z = x_1 \alpha + x_2 \overline{\alpha}$. (Here $[x] = \max\{ n \in \mathbb{Z} : n \leq x \}$ ($x \in \mathbb{N}$) and $[x] = \max\{ n \in \mathbb{Z} : n < x \}$ ($x \in \mathbb{Z} \setminus \mathbb{N}$).) The index set is $I = \{ m \alpha + n \overline{\alpha} : m, n \in \mathbb{Z} \} \setminus \{ 0 \}$. For each $m \alpha + n \overline{\alpha} \in I$, we define $X_{m \alpha + n \overline{\alpha}} = \{ z \in X : [1/z]_1 = m \alpha + n \overline{\alpha} \}$.

Then we have a countable partition $\alpha = \{ X_a \}_{a \in I}$ of X which is a topologically mixing Markov partition. The map T induces a continued fraction like expansion of $z \in X$,

$$ z = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ldots + \frac{1}{a_n + \ldots}}}} $$

where each a_i is contained in I. Now T has indifferent fixed points $\pm i$ and indifferent periodic points ± 1 of periodic 2. All conditions (1)–(5) were established in [9], [11], and [12].

Put $p_{-1} = \alpha, \quad p_0 = 0, \quad p_n = anp_{n-1} + p_{n-2} \quad (n \geq 1), \quad q_{-1} = 0, \quad q_0 = \alpha, \quad q_n = a_nq_{n-1} + q_{n-2} \quad (n \geq 1)$.

Then $v_{a_1 \ldots a_n}(z) = \frac{p_n + zp_{n-1}}{q_n + zq_{n-1}}$.

Let A be a cylinder away from the indifferent periodic points. Then (6) can be verified by observing the following facts.

(1) $|v'_{a_1 \ldots a_n}(z)| = |q_n + zq_{n-1}|^{-2}$.

(2) $|q_{n-1}/q_n| \leq 1$ for all $n > 0$.

(3) For $X_{a_1 \ldots a_n}$ such that X_{a_n} does not contain the indifferent periodic points, $|q_{n-1}/q_n| < 2/3$.

Thus our theorem applies to T.

Example 2. Let $T : S^2 \to S^2$ be a parabolic rational map of the Riemann sphere (see e.g. [5] for a definition). We restrict the action of T to its Julia set J. Then by [5] there is a finite Markov partition α satisfying $A \subset \text{cl}(\text{int} A)$ for every $A \in \alpha$. Moreover, for each $A \in \alpha$, away from the rationally indifferent periodic points, the Koebe distortion theorem applies to balls centred in A and all analytic inverse branches (since the forward orbits of critical points only accumulate at parabolic periodic points). It follows
that (6) and (7) are satisfied (see [5]). The main theorem shows that one can obtain conformal measures in more general situations than those previously known: These known results are concerned with potentials \(\phi \) satisfying

\[
P(\phi) > \sup_{z \in J} \phi(z),
\]

where \(P(\phi) \) denotes the pressure of \(\phi \) as in [10], or with the potential \(\phi = h \log |T'| \), where \(h \) denotes the Hausdorff dimension of \(J \).

REFERENCES

Institut für Mathematische Stochastik
Universität Göttingen
Lotzestr. 13
37083 Göttingen, Germany
E-mail: denker@math.uni-goettingen.de

Department of Business Administration
Sapporo University
Nishioka, Toyohira-ku
37082 Sapporo, Japan
E-mail: yuri@math.sci.hokudai.ac.jp

Received 13 August 1999; revised 3 November 1999