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Abstract. We present a unified approach to the finite generator theorem of Krieger,
the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show
that in a suitable space of measures those measures which define isomorphisms or respec-
tively homomorphisms form residual subsets.

1. Introduction. In 1977, Burton and Rothstein [2] put forward the
idea that some of the basic results in ergodic theory could be obtained using
“soft” methods, and more recently Kammeyer [6] has applied this technique
to relative isomorphism theory. In 1996 a simplified exposition and clari-
fication of the original method was proposed by Serafin [13] as a part of
his dissertation. This article presents a further simplification and strength-
ening of the method, which we hope to be useful both for understanding
and further development. It presents a unified approach to the finite genera-
tor theorem (Krieger [9]), the homomorphism (Sinai [14]) and isomorphism
(Ornstein [11], Keane and Smorodinsky [8]) theorems for Bernoulli schemes.
It is our conviction that, although none of the results presented are new,
the unification will prove to be useful for further developments.

2. Preliminaries. We begin with the basic object of our investigation,
a probability space

(Y,B, ν)

together with an automorphism T of this space, which we assume to be
ergodic and to have finite entropy. As we shall be concerned with classifi-
cation, we also assume that the probability space (Y,B, ν) is standard, i.e.
isomorphic to the unit interval with Lebesgue measure; this type of space is
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commonly called a nonatomic Lebesgue space (see Rokhlin [10]). For basic
notions of ergodic theory, which we use here without explanation, we refer
to the excellent treatises of Billingsley [1] and Walters [15]. In this situa-
tion, it has been known for forty years (see Rokhlin [10]) that T possesses a
countable generator; recently Keane and Serafin [7] have given an elemen-
tary exposition using standard methods in ergodic theory, making this result
easily accessible and understandable. To simplify our present exposition, we
use this result, which implies that we may assume that

Y = {1, 2, 3, . . .}Z

is a sequence space provided with the product σ-algebra B and the left
shift transformation T , the measure ν being then given by the collection
of its values on the countable collection of cylinder sets in Y . This is not
necessary for what follows, but makes many of our topological statements
easy to verify.

The second object we shall need is a finite shift space, considered as a
measurable space but on which a variety of measures will live:

X = {1, . . . , s}Z

with the σ-algebra A generated by its coordinate mappings (product σ-
algebra) and the left shift S. If µ is an ergodic S-invariant probability mea-
sure on (X,A) and if the systems

(Y,B, ν, T ) and (X,A, µ, S)

are isomorphic (homomorphic) via a mapping

φ : Y → X

which carries ν to µ and T to S, then there is a probability measure ξ on

(Z, C) := (X × Y,A× B)

invariant under U = S × T and ergodic, such that its projections ξX on X
and ξY on Y are µ and ν respectively, and which lives on (gives mass one
to) the graph of φ. Equivalently, under ξ we have

A× 2Y = 2X × B or A× 2Y ⊆ 2X × B,

where 2X and 2Y are the two-set σ-algebras {∅,X} and {∅, Y }, and the
equality holds mod ξ in the isomorphic case, while the inclusion holds mod ξ
in the homomorphic case. It should be clear that the existence of an isomor-
phism (homomorphism) is equivalent to the existence of a measure ξ with
the above properties; we call such ξ’s also isomorphisms (homomorphisms).

The three basic theorems we want to prove can easily be interpreted
using the above setting:
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1. In the finite generator theorem, we are given (Y,B, ν, T ) with finite
entropy hν(T ), but no measure on (X,A), and we wish to find ξ producing
an isomorphism between (X,A, ξX , S) and (Y,B, ν, T )—any projection ξX

will do for µ.

2. In the homomorphism theorem, we are given (Y,B, ν, T ) and a Ber-
noulli measure µ on (X,A) with hν(T ) ≥ hµ(S), and we wish to find ξ
producing a homomorphism such that ξY = ν and ξX = µ. Note that
here we may assume that hν(T ) = hµ(S) by splitting states in X, since
amalgamating these states again is a homomorphism.

3. In the isomorphism theorem, we are given two Bernoulli measures µ
and ν of equal entropy and need to find an isomorphism ξ with ξX = µ and
ξY = ν.

Now we can explain, using the above, Burton’s and Rothstein’s insight
which makes the finding of ξ as described relatively easy. The main diffi-
culty is that many such ξ are possible, making it hard to define one partic-
ular ξ precisely. However, perhaps we can define a set of ξ’s in such a way
that “most” of the elements of this set are isomorphisms (homomorphisms),
without having to point to one. For this, we need some suitable measure
of largeness of sets, and they suggested that Baire category is suitable. So
consider the probability measures on (Z, C) as a metric space, using the
product cylinder sets to define a metric in the usual manner giving rise to
the weak topology, in which convergence of a sequence of measures corre-
sponds to convergence of the values on every fixed cylinder set; denote this
space by M. Then M is clearly a compact separable metric space, and it is
elementary to show (and we omit the proof) that

M0 := {ξ ∈ M : ξ is invariant and ergodic, ξY = ν, hξX (S) ≥ hν(T )}

and, if µ is a fixed ergodic measure on (X,A, S),

M1 := {ξ ∈ M : ξ is invariant and ergodic, ξY = ν, ξX = µ}

are both Baire subsets of M, i.e. possess the Baire property that countable
intersections of (relatively) open dense subsets are dense (and, in particular,
nonempty). In fact, all of the conditions in the definitions above are closed
conditions (recall that entropy is an upper semicontinuous function of mea-
sures [5]) except the condition of ergodicity; the ergodic measures are the
extreme points of the U -invariant measures, and a general theorem states
that the extreme points of a compact convex set form a Gδ . Here one can
also deduce the result from elementary considerations.

Now we can state the three theorems which have as immediate con-
sequences the finite generator, homomorphism and isomorphism theorems,
respectively.
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Theorem 1. If hν(T ) < log s, then

M⋆
0 := {ξ ∈ M0 : ξ is an isomorphism}

is a countable intersection of dense open subsets of M0.

Theorem 2. If hν(T ) = hµ(S) and µ is Bernoulli , then

M⋆
1 := {ξ ∈ M1 : ξ is a homomorphism}

is a countable intersection of dense open subsets of M1.

Theorem 3. If µ and ν are Bernoulli and hν(T ) = hµ(S), then

M⋆
2 := {ξ ∈ M1 : ξ is an isomorphism}

is a countable intersection of dense open subsets of M1.

Note that in each of the cases above, the sets considered are nonempty,
as we see that ξ = µ × ν (with µ Bernoulli uniform in the finite generator
case) belongs to the corresponding M0 or M1. Note also that Theorem
3 is a trivial consequence of Theorem 2, simply by applying it twice! The
remainder of our exposition will be devoted to simple proofs of Theorems 1
and 2.

3. Proof of Theorem 1. First we writeM⋆
0 as a countable intersection

of open sets Vk,l, k, l ≥ 1, and then we show that each Vk,l is dense in M0.
If P is a finite partition of Z, then we denote by P the algebra generated by
P and by PU the σ-algebra generated by all U tP , t ∈ Z. Similar notation is
used for partitions Q,R, . . . In particular, we define P = {Pi : 1 ≤ i ≤ s} by

Pi := {z = (x, y) ∈ Z : x0 = i},

and Q(l) := {Q1, . . . , Ql−1, Q
(l)
l } by

Qj := {z = (x, y) ∈ Z : y0 = j} and Q
(l)
l := Z \

l−1⋃

j=1

Qj ;

finally, Q := {Q1, Q2, . . .}.
In general for partitions R and R′ we write

R′ ⊆ε RT mod ξ

if for each set R′
i of the partition R′ there exists a set R ∈ RT such that

ξ(R△R′

i) < ε.

Now we can define the set Vk,l to be the collection of all ξ ∈ M0 such that

Q(l) ⊆εk PU mod ξ and P ⊆εk QU mod ξ,

where εk = 1/k. It is easy to check that Vk,l is open; indeed,

P ⊆εk QU mod ξ
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if and only if

P ⊆εk

n∨

t=−n

U tQ(l) mod ξ,

for some n and l, which is an open condition on ξ, being a finite number
of strict inequalities, and similarly for the other condition. Observe that
the two approximate inclusions defining Vk,l hold if Hξ(P |QU ) < ε′k and
Hξ(Q|PU ) < ε′k, where ε′k is a function of εk and εk → 0 as k → ∞ if and
only if ε′k → 0 as k → ∞. Moreover, clearly

⋂

k,l

Vk,l = M⋆
0,

since if ξ belongs to this intersection then both

Q ⊆ PU mod ξ and P ⊆ QU mod ξ,

which says that ξ is an isomorphism. Thus it only remains to show that
each Vk,l is dense in M0. So now, since l is fixed, we drop the superscript l,
denoting by Q simply the partition Q = {Qj : 1 ≤ j ≤ l} with

Qj := {z = (x, y) ∈ Z : y0 = j} if j < l

and
Ql := {z = (x, y) ∈ Z : y0 ≥ l}.

This amounts to replacing the symbols ≥ l in the alphabet of Y by l.
Let ξ ∈ M0 be arbitrary; we have as conditions that

ξY = ν, hξX (S) ≥ hν(T ),

and that ξ is U -invariant and ergodic. Also, the integers l and k are given;
we want to show that there is a ξ̃ ∈ Vk,l as close as we want to ξ. It should
be clear that the sets Vk,l are decreasing in k and l; thus if we fix n0 ∈ N

and ε > 0, we desire to find ξ̃ which belongs to Vk,l and

|ξ(A)− ξ̃(A)| < ε

for any atom A of
∨n0−1

t=0 U t(P ∨Q). Here we may assume that k and l are
fixed, but as large as we wish, the choice based upon ε and n0. We need a
number of elementary steps to accomplish our task, as follows:

Step 1. The purpose of this step is to slightly raise the entropy hξX (S)
so that we have a strict inequality

hξX (S) > hν(T ).

At the end of the discussion, we need to do this once more. (For detailed
computations see [13].) The basic idea is to perturb the x-values indepen-
dently of ξ. That is, we replace ξ by ξ1, where a realization z1 = (x1, y1) of
ξ1 is obtained by taking a realization z = (x, y) of ξ, setting y1 = y, and for



312 R. M. BURTON ET AL.

each t ∈ Z flipping a coin with small success probability and, if successful,
setting, say,

x1
t = xt + 1 (mod s);

otherwise retaining

x1
t = xt.

It should be clear that then ξY1 is still ν and

hξX
1
(S) > hξY

1
(T ),

and that if the success probability ε′ is sufficiently small,

|ξ(A)− ξ1(A)| < ε′ < ε/2

for each atom A of
∨n0−1

t=0 U t(P ∨Q); hence by replacing ε by ε/2 we may
assume the strict inequality. A careful computation shows that in fact

hξX
1
(S,P ) ≥ hξX (S,P ) + ε′(log s− hξX (S,P )).

We let d := hξX
1

(S)− hν(T ) > 0.
Notice that it is not important to have formulae for this procedure, which

can be accomplished in a multitude of ways, as long as ξX is not uniform
Bernoulli.

Step 2. Set

δ = min(d/8, ε/8),

with d and ε as above. Let δm = ξX([1m]), where 1m is a block of m
consecutive 1’s, and [B] is a cylinder set based on a block B. It is clear that
δm → 0 as m → ∞. Choose and fix m so large that δm < δ/2.

Step 3. The purpose of this step is to choose an integer N sufficiently
large so that the Shannon–McMillan–Breiman theorem for atoms of∨n−1

t=0 U tP ,
∨n−1

t=0 U tQ and
∨n−1

t=0 U t(P ∨Q) is valid to accuracy δ, for n ≥ N ;

we also need that the ergodic theorem for atoms of
∨n0−1

t=0 U tP,
∨n0−1

t=0 U tQ

and
∨n0−1

t=0 U t(P ∨Q) is valid to accuracy δ, for n ≥ N . Also, we need that
the empirical frequency of the block 1m in the X-process is correct with
accuracy δ, for blocks of length n ≥ N . For ease we omit the exact formulae
at this point, and write the formulae as they occur in the sequel.

Step 4. In this step we choose markers for both the X and Y sequences.
Recall that one of our hypotheses is that (Y,B, ν) is nonatomic. Hence there
exist cylinder sets [M ] of arbitrary small measure, based on sequences M of
successive symbols from {1, . . . , l}. Given such an M and a point y ∈ Y , we
let τM (y) denote the distance between the two successive occurrences of M
in y before and after the zero coordinate, and we choose M with ν([M ]) so
small that

ν({y : τM (y) < N}) < δ.
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For X-markers, we simply choose as marker the sequence 1m, with m chosen
as above.

Step 5. For the convenience of the reader we now recall a version of
the marriage lemma which we shall use in the sequel (see e.g. [4]). We
start with two sets; we call elements of one set boys while elements of the
other girls. Suppose that each boy knows (is acquainted with) a finite set
of girls. The lemma states that it is possible for each boy to marry one
of his acquaintances if and only if every finite set of n boys is collectively
acquainted with a set of at least n girls. It is an immediate exercise to see
that the latter condition holds if each boy knows at least K girls and each
girl knows less than K boys, where K is some fixed positive number.

We now use the marriage lemma to make dictionaries necessary for the
definition of ξ̃. There will be one dictionary for each t ≥ N , giving a 1-1
correspondence between x-words (girls) and y-words (boys) of length t. Fix
t ≥ N . Let B be the collection of all sequences b of length t of the Y -alphabet
such that b begins with the marker M and

−
1

t
log ξY ([b]) ≤ hξY (T ) + δ.

Let G′ be the set of all sequences g′ of length t of the X-alphabet such that

−
1

t
log ξX([g′]) ≥ hξX (S)− δ.

By the Shannon–McMillan–Breiman theorem, the above inequalities hold
with probability at least 1− δ, for all t ≥ N .

If now g′ ∈ G′, we define g := Ψ(g′) by replacement of some (very few)
symbols in g′, as follows:

• If necessary, replace the first m symbols in g′ by 1, so that g will start
with a marker 1m.

• Now destroy all other markers in g′; whenever 1m occurs in g′ except at
the very beginning, replace the last symbol 1 by a symbol 2.

Then the mapping Ψ has collapsed some g′’s into the same g; the maximal
number of g′’s which can give possibly the same g is bounded by

sm +

j∑

i=1

(
t

i

)
2i,

where j is the number of occurrences of 1m in g′. If now the frequency j/t of
the marker occurrence differs from δm by no more than δ then it is an easy
calculation to show that this number is exponentially small with respect to
t, and if N were chosen so that

max

(
log s ·

m

N
,
logN

N
+ δm + δ

)
< 2δ
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then

sm +

j∑

i=1

(
t

i

)
2i < 22δt < 2dt/4.

Now set G = {g = Ψ(g′) : g′ ∈ G′}. We define a relation (girl knows boy) as
follows: g ∈ G and b ∈ B are related if there exists a g′ ∈ G′ with Ψ(g′) = g
such that the pair (g′, b), considered as an atom of the partition

t−1∨

i=0

U i(P ∨Q),

satisfies the Shannon–McMillan–Breiman theorem for P ∨ Q as in step 3.
That is, in particular,

2−t(h+δ) ≤ ξ([g] × [b]) ≤ 2−t(h−δ),

where h denotes the mean entropy of P ∨Q under U . From all this it is now
clear that each boy knows at least

2t(h−h
ξY

(T )−4δ) ≥ 2t(h−h
ξY

(T )−d/2) =: K

girls, and each girl knows at most

2t(h−h
ξX

(S)+2δ) ≤ 2t(h−h
ξX

(S)+d/4) < K

boys; therefore by the marriage lemma we can match each boy to a girl in
a 1-1 fashion. This is our dictionary for length t.

Step 6. We now construct a measure ξ with all properties required
except for hξX (S) ≥ hν(T ). This is very simple: to obtain a typical point

(x, y) for ξ, first choose a point (x, y) according to the measure ξ, and then
set y = y. To obtain x, use the markersM occurring in y and the dictionaries
to replace pieces of x. If the words do not occur in the dictionaries or if
τM (y) < N , then leave x unchanged in those coordinates. It is easy to
see that the zero coordinate of a point x is coded using dictionaries with
probability at least 1 − 2δ. It is then elementary to check that the desired
properties hold.

Step 7. In this step we raise the entropy of ξX , without disturbing the
other properties of ξ. Clearly the two properties of the mean entropy

h(U,R) = h(U,R ∨ T−1R), h(U,R)− h(U,R′) ≤ H(R|R′)

together imply

|h(U,R)− h(U,R′)| ≤ H(R|R′

U ) +H(R′|RU ).

As a consequence we have

|hξX (S,P )− hξY (T,Q)| = |hξ(U,P × 2Y )− hξ(U,2X ×Q)|

≤ Hξ(P |QU ) +Hξ(Q|PU ) < 2ε′k.
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We desire here that ε′k be so small that the above inequality implies

Q ⊆εk PU mod ξ, P ⊆εk QU mod ξ.

Use now the same method as in step 1 to raise the entropy of the ξX .
This corrresponds to moving ξ to ξ̃ (which is then our desired measure)
by an amount that depends upon ε′k, and which can be made smaller than
ε/2 in the distribution distance. The upper semicontinuity of entropy then
guarantees that Hξ̃(P |QU ) and Hξ̃(Q|PU ) remain small and consequently

ξ̃ ∈ Vk,l, the inclusions defining Vk,l being open conditions.

4. Proof of Theorem 2. Assume now that µ is a Bernoulli measure on
(X,A, S) and P is an independent generating partition. Define

M1,n := {ξ ∈ M1 : P ⊆1/n B mod ξ}.

As P generates we have

M⋆
1 =

⋂

n

M1,n.

Obviously the sets M1,n are open so it suffices to show that they are dense.

Fix ξ ∈ M1, ε > 0, and n ≥ 1. We shall find ξ̃ ∈ M1,n such that d(ξ, ξ̃) < ε,
where d is the usual metric inducing the weak topology on M.

Let ξ ∈ M1. Observe that M1 is a subset of M0, so Theorem 1 implies
the existence of a measure ξ1 such that

d(ξ, ξ1) < ε′ < ε/2, ξY1 = ν, hξX
1

(S) ≥ hν(T ), P×2Y ⊂ 2X×B mod ξ1,

where ε′ is to be determined later. It is easy to see that the last condi-
tion implies that in fact hξX

1
(S) = hν(T ) = hµ(S). Standard calculation

shows that for every positive integer m and positive δ we can choose ε′

small enough so the condition d(ξ, ξ1) < ε′ implies |dist(ξX1 ,
∨m−1

i=0 S−iP )−

dist(µ,
∨m−1

i=0 S−iP )| < δ. At this point it is more convenient to have mea-
sures µ and ξX1 “living” on two separate spaces, so let us consider a copy

(X̃, Ã, P̃ , µ) of (X,A, P, µ). As the process (S,P, µ) is independent and

consequently finitely determined, it follows that (S, P̃ , µ) and (S,P, ξX1 ) are
close in the d-metric. Equivalently (see [12]), there exists an ergodic S × S-
invariant ̺ which projects to ξX1 and µ such that

̺
( k⋃

i=1

P̃i × Pi

)
≥ 1− ε1 > 1− ε/2,

with ε1 small to be determined later. Since the measures ̺ and ξ1 have a
common factor ξX1 , we can use Furstenberg’s construction ([3, pp. 110–115])

in order to find a common extension η on X̃ ×X ×X × Y , an independent
joining over a common factor ξX1 . First decompose ξ1 and ̺ over a factor
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measure ξX1 . Let A×B ∈ Ã × A and C ×D ∈ A× B. We have

̺(A×B) =
\
X

̺x(A×B) dξX1 (x) =
\
X

E̺(χA×B |X)(x) dξX1 (x)

=
\
X

χB(x)E̺(χA×X |X)(x) dξX1 (x)

and similarly

ξ1(C ×D) =
\
X

ξ1,x(C ×D) dξX1 (x) =
\
X

χC(x)Eξ1(χX×D|X)(x) dξX1 (x).

The independent joining η is now given by

η(A×B × C ×D)=
\
X

χB∩C(x)E̺(χA×X |X)(x)Eξ1 (χX×D|X)(x) dξX1 (x).

We can define the projection ξ2 of η to X̃ × Y by

ξ2(A×D) = η(A×X ×X ×D)

=
\
X

E̺(χA×X |X)(x)Eξ1(χX×D|X)(x) dξX1 (x).

Finally, put ξ2 on X × Y and call it ξ̃. It is a straightforward computation

that ξ̃Y = ν and ξ̃X = µ. Moreover, the independent joining η can be
constructed ergodic, so ξ̃ as a factor measure is also ergodic. Let us now

estimate d(ξ1, ξ̃). We have, for A×B ∈ A× B,

|ξ1(A×B)− ξ̃(A×B)| = |ξ1(A×B)− ξ2(Ã×B)|,

where Ã is the Ã-copy of a set A ∈ BX . Comparing the decompositions of
ξ1 and ξ2 we see that

|ξ1(A×B)− ξ2(Ã×B)| ≤
\
X

|χA(x)−E̺(χÃ×X |X)(x)| dξX1 (x)

=
\
X

|E̺(χX̃×A|X)(x) −E̺(χÃ×X |X)(x)| dξX1 (x)

≤
\
X

E̺(χX̃×A△Ã×X |X)(x) dξX1 (x)

=
\

X̃×X

χX̃×A△Ã×X d̺

= ̺(X̃ ×A△ Ã×X) < ε1,

so the triangle inequality implies d(ξ, ξ̃) < ε, as required. A judicious choice
of ε1 and upper semicontinuity of entropy guarantee that

Hξ̃(P × 2Y |2X × B) ≤ Hξ1(P × 2Y |2X ×B) + 1/n = 1/n.

The proof is complete.
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