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Abstract. Let T be a positive linear contraction of L; of a o-finite measure space
(X, X, u) which overlaps supports. In general, T' need not be completely mixing, but it is
in the following cases:

(i) T is the Frobenius—Perron operator of a non-singular transformation ¢ (in which
case complete mixing is equivalent to exactness of ¢).
(ii) T is a Harris recurrent operator.
(iii) 7" is a convolution operator on a compact group.
(iv) T is a convolution operator on a LCA group.

Let (X, X, 1) be a o-finite measure space, and let 7" be a positive con-
traction on Lj(u) which preserves integrals. The study of the asymptotic
behaviour of Markov chains leads to questions of convergence of {T™ f} for
feLy(p). Wecall T completely mizing if for any two non-negative functions
f,9 € Ly with § fdu = {gdp we have lim,_,o [|T"f — T"g|ls = 0. When
T has a positive fixed point h (normalized to {hdu = 1), then complete
mixing is equivalent to the convergence || f — (§ fdp)h|1 — 0 for every
f € Ly (asymptotic stability). For L; separable and p non-atomic, residual-
ity of completely mixing contractions was studied by Iwanik and Rebowski
[IRe].

We say that T overlaps supports if for any two non-negative functions
fyg € Li(u) with positive integrals there exists a positive integer n (de-
pending on f and g) such that {(7"f A T"g)dp > 0. A natural ques-
tion (motivated also by the zero-two law of [OS], since support overlapping
clearly implies lim,, [|T"™(f — T f)||1 < 2 for every non-negative f € L; with
{ f du = 1) is whether support overlapping (which is obviously necessary) is
sufficient for complete mixing. It was noted in [R] that in general the answer
is negative (the example has a strictly positive fixed point). Bartoszek and
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Brown [BBr| have shown that when 7' has a strictly positive (normalized)
fixed point h, support overlapping implies weak convergence of {T"}, i.e.,
(T f,u) — (§ fdp)(h,u) for every u € L. Thus, for T with a strictly
positive fixed point, support overlapping lies between complete mixing and
mixing.

Let ¢ be a non-singular transformation of (X, X, u) (we do not assume
the existence of an invariant measure). Then there is a (unique) positive
contraction 7' in Ly (u), called the Frobenius—Perron operator of ¢, such
that T*u = wo ¢ for u € Ly (see e.g. [K]). Note that the Frobenius—
Perron operator depends on p, and is changed (through the Radon—Nikodym
theorem) if p is replaced by an equivalent measure. The transformation ¢ is
called ezact if the o-algebra Yo := (7, ¢~ "X is trivial modulo u (i.e., if
Ae X, then p(A) =0or u(X —A) =0).

THEOREM 1. Let ¢ be a non-singular transformation of a o-finite mea-
sure space (X, X, ). Then the following are equivalent:

(i) The transformation ¢ is exact.
(ii) The Frobenius—Perron operator of ¢ is completely mizing.
(iii) The Frobenius—Perron operator of ¢ overlaps supports.

Proof. The equivalence of (i) and (ii) is proved in [L], and clearly (ii)
implies (iii).

We now assume that the Frobenius—Perron operator T' overlaps supports,
and show that ¢ is exact. Let A € ()~ ¢~ "X, and assume that A is not
trivial (i.e., u(A) > 0 and p(X — A) > 0). Then for each n there is a set
A, € X with ¢7"A,, = A. Define B = X —Aand B, = X — A,, so
¢~ "B,, = B. Take 0 < f € L1(A) with { fdpu =1 and 0 < g € Ly(B) with
{gdu = 1. Then for every n > 0 we have

[T f =T gl = KT"f = T"g,14, —1B,)| = [{f —g,14, 0 ¢" — 1B, 0 ¢")|
=[{f —9,1a = 1B)| =(f,1a) + (9, 1B) = 2.
This means that for every n the norm one positive functions 7" f and T"g

have disjoint supports, contradicting the assumption that 7' overlaps sup-
ports.

REMARK. In the case where ¢ has an invariant probability equivalent
to p, the theorem was proved by Bartoszek and Brown [BBr]. Zaharopol [Z]
proved it when ¢ has an invariant probability absolutely continuous with
respect to p, using the result of [BBr]. Our proof (including the result from
[L]) is much simpler.

In order to construct examples of non-singular exact transformations
which have only an infinite o-finite invariant measure, or no invariant mea-
sure at all, we use the following result of Jamison and Orey [JOr|: Let P
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be a transition probability with pP < p, and let P, be the probability of the
Markov chain on the space of (one-sided) trajectories with initial measure
w. The operator T induced by (the pre-dual of ) P in Li(u) is completely
mizing if and only if the one-sided Markov shift is exact (see [ALW] for a
measure-theoretic proof). Thus, Markov shifts of aperiodic null-recurrent
Markov matrices are exact with an infinite invariant measure. If we take 7
non-singular on (S, .4, m) without any o-finite invariant measure (a type III
transformation) and define P(z,-) = 3(8, + 65), then |[P"(I — P)|| — 0,
and the L (u) pre-dual is completely mixing, without any invariant measure.
Hence its one-sided Markov shift is exact and has no invariant measure.

PROPOSITION. Let T' be a Harris recurrent contraction of L1(p). Then
T is completely mizing if (and only if ) it overlaps supports.

Proof. By the Jamison-Orey theorem (see e.g. [OS]), T" is completely
mixing if (and only if) it is aperiodic. When T overlaps supports, there
cannot be a periodic set, so T' is aperiodic.

REMARK. In [BBr| and [R], the proposition was proved under the as-
sumption that 7" has a fixed point in Ly (the positive recurrent case).

THEOREM 2. Let T be a positive contraction of Lq(u) which preserves
integrals. Then T is asymptotically stable if and only if it satisfies the fol-
lowing three conditions:

(1) T is mean ergodic (i.e., n=t> _, T*f converges for every f € Ly).

(2) T overlaps supports.

(3) For every f € Ly(u) with \ f du =0 there is a subsequence such that
{T*i Y converges strongly.

Proof. The necessity of the three conditions is obvious.

Assume T satisfies the three conditions. Let C' and D be the conservative
and dissipative parts of T. By Helmberg’s condition [K, p. 175], the mean
ergodicity of T yields that u(C) > 0, T has an L, fixed point fo which is
supported on C, and T*"1p | 0 a.e. Denote by T the restriction of T' to
the invariant subspace L1(C). Then T¢ has a strictly positive fixed point
(on ), and obviously overlaps supports by (2). By Proposition 1 of [BBr|,
{T& f} converges weakly in L, (C) for every f € L1(C). Condition (3) yields
the strong convergence for f € Ly(C) with { fdu = 0. But T¢ is ergodic
since it overlaps supports, so we have asymptotic stability of T¢, i.e., {T" f}
converges strongly to (| fdu/§ fo du) fo for every f e Li(C).

It remains to prove the convergence when f € Lq(D), and we may assume
f > 0. Fix € > 0. Since SD T fdp = SXf -T*"1pdu — 0 by Lebesgue’s
theorem, there is a j > 0 with [|[1pT7f]; < e. Set ¢ = 1pT7f and h =
1oT7 f. Then [T f — TF+if||y < ||T™h — T*h|| + 2¢ shows that {T"f}
is a Cauchy sequence in Lj, since {T™h} is, by the first part. Because T
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preserves integrals and its restriction to Ly (C) is ergodic, {T" f} converges
to the correct limit.

REMARKS. 1. Asymptotic stability was proved in [B] with the additional
assumption that p(D) = 0 (which is not necessary [Z]). This is equivalently
stated there with condition (1) replaced by the assumption that 7" has a
strictly positive integrable fixed point.

2. Any two of the three conditions in Theorem 2 are not sufficient for
asymptotic stability: (2) and (3) hold for completely mixing 7" with no
invariant measure; the example of [AkBo| mentioned in [Z] is not completely
mixing though it satisfies (1) and (2); T induced by a cyclic permutation of
a finite set is periodic and satisfies (1) and (3).

COROLLARY. T is asymptotically stable if and only if T is almost periodic
({T™ f} is conditionally compact for every f € Ly) and overlaps supports.

Proof. Almost periodicity implies conditions (1) and (3) of Theorem 2.

THEOREM 3. Let G be a compact group with normalized Haar measure pu,
and let v be a regular probability on G. The convolution operator T f(x) =
\ f(zy)dv(y), defined in Ly(G, ), is asymptotically stable if (and only if)
it overlaps supports.

Proof. T"f = { f(xy)dv™(y) (with v the nth convolution power
of v), so {T™f} is in the closed convex hull of the translation orbit {7}, f :
y € G}. This orbit is compact in Ly by the continuity of the representation
in Ly, and by the Banach-Mazur theorem also its closed convex hull is
compact. Hence T is almost periodic, and when it overlaps supports it is
asymptotically stable by the previous Corollary (or by [B]).

For the next result, we need the following concept from [KL]: For a pos-
itive contraction T' of L;, define X;(T) = {A € X' : for each n there is 0 <
fn <1 with T*" f, =14}. It was proved in [KL] that if T" is non-disappearing
(i.e., T*14 = 0 a.e. implies 14 = 0 a.e.), then X;(T) is a o-algebra (called
the tail or asymptotic o-algebra), and for A € X (T) the f, in the above
definition are uniquely defined characteristic functions.

The proof of Theorem 1 shows in fact that if T is non-disappearing and
overlaps supports, then X;(7) is trivial mod .

THEOREM 4. Let T be a positive contraction of Li(p) which preserves
integrals, with u invariant for T'. Then T is completely mixing if and only
if it satisfies the following two conditions:

(1) T overlaps supports.
(2) For every f € Ly(p) with § f du = 0 there is a subsequence such that
{T*i f} converges strongly.
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Proof. The necessity is clear, so we assume that both conditions hold.
If p is finite, then T is mean ergodic, and Theorem 2 yields asymptotic
stability. Hence we assume that p is infinite. Support overlapping implies
that either u(C)=0 or u(D)=0 (since both sets are absorbing [K, p. 131]).
If u(C) =0, we have T"f — 0 a.e. for any f € Ly (by dissipativity), so
when { f du = 0 condition (2) yields || T% f||y — 0, so ||T" |l — 0 since T
is a contraction.

We now consider the conservative case. Since p is invariant, T' is non-
disappearing, and support overlapping implies that the tail o-algebra X} (T")
is trivial mod p. Theorem 2.1 of [KL] and the discussion on p. 68 there
show that the isometric part of T' in Lo(p) is trivial, and therefore also
the automorphic part is trivial. By [F, p. 85] we deduce that T"f — 0
weakly in Ly for every f € Lao(p). If f € Ly N Ly with § f dp = 0, then the
weak convergence to 0 in L, and the strong convergence in L; of {T%s f}
imply that the L; limit is zero, and therefore ||T™f||; — 0. By standard
approximation we conclude that 7" is completely mixing.

REMARK. The proof shows in fact the infinite measure analogue of Propo-
sition 1 of [BBr|: If w is an infinite invariant measure for T and T overlaps
supports, then T™ f — 0 weakly in Lo for every f € La(p).

THEOREM 5. Let G be a locally compact o-compact Abelian group with
Haar measure pu, and let v be a regular probability on G. The convolution
operator T f(x) =\ f(zy) dv(y), defined in L1(G, i), is completely mizing if
(and only if) it overlaps supports.

Proof. For a convolution operator T, its dual T™ is the convolution with
the reflected probability #(A4) := v(A~!). The characterization of X;(T)
which follows from Theorems 2.1 and 3.2 of [KL] yields X}(T") = Xy (T*). If
T overlaps supports, then X4 (T") is trivial mod p, and Theorem 3.2 of [KL]
yields its complete mixing.

REMARK. When G is LCA non-compact, the Markov shifts of completely
mixing convolution operators will be exact with infinite invariant measure.
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