COLLOQUIUM MATHEMATICUM

VOL. 84/85

2000

PART 2

SUPPORT OVERLAPPING L₁ CONTRACTIONS AND EXACT NON-SINGULAR TRANSFORMATIONS

$_{\rm BY}$

MICHAEL LIN (BEER-SHEVA)

Dedicated to the memory of Anzelm Iwanik

Abstract. Let T be a positive linear contraction of L_1 of a σ -finite measure space (X, Σ, μ) which overlaps supports. In general, T need not be completely mixing, but it is in the following cases:

(i) T is the Frobenius–Perron operator of a non-singular transformation ϕ (in which case complete mixing is equivalent to exactness of ϕ).

- (ii) T is a Harris recurrent operator.
- (iii) T is a convolution operator on a compact group.
- (iv) T is a convolution operator on a LCA group.

Let (X, Σ, μ) be a σ -finite measure space, and let T be a positive contraction on $L_1(\mu)$ which preserves integrals. The study of the asymptotic behaviour of Markov chains leads to questions of convergence of $\{T^n f\}$ for $f \in L_1(\mu)$. We call T completely mixing if for any two non-negative functions $f, g \in L_1$ with $\int f d\mu = \int g d\mu$ we have $\lim_{n\to\infty} ||T^n f - T^n g||_1 = 0$. When T has a positive fixed point h (normalized to $\int h d\mu = 1$), then complete mixing is equivalent to the convergence $||T^n f - (\int f d\mu)h||_1 \to 0$ for every $f \in L_1$ (asymptotic stability). For L_1 separable and μ non-atomic, residuality of completely mixing contractions was studied by Iwanik and Rębowski [IRe].

We say that T overlaps supports if for any two non-negative functions $f, g \in L_1(\mu)$ with positive integrals there exists a positive integer n (depending on f and g) such that $\int (T^n f \wedge T^n g) d\mu > 0$. A natural question (motivated also by the zero-two law of [OS], since support overlapping clearly implies $\lim_n ||T^n(f - Tf)||_1 < 2$ for every non-negative $f \in L_1$ with $\int f d\mu = 1$) is whether support overlapping (which is obviously necessary) is sufficient for complete mixing. It was noted in [R] that in general the answer is negative (the example has a strictly positive fixed point). Bartoszek and

²⁰⁰⁰ Mathematics Subject Classification: Primary 28D05, 47A35.

^[515]

Brown [BBr] have shown that when T has a strictly positive (normalized) fixed point h, support overlapping implies weak convergence of $\{T^n\}$, i.e., $\langle T^n f, u \rangle \rightarrow (\int f d\mu) \langle h, u \rangle$ for every $u \in L_{\infty}$. Thus, for T with a strictly positive fixed point, support overlapping lies between complete mixing and mixing.

Let ϕ be a non-singular transformation of (X, Σ, μ) (we do not assume the existence of an invariant measure). Then there is a (unique) positive contraction T in $L_1(\mu)$, called the *Frobenius–Perron operator* of ϕ , such that $T^*u = u \circ \phi$ for $u \in L_{\infty}$ (see e.g. [K]). Note that the Frobenius– Perron operator depends on μ , and is changed (through the Radon–Nikodym theorem) if μ is replaced by an equivalent measure. The transformation ϕ is called *exact* if the σ -algebra $\Sigma_{\infty} := \bigcap_{n=1}^{\infty} \phi^{-n} \Sigma$ is trivial modulo μ (i.e., if $A \in \Sigma_{\infty}$, then $\mu(A) = 0$ or $\mu(X - A) = 0$).

THEOREM 1. Let ϕ be a non-singular transformation of a σ -finite measure space (X, Σ, μ) . Then the following are equivalent:

- (i) The transformation ϕ is exact.
- (ii) The Frobenius–Perron operator of ϕ is completely mixing.
- (iii) The Frobenius–Perron operator of ϕ overlaps supports.

Proof. The equivalence of (i) and (ii) is proved in [L], and clearly (ii) implies (iii).

We now assume that the Frobenius–Perron operator T overlaps supports, and show that ϕ is exact. Let $A \in \bigcap_{n=1}^{\infty} \phi^{-n} \Sigma$, and assume that A is not trivial (i.e., $\mu(A) > 0$ and $\mu(X - A) > 0$). Then for each n there is a set $A_n \in \Sigma$ with $\phi^{-n}A_n = A$. Define B = X - A and $B_n = X - A_n$, so $\phi^{-n}B_n = B$. Take $0 \le f \in L_1(A)$ with $\int f d\mu = 1$ and $0 \le g \in L_1(B)$ with $\int g d\mu = 1$. Then for every $n \ge 0$ we have

$$||T^n f - T^n g||_1 \ge |\langle T^n f - T^n g, 1_{A_n} - 1_{B_n}\rangle| = |\langle f - g, 1_{A_n} \circ \phi^n - 1_{B_n} \circ \phi^n\rangle|$$

= |\langle f - g, 1_A - 1_B\rangle| = \langle f, 1_A\rangle + \langle g, 1_B\rangle = 2.

This means that for every n the norm one positive functions $T^n f$ and $T^n g$ have disjoint supports, contradicting the assumption that T overlaps supports.

REMARK. In the case where ϕ has an invariant probability equivalent to μ , the theorem was proved by Bartoszek and Brown [BBr]. Zaharopol [Z] proved it when ϕ has an invariant probability absolutely continuous with respect to μ , using the result of [BBr]. Our proof (including the result from [L]) is much simpler.

In order to construct examples of non-singular exact transformations which have only an infinite σ -finite invariant measure, or no invariant measure at all, we use the following result of Jamison and Orey [JOr]: Let P be a transition probability with $\mu P \ll \mu$, and let \mathbf{P}_{μ} be the probability of the Markov chain on the space of (one-sided) trajectories with initial measure μ . The operator T induced by (the pre-dual of) P in $L_1(\mu)$ is completely mixing if and only if the one-sided Markov shift is exact (see [ALW] for a measure-theoretic proof). Thus, Markov shifts of aperiodic null-recurrent Markov matrices are exact with an infinite invariant measure. If we take τ non-singular on (S, \mathcal{A}, m) without any σ -finite invariant measure (a type III transformation) and define $P(x, \cdot) = \frac{1}{2}(\delta_x + \delta_{\tau x})$, then $\|P^n(I - P)\| \to 0$, and the $L_1(\mu)$ pre-dual is completely mixing, without any invariant measure. Hence its one-sided Markov shift is exact and has no invariant measure.

PROPOSITION. Let T be a Harris recurrent contraction of $L_1(\mu)$. Then T is completely mixing if (and only if) it overlaps supports.

Proof. By the Jamison–Orey theorem (see e.g. [OS]), T is completely mixing if (and only if) it is aperiodic. When T overlaps supports, there cannot be a periodic set, so T is aperiodic.

REMARK. In [BBr] and [R], the proposition was proved under the assumption that T has a fixed point in L_1 (the positive recurrent case).

THEOREM 2. Let T be a positive contraction of $L_1(\mu)$ which preserves integrals. Then T is asymptotically stable if and only if it satisfies the following three conditions:

(1) T is mean ergodic (i.e., $n^{-1} \sum_{k=1}^{n} T^k f$ converges for every $f \in L_1$).

(2) T overlaps supports.

(3) For every $f \in L_1(\mu)$ with $\int f d\mu = 0$ there is a subsequence such that $\{T^{k_j}f\}$ converges strongly.

Proof. The necessity of the three conditions is obvious.

Assume T satisfies the three conditions. Let C and D be the conservative and dissipative parts of T. By Helmberg's condition [K, p. 175], the mean ergodicity of T yields that $\mu(C) > 0$, T has an L_1 fixed point f_C which is supported on C, and $T^{*n}1_D \downarrow 0$ a.e. Denote by T_C the restriction of T to the invariant subspace $L_1(C)$. Then T_C has a strictly positive fixed point (on C), and obviously overlaps supports by (2). By Proposition 1 of [BBr], $\{T_C^n f\}$ converges weakly in $L_1(C)$ for every $f \in L_1(C)$. Condition (3) yields the strong convergence for $f \in L_1(C)$ with $\int f d\mu = 0$. But T_C is ergodic since it overlaps supports, so we have asymptotic stability of T_C , i.e., $\{T^n f\}$ converges strongly to $(\int f d\mu / \int f_C d\mu) f_C$ for every $f \in L_1(C)$.

It remains to prove the convergence when $f \in L_1(D)$, and we may assume $f \geq 0$. Fix $\varepsilon > 0$. Since $\int_D T^n f d\mu = \int_X f \cdot T^{*n} \mathbf{1}_D d\mu \to 0$ by Lebesgue's theorem, there is a j > 0 with $\|\mathbf{1}_D T^j f\|_1 < \varepsilon$. Set $g = \mathbf{1}_D T^j f$ and $h = \mathbf{1}_C T^j f$. Then $\|T^{n+j} f - T^{k+j} f\|_1 \leq \|T^n h - T^k h\| + 2\varepsilon$ shows that $\{T^n f\}$ is a Cauchy sequence in L_1 , since $\{T^n h\}$ is, by the first part. Because T

preserves integrals and its restriction to $L_1(C)$ is ergodic, $\{T^n f\}$ converges to the correct limit.

REMARKS. 1. Asymptotic stability was proved in [B] with the additional assumption that $\mu(D) = 0$ (which is *not* necessary [Z]). This is equivalently stated there with condition (1) replaced by the assumption that T has a strictly positive integrable fixed point.

2. Any two of the three conditions in Theorem 2 are not sufficient for asymptotic stability: (2) and (3) hold for completely mixing T with no invariant measure; the example of [AkBo] mentioned in [Z] is not completely mixing though it satisfies (1) and (2); T induced by a cyclic permutation of a finite set is periodic and satisfies (1) and (3).

COROLLARY. T is asymptotically stable if and only if T is almost periodic $({T^n f})$ is conditionally compact for every $f \in L_1$ and overlaps supports.

Proof. Almost periodicity implies conditions (1) and (3) of Theorem 2.

THEOREM 3. Let G be a compact group with normalized Haar measure μ , and let ν be a regular probability on G. The convolution operator $Tf(x) = \int f(xy) d\nu(y)$, defined in $L_1(G,\mu)$, is asymptotically stable if (and only if) it overlaps supports.

Proof. $T^n f = \int f(xy) d\nu^{(n)}(y)$ (with $\nu^{(n)}$ the *n*th convolution power of ν), so $\{T^n f\}$ is in the closed convex hull of the translation orbit $\{T_y f : y \in G\}$. This orbit is compact in L_1 by the continuity of the representation in L_1 , and by the Banach–Mazur theorem also its closed convex hull is compact. Hence T is almost periodic, and when it overlaps supports it is asymptotically stable by the previous Corollary (or by [B]).

For the next result, we need the following concept from [KL]: For a positive contraction T of L_1 , define $\Sigma_t(T) = \{A \in \Sigma : \text{for each } n \text{ there is } 0 \leq f_n \leq 1 \text{ with } T^{*n}f_n = 1_A\}$. It was proved in [KL] that if T is non-disappearing (i.e., $T^*1_A = 0$ a.e. implies $1_A = 0$ a.e.), then $\Sigma_t(T)$ is a σ -algebra (called the *tail* or *asymptotic* σ -algebra), and for $A \in \Sigma_t(T)$ the f_n in the above definition are uniquely defined characteristic functions.

The proof of Theorem 1 shows in fact that if T is non-disappearing and overlaps supports, then $\Sigma_t(T)$ is trivial mod μ .

THEOREM 4. Let T be a positive contraction of $L_1(\mu)$ which preserves integrals, with μ invariant for T. Then T is completely mixing if and only if it satisfies the following two conditions:

(1) T overlaps supports.

(2) For every $f \in L_1(\mu)$ with $\int f d\mu = 0$ there is a subsequence such that $\{T^{k_j}f\}$ converges strongly.

Proof. The necessity is clear, so we assume that both conditions hold. If μ is finite, then T is mean ergodic, and Theorem 2 yields asymptotic stability. Hence we assume that μ is infinite. Support overlapping implies that either $\mu(C) = 0$ or $\mu(D) = 0$ (since both sets are absorbing [K, p. 131]). If $\mu(C) = 0$, we have $T^n f \to 0$ a.e. for any $f \in L_1$ (by dissipativity), so when $\int f d\mu = 0$ condition (2) yields $||T^{k_j}f||_1 \to 0$, so $||T^n f||_1 \to 0$ since Tis a contraction.

We now consider the conservative case. Since μ is invariant, T is nondisappearing, and support overlapping implies that the tail σ -algebra $\Sigma_t(T)$ is trivial mod μ . Theorem 2.1 of [KL] and the discussion on p. 68 there show that the isometric part of T in $L_2(\mu)$ is trivial, and therefore also the automorphic part is trivial. By [F, p. 85] we deduce that $T^n f \to 0$ weakly in L_2 for every $f \in L_2(\mu)$. If $f \in L_1 \cap L_2$ with $\int f d\mu = 0$, then the weak convergence to 0 in L_2 and the strong convergence in L_1 of $\{T^{k_j}f\}$ imply that the L_1 limit is zero, and therefore $||T^n f||_1 \to 0$. By standard approximation we conclude that T is completely mixing.

REMARK. The proof shows in fact the infinite measure analogue of Proposition 1 of [BBr]: If μ is an infinite invariant measure for T and T overlaps supports, then $T^n f \to 0$ weakly in L_2 for every $f \in L_2(\mu)$.

THEOREM 5. Let G be a locally compact σ -compact Abelian group with Haar measure μ , and let ν be a regular probability on G. The convolution operator $Tf(x) = \int f(xy) d\nu(y)$, defined in $L_1(G,\mu)$, is completely mixing if (and only if) it overlaps supports.

Proof. For a convolution operator T, its dual T^* is the convolution with the reflected probability $\check{\nu}(A) := \nu(A^{-1})$. The characterization of $\Sigma_t(T)$ which follows from Theorems 2.1 and 3.2 of [KL] yields $\Sigma_t(T) = \Sigma_t(T^*)$. If T overlaps supports, then $\Sigma_t(T)$ is trivial mod μ , and Theorem 3.2 of [KL] yields its complete mixing.

REMARK. When G is LCA non-compact, the Markov shifts of completely mixing convolution operators will be exact with infinite invariant measure.

Acknowledgements. I am grateful to Radu Zaharopol for sending me a preprint of [Z].

REFERENCES

- [ALW] J. Aaronson, M. Lin, and B. Weiss, Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, Israel J. Math. 33 (1979), 198–224.
- [AkBo] M. Akcoglu and D. Boivin, Approximation of L_p-contractions by isometries, Canad. Math. Bull. 32 (1989), 360–364.

- [B] W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179–188.
- [BBr] W. Bartoszek and T. Brown, On Frobenius-Perron operators which overlap supports, Bull. Polish Acad. Sci. Math. 45 (1997), 17-24.
- [F] S. Foguel, *The Ergodic Theory of Markov Processes*, Van Nostrand Reinhold, New York, 1969.
- [IRe] A. Iwanik and R. Rębowski, Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 56 (1992), 232–242.
- [JOr] B. Jamison and S. Orey, Tail σ-fields of Markov processes recurrent in the sense of Harris, Z. Wahrsch. Verw. Gebiete 8 (1967), 41–48.
- [K] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- [KL] U. Krengel and M. Lin, On the deterministic and asymptotic σ-algebras of a Markov operator, Canad. Math. Bull. 32 (1989), 64–73.
- [L] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231–242.
- [OS] D. Ornstein and L. Sucheston, An operator theorem on L₁ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631– 1639.
- [R] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245–262.
- [Z] R. Zaharopol, Strongly asymptotically stable Frobenius-Perron operators, Proc. Amer. Math. Soc., in press.

Ben-Gurion University of the Negev Beer-Sheva, Israel E-mail: lin@math.bgu.ac.il

Received 22 September 1999

(3836)