SUPPORT OVERLAPPING L_1 CONTRACTIONS
AND EXACT NON-SINGULAR TRANSFORMATIONS

BY

MICHAEL LIN (BEER-SHEVA)

Dedicated to the memory of Anzelm Iwanik

Abstract. Let T be a positive linear contraction of L_1 of a σ-finite measure space (X, Σ, μ) which overlaps supports. In general, T need not be completely mixing, but it is in the following cases:

(i) T is the Frobenius–Perron operator of a non-singular transformation ϕ (in which case complete mixing is equivalent to exactness of ϕ).
(ii) T is a Harris recurrent operator.
(iii) T is a convolution operator on a compact group.
(iv) T is a convolution operator on a LCA group.

Let (X, Σ, μ) be a σ-finite measure space, and let T be a positive contraction on $L_1(\mu)$ which preserves integrals. The study of the asymptotic behaviour of Markov chains leads to questions of convergence of $\{T^n f\}$ for $f \in L_1$. We call T completely mixing if for any two non-negative functions $f, g \in L_1$ with $\int f \, d\mu = \int g \, d\mu$ we have $\lim_{n \to \infty} \|T^n f - T^n g\|_1 = 0$. When T has a positive fixed point h (normalized to $\int h \, d\mu = 1$), then complete mixing is equivalent to the convergence $\|T^n f - (\int f \, d\mu) h\|_1 \to 0$ for every $f \in L_1$ (asymptotic stability). For L_1 separable and μ non-atomic, residuality of completely mixing contractions was studied by Iwanik and Rębowski [IR].

We say that T overlaps supports if for any two non-negative functions $f, g \in L_1(\mu)$ with positive integrals there exists a positive integer n (depending on f and g) such that $\int (T^n f \wedge T^n g) \, d\mu > 0$. A natural question (motivated also by the zero-two law of [OS], since support overlapping clearly implies $\lim_n \|T^n (f - T f)\|_1 < 2$ for every non-negative $f \in L_1$ with $\int f \, d\mu = 1$) is whether support overlapping (which is obviously necessary) is sufficient for complete mixing. It was noted in [R] that in general the answer is negative (the example has a strictly positive fixed point). Bartoszek and [515]
Brown [BBr] have shown that when T has a strictly positive (normalized) fixed point h, support overlapping implies weak convergence of $\{T^n\}$, i.e.,

$$\langle T^n f, u \rangle \to \langle f d\mu(h, u) \rangle \text{ for every } u \in L_\infty.$$

Thus, for T with a strictly positive fixed point, support overlapping lies between complete mixing and mixing.

Let ϕ be a non-singular transformation of (X, Σ, μ) (we do not assume the existence of an invariant measure). Then there is a (unique) positive contraction T in $L_1(\mu)$, called the Frobenius–Perron operator of ϕ, such that $T^* u = u \circ \phi$ for $u \in L_\infty$ (see e.g. [K]). Note that the Frobenius–Perron operator depends on μ, and is changed (through the Radon–Nikodym theorem) if μ is replaced by an equivalent measure. The transformation ϕ is called exact if the σ-algebra $\Sigma_\infty := \bigcap_{n=1}^{\infty} \phi^{-n} \Sigma$ is trivial modulo μ (i.e., if $A \in \Sigma_\infty$, then $\mu(A) = 0$ or $\mu(X - A) = 0$).

Theorem 1. Let ϕ be a non-singular transformation of a σ-finite measure space (X, Σ, μ). Then the following are equivalent:

(i) The transformation ϕ is exact.

(ii) The Frobenius–Perron operator of ϕ is completely mixing.

(iii) The Frobenius–Perron operator of ϕ overlaps supports.

Proof. The equivalence of (i) and (ii) is proved in [L], and clearly (ii) implies (iii).

We now assume that the Frobenius–Perron operator T overlaps supports, and show that ϕ is exact. Let $A \in \bigcap_{n=1}^{\infty} \phi^{-n} \Sigma$, and assume that A is not trivial (i.e., $\mu(A) > 0$ and $\mu(X - A) > 0$). Then for each n there is a set $A_n \in \Sigma$ with $\phi^{-n} A_n = A$. Define $B = X - A$ and $B_n = X - A_n$, so $\phi^{-n} B_n = B$. Take $0 \leq f \in L_1(A)$ with $\int f \, d\mu = 1$ and $0 \leq g \in L_1(B)$ with $\int g \, d\mu = 1$. Then for every $n \geq 0$ we have

$$\|T^n f - T^n g\|_1 \geq |\langle T^n f - T^n g, 1_{A_n} - 1_{B_n} \rangle| = |\langle f - g, 1_{A_n} \circ \phi^n - 1_{B_n} \circ \phi^n \rangle|$$

$$= |\langle f - g, 1_A - 1_B \rangle| = \langle f, 1_A \rangle + \langle g, 1_B \rangle = 2.$$

This means that for every n the norm one positive functions $T^n f$ and $T^n g$ have disjoint supports, contradicting the assumption that T overlaps supports.

Remark. In the case where ϕ has an invariant probability equivalent to μ, the theorem was proved by Bartoszek and Brown [BBr]. Zaharopol [Z] proved it when ϕ has an invariant probability absolutely continuous with respect to μ, using the result of [BBr]. Our proof (including the result from [L]) is much simpler.

In order to construct examples of non-singular exact transformations which have only an infinite σ-finite invariant measure, or no invariant measure at all, we use the following result of Jamison and Orey [JO]: Let P
be a transition probability with \(\mu P \ll \mu \), and let \(\mathbf{P}_\mu \) be the probability of the Markov chain on the space of (one-sided) trajectories with initial measure \(\mu \). The operator \(T \) induced by (the pre-dual of) \(P \) in \(L_1(\mu) \) is completely mixing if and only if the one-sided Markov shift is exact (see [ALW] for a measure-theoretic proof). Thus, Markov shifts of aperiodic null-recurrent Markov matrices are exact with an infinite invariant measure. If we take \(\tau \) non-singular on \((S, \mathcal{A}, m)\) without any \(\sigma \)-finite invariant measure (a type III transformation) and define \(P(x, \cdot) = \frac{1}{2}(\delta_x + \delta_{\tau x}) \), then \(\|P^n(I - P)\| \to 0 \), and the \(L_1(\mu) \) pre-dual is completely mixing, without any invariant measure. Hence its one-sided Markov shift is exact and has no invariant measure.

Proposition. Let \(T \) be a Harris recurrent contraction of \(L_1(\mu) \). Then \(T \) is completely mixing if (and only if) it overlaps supports.

Proof. By the Jamison–Orey theorem (see e.g. [OS]), \(T \) is completely mixing if (and only if) it is aperiodic. When \(T \) overlaps supports, there cannot be a periodic set, so \(T \) is aperiodic.

Remark. In [BB] and [R], the proposition was proved under the assumption that \(T \) has a fixed point in \(L_1 \) (the positive recurrent case).

Theorem 2. Let \(T \) be a positive contraction of \(L_1(\mu) \) which preserves integrals. Then \(T \) is asymptotically stable if and only if it satisfies the following three conditions:

1. \(T \) is mean ergodic (i.e., \(n^{-1} \sum_{k=1}^n T^k f \) converges for every \(f \in L_1 \)).
2. \(T \) overlaps supports.
3. For every \(f \in L_1(\mu) \) with \(\int f \, d\mu = 0 \) there is a subsequence such that \(\{T^k f\} \) converges strongly.

Proof. The necessity of the three conditions is obvious.

Assume \(T \) satisfies the three conditions. Let \(C \) and \(D \) be the conservative and dissipative parts of \(T \). By Helmberg’s condition [K, p. 175], the mean ergodicity of \(T \) yields that \(\mu(C) > 0 \). \(T \) has an \(L_1 \) fixed point \(f_C \) which is supported on \(C \), and \(T^n 1_D \downarrow 0 \) a.e. Denote by \(T_C \) the restriction of \(T \) to the invariant subspace \(L_1(C) \). Then \(T_C \) has a strictly positive fixed point (on \(C \)), and obviously overlaps supports by (2). By Proposition 1 of [BB], \(\{T^n f\} \) converges weakly in \(L_1(C) \) for every \(f \in L_1(C) \). Condition (3) yields the strong convergence for \(f \in L_1(C) \) with \(\int f \, d\mu = 0 \). But \(T_C \) is ergodic since it overlaps supports, so we have asymptotic stability of \(T_C \), i.e., \(\{T^n f\} \) converges strongly to \(\{\int f \, d\mu/\int f \, d\mu\} f_C \) for every \(f \in L_1(C) \).

It remains to prove the convergence when \(f \in L_1(D) \), and we may assume \(f \geq 0 \). Fix \(\varepsilon > 0 \). Since \(\int_D T^n f \, d\mu = \int_X f \cdot T^n 1_D \, d\mu \to 0 \) by Lebesgue’s theorem, there is a \(j > 0 \) with \(\|1_D T^j f\| \ll \varepsilon \). Set \(g = 1_D T^j f \) and \(h = 1_CT^j f \). Then \(\|T^n g - T^{n+j} g\| \ll \|T^n h - T^{n+j} h\| + 2\varepsilon \) shows that \(\{T^n f\} \) is a Cauchy sequence in \(L_1 \), since \(\{T^n h\} \) is, by the first part. Because \(T \)
preserves integrals and its restriction to $L_1(C)$ is ergodic, $\{T^n f\}$ converges to the correct limit.

Remarks. 1. Asymptotic stability was proved in [B] with the additional assumption that $\mu(D) = 0$ (which is not necessary [Z]). This is equivalently stated there with condition (1) replaced by the assumption that T has a strictly positive integrable fixed point.

2. Any two of the three conditions in Theorem 2 are not sufficient for asymptotic stability: (2) and (3) hold for completely mixing T with no invariant measure; the example of [AkBo] mentioned in [Z] is not completely mixing though it satisfies (1) and (2); T induced by a cyclic permutation of a finite set is periodic and satisfies (1) and (3).

Corollary. T is asymptotically stable if and only if T is almost periodic ($\{T^n f\}$ is conditionally compact for every $f \in L_1$) and overlaps supports.

Proof. Almost periodicity implies conditions (1) and (3) of Theorem 2.

Theorem 3. Let G be a compact group with normalized Haar measure μ, and let ν be a regular probability on G. The convolution operator $T f(x) = \int f(xy) \, d\nu(y)$, defined in $L_1(G, \mu)$, is asymptotically stable if (and only if) it overlaps supports.

Proof. $T^n f = \int f(xy) \, d\nu^{(n)}(y)$ (with $\nu^{(n)}$ the nth convolution power of ν), so $\{T^n f\}$ is in the closed convex hull of the translation orbit $\{T_y f : y \in G\}$. This orbit is compact in L_1 by the continuity of the representation in L_1, and by the Banach–Mazur theorem also its closed convex hull is compact. Hence T is almost periodic, and when it overlaps supports it is asymptotically stable by the previous Corollary (or by [B]).

For the next result, we need the following concept from [KL]: For a positive contraction T of L_1, define $\Sigma_t(T) = \{A \in \Sigma : \text{for each } n \text{ there is } 0 \leq f_n \leq 1 \text{ with } T^{*n} f_n = 1_A\}$. It was proved in [KL] that if T is non-disappearing (i.e., $T^* 1_A = 0$ a.e. implies $1_A = 0$ a.e.), then $\Sigma_t(T)$ is a σ-algebra (called the tail or asymptotic σ-algebra), and for $A \in \Sigma_t(T)$ the f_n in the above definition are uniquely defined characteristic functions.

The proof of Theorem 1 shows in fact that if T is non-disappearing and overlaps supports, then $\Sigma_t(T)$ is trivial mod μ.

Theorem 4. Let T be a positive contraction of $L_1(\mu)$ which preserves integrals, with μ invariant for T. Then T is completely mixing if and only if it satisfies the following two conditions:

1. T overlaps supports.

2. For every $f \in L_1(\mu)$ with $\int f \, d\mu = 0$ there is a subsequence such that $\{T^{k_n} f\}$ converges strongly.
Proof. The necessity is clear, so we assume that both conditions hold. If μ is finite, then T is mean ergodic, and Theorem 2 yields asymptotic stability. Hence we assume that μ is infinite. Support overlapping implies that either $\mu(C) = 0$ or $\mu(D) = 0$ (since both sets are absorbing [K, p. 131]). If $\mu(C) = 0$, we have $T^nf \to 0$ a.e. for any $f \in L^1$ (by dissipativity), so when $\int f \, d\mu = 0$ condition (2) yields $\|T^{kj}f\|_1 \to 0$, so $\|T^n f\|_1 \to 0$ since T is a contraction.

We now consider the conservative case. Since μ is invariant, T is non-disappearing, and support overlapping implies that the tail σ-algebra $\Sigma_t(T)$ is trivial mod μ. Theorem 2.1 of [KL] and the discussion on p. 68 there show that the isometric part of T in $L^2(\mu)$ is trivial, and therefore also the automorphic part is trivial. By [F, p. 85] we deduce that $T^n f \to 0$ weakly in L^2 for every $f \in L^2(\mu)$. If $f \in L^1 \cap L^2$ with $\int f \, d\mu = 0$, then the weak convergence to 0 in L^2 and the strong convergence in L^1 of $\{T^{kj}f\}$ imply that the L^1 limit is zero, and therefore $\|T^n f\|_1 \to 0$. By standard approximation we conclude that T is completely mixing.

Remark. The proof shows in fact the infinite measure analogue of Proposition 1 of [BBr]: If μ is an infinite invariant measure for T and T overlaps supports, then $T^n f \to 0$ weakly in L^2 for every $f \in L^2(\mu)$.

Theorem 5. Let G be a locally compact σ-compact Abelian group with Haar measure μ, and let ν be a regular probability on G. The convolution operator $Tf(x) = \int f(xy) \, d\nu(y)$, defined in $L_1(G, \mu)$, is completely mixing if (and only if) it overlaps supports.

Proof. For a convolution operator T, its dual T^* is the convolution with the reflected probability $\check{\nu}(A) := \nu(A^{-1})$. The characterization of $\Sigma_t(T)$ which follows from Theorems 2.1 and 3.2 of [KL] yields $\Sigma_t(T) = \Sigma_t(T^*)$. If T overlaps supports, then $\Sigma_t(T)$ is trivial mod μ, and Theorem 3.2 of [KL] yields its complete mixing.

Remark. When G is LCA non-compact, the Markov shifts of completely mixing convolution operators will be exact with infinite invariant measure.

Acknowledgements. I am grateful to Radu Zaharopol for sending me a preprint of [Z].

REFERENCES

Ben-Gurion University of the Negev
Beer-Sheva, Israel
E-mail: lin@math.bgu.ac.il

Received 22 September 1999 (3836)