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Abstract. The orbit equivalence of type III0 ergodic equivalence relations is con-
sidered. We show that it is equivalent to the outer conjugacy problem for the natural
trace-scaling action of a countable dense R-subgroup by automorphisms of the Radon–
Nikodym skew product extensions of these relations. A similar result holds for the weak
equivalence of arbitrary type III0 cocycles with values in Abelian groups.

0. Introduction. In 1973 M. Takesaki made enormous progress in un-
derstanding the structure and classification of von Neumann algebras. He
demonstrated that every type III factor is isomorphic to the cross product of
a type II∞ von Neumann algebra by an R-action scaling the canonical trace
[Ta]. This result proved to be extremely important not only for classifica-
tion of von Neumann algebras but also for the orbit equivalence of measured
nonsingular actions (for a detailed discussion on the interplay between er-
godic theory and operator algebras we refer to the surveys [Mo] and [Sc2]).
Our objective here is to find a measure theoretical analogue of the Takesaki
theorem.

Given a type III0 ergodic countable transformation group Γ acting on
a standard probability space (X,BX , µ), we consider the skew product ex-

tension Γ̃ = {γ̃}γ∈Γ of Γ acting on the product space X × R as

γ̃(x, y) =

(
γx, y + log

dµ ◦ γ
dµ

(x)

)
.

If we furnish R with the measure λ, dλ(t) = exp(−t)dt, then Γ̃ is infinite
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measure preserving. Since the natural R-action V = {V (t)}t∈R on X × R
by translations along the second coordinate commutes with Γ̃ , it induces an
R-action on the space of Γ̃ -ergodic components. This new action is called
the associated flow of Γ . Notice that Γ̃ and V are analogues of the type
II∞ von Neumann algebra and the R-action scaling the trace respectively in
the Takesaki structure theorem. The associated flow is then the restriction
of the flow of weights for the cross product to the center of the type II∞
subalgebra.

Let R0 be a countable dense subgroup of R.

Theorem 0.1. Let Γ1, Γ2 be two transformation groups as above acting
on standard probability spaces (X1,BX1

, µ1) and (X2,BX2
, µ2) respectively.

Then the following are equivalent :

(i) Γ1 and Γ2 are orbit equivalent ,
(ii) there is a measure space isomorphism θ : X1×R→ X2×R such that

θ(Γ̃1z) = Γ̃2θ(z) and θ(V1(t)z) ∈ Γ̃2V2(t)θ(z) for a.e. z ∈ X1 × R and each
t ∈ R0.

We remark that the implication (i)⇒(ii) is trivial and the condition (ii)
implies

(iii) the associated flows of Γ1 and Γ2 are conjugate.

In general, the implication (iii)⇒(i) does not hold. To see this, take for
instance Γ1 amenable and set Γ2 := Γ1 × Γ3, where Γ3 is a Bernoullian—
finite measure preserving—action of a nonamenable group. However, if Γ1

and Γ2 are both amenable then by the Krieger theorem [Kr], (iii)⇔(i) and
Theorem 0.1 follows. Hence our result can be regarded as a step toward
extending Krieger’s theorem to the nonamenable case via the ideas embodied
in Takesaki’s theorem.

We also remark that Theorem 0.1 is only a partial analogue of Take-
saki’s theorem since—at this stage—we are unable to settle the following
conjecture:

Γ is orbit equivalent to the action generated by Γ̃ and V (R0).

Clearly, it is true in the amenable case by the Krieger theorem.
Theorem 0.1 can be generalized naturally to the general setup of cocycles

with values in locally compact Abelian groups. We find it more convenient
to use orbital concepts like equivalence relation, orbital cocycle, etc. instead
of their dynamical counterparts: action, dynamical cocycle, etc. respectively.
Let G be a locally compact second countable Abelian group and G0 ⊂ G a
countable dense subgroup.

Theorem 0.2. Let Ri be an ergodic discrete equivalence relation of in-
finite type on a standard probability space (Xi,Bi, µi) and αi : Ri → G a
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recurrent cocycle with r(αi) = {0,∞}, i = 1, 2. Denote by Ri(αi) the αi-
skew product extension of Ri and by Fi the equivalence relation on Xi ×G
generated by Ri(αi) and the G0-action by translations along the second co-
ordinate. Then the pairs (R1, α1) and (R2, α2) are weakly equivalent if and
only if there exists a measure space isomorphism θ : X1×G→ X2×G such
that the following are satisfied :

(a) (θ × θ)F1 = F2 mod 0,

(b) (θ × θ)(R1(α1)) = R2(α2) mod 0,

(c) the F1-cocycles α1 ⊗ 1 and (α2 ⊗ 1) ◦ θ are cohomologous.

We refer the reader to §1 for the definition of the weak equivalence and to
§2 (just before the proof of Theorem 2) for the definition of αi⊗1. Note that
Ri(αi) need not be of type II∞. Hence to make the analogy with Takesaki’s
theorem more apparent one needs to replace αi by the double cocycle αi⊗%µi

with values in G×R, where %µi
is the Radon–Nikodym cocycle of Ri. Then

Ri(αi ⊗ %µi) is of type II∞. The hypotheses of Theorem 0.2 hold for the
double cocycles. For Ri hyperfinite, Theorem 0.2 (with the double cocycles)
follows from [BG], where an appropriate extension of Krieger’s theorem was
proved.

Originally the second named author proved Theorem 0.1. After reading
his manuscript the first named author wrote a different (shorter) proof. It
works in the general case (Theorem 0.2) and appears here.

1. Preliminaries. Let R be a discrete (countable) Borel equivalence
relation on a standard measure space (X,B, µ) (see [FM]). R is called non-
singular if the R-saturation of every µ-null subset is also µ-null. It is ergodic
if every R-saturated subset is either µ-null or µ-conull. It is well known that
every µ-nonsingular (ergodic) countable equivalence relation is generated by
a nonsingular (ergodic) action of a countable transformation group [FM]. R
is hyperfinite if it is generated by a single transformation (i.e. by a Z-action).
We denote the trivial—diagonal—equivalence relation by D.

A Borel map α : R → G is a cocycle of R if there is a µ-conull subset
A ⊂ X with

α(x, y) + α(y, z) = α(x, z)

for all x, y, z∈A with z ∼R y ∼R z. Let Kerα := {(x, y)∈R | α(x, y) = 0}.
It is easy to see that Kerα is a subrelation of R. Let Γ be a countable trans-
formation group generating R. The Radon–Nikodym cocycle %µ : R → R
of R is given by

%µ(x, γx) := log
dµ ◦ γ
dµ

(x), x ∈ X, γ ∈ Γ.
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Two cocycles α, β : R → G are cohomologous if there are a Borel map
φ : X → G and a µ-conull subset A with

α(x, y) = −φ(x) + β(x, y) + φ(y)

for all (x, y) ∈ R ∩ (A×A). We denote this by α ≈φ β.
An element g of the one-point compactification G∗ of G is an essential

value of α if for every neighborhood U of g in G∗ and every pair of subsets
A,B ⊂ X of positive measure, there exists a subset A′ ⊂ A of positive
measure and a measurable map γ : A′ → B such that (x, γx) ∈ R and
α(x, γx) ∈ U for all x ∈ A′. The set of essential values of α is denoted by
r(α). If r(%µ) = {0,∞} then R is of type III0.

We associate with α a nonsingular equivalence relation R(α) on the
product measure space (X ×G,µ× λG) by setting

(x, g) ∼R(α) (x′, g′)⇔ (x, x′) ∈ R and g′ = g + α(x, x′).

Here λG stands for a Haar measure on G. Then α is called transient if
R(α) is of type I, i.e. the corresponding R(α)-orbit partition of X × G is
measurable. Otherwise α is recurrent. If U is a neighborhood of 0 in G such
that α(R ∩ (A × A)) ∩ U = {0} for a µ-conull subset A then α is called
U -lacunary.

Let Ri be a nonsingular equivalence relation on a standard probability
space (Xi,BXi

, µi) and αi : Ri → G a cocycle, i = 1, 2. The pairs (R1, α1)
and (R2, α2) are weakly equivalent if there is a measure space isomorphism
θ : X1 → X2 such that (θ × θ)R1 = R2 mod 0 and α1 is cohomologous to
the cocycle α2 ◦ θ given by

α2 ◦ θ(x, y) = α2(θx, θy), (x, y) ∈ R.
Let Ai ⊂ Xi be a subset of positive measure. Denote by (Ri)Ai

:= Ri ∩
(Ai ×Ai) the induced equivalence relation on (Ai,BXi

�Ai, µ�Ai). It is well
known (see [Sc1], [BG]) that if R1 and R2 are of infinite type (i.e. not of
type II1) and the induced pairs ((R1)A1 , α1) and ((R2)A2 , α2) are weakly
equivalent then (R1, α1) and (R2, α2) are also weakly equivalent.

2. Proofs of the main results. Here we prove Theorem 0.2 and
deduce Theorem 0.1 from it.

Proposition 2.1 (cf. [GS, Proposition 1.2] and [Da2, Proposition 1.6]).
Let R be a hyperfinite ergodic equivalence relation on (X,B, µ) and α :
R → G a cocycle. Then for a neighborhood U of 0 in G, there exists a
cocycle β of R such that β ≈ α, β(R) ⊂ G0 and β(x, y) − α(x, y) ∈ U for
all (x, y) ∈ R.

P r o o f. Since R is hyperfinite, we may assume without loss of generality
that X = (Z/2Z)N, BX is the product Borel structure on X and R is the
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tail equivalence relation on X, i.e. two points x = (xn), y = (yn) of X are
R-equivalent if xn = yn eventually. Let π be the left shift map on X:

π(x1, x2, . . .) = (x2, x3, . . .).

By [Go, §1, Theorem 2] and [Sc1, Theorem 9.1], there is a sequence of Borel
maps an : X → G such that

α(x, y) =

∞∑
n=1

(an(πnx)− an(πny)).

Take a sequence (Un)n≥0 of symmetric neighborhoods of 0 in G such that
Un + Un ⊂ Un−1, U0 + U0 ⊂ U and

⋂
n Un = {0}. There are Borel maps

bn : X → G0 such that bn(x)−an(x) ∈ Un for all x ∈ X. We define a cocycle
β : R → G by setting

β(x, y) :=

∞∑
n=1

(bn(πnx)− bn(πny)).

Clearly, β(R) ⊂ G0. Next, for each N ∈ N we have

N∑
n=1

(bn(πnx)− an(πnx)− bn(πny) + an(πny))

∈
N∑
n=1

(Un − Un) ⊂
N∑
n=1

Un−1 ⊂ U0 + U0 ⊂ U.

Hence α(x, y) − β(x, y) ∈ U for all (x, y) ∈ R. We define a Borel map
φ : X → G by setting φ(x) :=

∑∞
n=1(bn(πnx) − an(πnx)). It is easy to see

that φ is well defined. Clearly, α ≈φ β.

Corollary 2.2. If α is lacunary then there exists a lacunary cocycle β
such that β ≈ α and β(R) ⊂ G0.

Denote by T the orbit equivalence relation for the natural G0-action on
(G,λG) by translations. Clearly, T is ergodic and hyperfinite. Recall the
notation from the statement of Theorem 0.2. The equivalence relation on
(Xi×G,µi×λG) generated by Ri(αi) and D⊗T is denoted by Fi. Clearly,
it is ergodic. The cocycle αi ⊗ 1 of Fi is defined by

αi ⊗ 1((x, g), (x′, g′)) := αi(x, x
′).

Proof of Theorem 0.2. The “only if” part is obvious. In what follows we
prove the converse.

Since r(αi) = {0,∞}, it follows from [Sc, Theorem 7.22] that there are:

• a measure space projection πi of (Xi,BXi
, µi) onto a standard prob-

ability space (Yi,BYi , νi),
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• an (ergodic) νi-nonsingular equivalence relation Qi on Yi such that
(πi × πi)Ri = Qi mod 0,

• a transient lacunary cocycle βi : Qi → G such that the cocycle α̃i :=
βi ◦ πi is cohomologous to αi.

Since βi is transient, Kerβi is a type I subrelation of Qi. Passing, if neces-
sary, to the (Kerβi)-ergodic decomposition we may assume without loss of
generality that Kerβi is trivial. Since βi is transient and G is Abelian, Q is
hyperfinite by [FHM, Corollary 7.11]. Hence we may apply Corollary 2.2 to
the pair (Q, β).

Let Si := Ker α̃i. Since α̃i is cohomologous to αi, it is also recurrent.
Hence Si is conservative, i.e. the corresponding conditional measures on
the Si-ergodic components are nonatomic. Therefore these components are
isomorphic as measure spaces to a standard probability space (Zi,BZi

, κi)
with κi nonatomic.

Summarizing the above we may assume that the following are satisfied:

(1) (Xi, µi) = (Zi × Yi, κi × νi).
(2) πi(zi, yi) = yi for all (zi, yi) ∈ Xi.

(3) πi is the Si-ergodic decomposition of Xi.

(4) There is a neighborhood U of 0 in G such that βi is U -lacunary.

(5) βi(Q) ⊂ G0.

Next we notice that the properties (a)–(c) hold if we replace αi by α̃i,
i = 1, 2. Hence by (c) there is a measurable map φ : X1 ×G→ G such that

(2-1) (α̃2 ⊗ 1) ◦ θ ≈φ α̃1 ⊗ 1.

Let V be a neighborhood of 0 in G with V − V ⊂ U . Take a Borel subset
A1 ⊂ X1×G of positive measure and an element g ∈ G with φ(A1) ⊂ g+V .
Then it follows from (2-1) that

(2-2) (α̃2 ⊗ 1) ◦ θ − α̃1 ⊗ 1 ∈ U everywhere on (F1)A1 .

Since Ker(α̃i ⊗ 1) = Si ⊗ T by (4), we deduce from (a) and (2-2) that

(2-3) (θ × θ)((S1 ⊗ T )A1
) = (S2 ⊗ T )A2

,

where A2 := θA1. The property (b) with α̃i instead of αi yields

(2-4) (θ × θ)((R1(α̃1))A1) = (R2(α̃2))A2 .

Since (Si ⊗ Ti) ∩Ri(α̃i) = Si ⊗D, we deduce from (2-3) and (2-4) that

(θ × θ)((S1 ⊗D)A1
) = (S2 ⊗D)A2

.

Hence θ intertwines (S1⊗D)A1
-ergodic components with (S2⊗D)A2

-ergodic
components. We set Bi := {(yi, g) ∈ Yi ×G | κ({zi | (zi, yi, g) ∈ Ai}) > 0},
i = 1, 2. Then there is a measure space isomorphism ϑ : B1 → B2 such that
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the diagram

(2-5)

A1 A2

B1 B2

πY1×G

��

θ //

πY2×G

��
ϑ

//

commutes, where πYi×G is the natural projection onto Yi ×G, i = 1, 2. Of
course,

(πYi×G × πYi×G)(Si ⊗ T ) = D ⊗ T .
Then it follows from (2-3) and (2-5) that

(ϑ× ϑ)((D ⊗ T )B1) = (D ⊗ T )B2 .

Hence ϑ intertwines (D⊗T )B1
-ergodic components with (D⊗T )B2

-ergodic
components. We set Ci := {g ∈ Yi | λG({g ∈ G | (y, g) ∈ Ai}) > 0}. It is
easy to see that the natural projection πYi

: Bi 3 (y, g) 7→ y ∈ Ci is just
the (D ⊗ T )Bi

-ergodic decomposition. Hence there exists a measure space
isomorphism ψ : C1 → C2 such that the diagram

(2-6)

B1 B2

C1 C2

πY1

��

ϑ //

πY2

��
ψ

//

commutes. We deduce from (2-5) and (2-6) that θ has the following form:

(2-7) θ(z, y, t) = (ζy,t(z), ψ(y), τy(t)) for a.e. (z, y, t) ∈ A1,

where (ζy,t)(y,t)∈B1
and (τy)y∈C1

are measurable fields of measure space
isomorphisms between the corresponding fibers of A1 and A2. Without loss
of generality we may assume that (2-7) holds everywhere on A1. Take g0 ∈ G
in such a way that the subset E1 := {(z1, y1) ∈ X1 | (z1, y1, g0) ∈ A1} is of
positive measure and define a map η : E1 → η(E1) ⊂ X2 by setting

η(z1, y1) := (ζy1,g0(z1), ψ(y1)).

Clearly, η : E1 → E2 is a nonsingular isomorphism, where E2 := η(E1). We
claim that (η × η)((R1)E1

) = (R2)E2
. Actually, for (z, y) and (z′, y′) from

E1, we have

(z, y) ∼R1
(z′, y′)⇔ (z, y, g0) ∼R1(α̃1) (z′, y′, g0 + β(y, y′))

(5)⇔ (z, y, g0) ∼F1 (z′, y′, g0)

⇔ θ(z, y, g0) ∼F2 θ(z
′, y′, g0)

⇔ η(z, y) ∼R2 η(z′, y′)
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as desired. Moreover,

α̃2 ◦ η((z, y), (z′, y′))

= (α̃2 ⊗ 1) ◦ θ((z, y, t0), (z′, y′, t0))

(2-1)
= −φ(z, y, t0) + (α̃1 ⊗ 1)((z, y, t0), (z′, y′, t0)) + φ(z′, y′, t0)

= −φ0(z, y) + α̃1((z, y), (z′, y′)) + φ0(z′, y′),

where φ0(z, y) := φ(z, y, t0). Thus the pairs ((R1)E1 , α̃1) and ((R2)E2 , α̃2)
are weakly equivalent. Since R1 and R2 are both of infinite type, the pairs
(R1, α̃1) and (R2, α̃2) are also weakly equivalent.

Proof of Theorem 0.1. Let Ri be the orbit equivalence for Γi, G := R,
G0 := R0 and αi := %µi . It is obvious that then Γ1 and Γ2 are orbit equiva-
lent iff the pairs (R1, α1) and (R2, α2) are weakly equivalent. Since Ri is of
type III0, we have r(αi) = {0,∞}. It is well known that the Radon–Nikodym
cocycle of an ergodic equivalence relation is never transient [Sc2]. Moreover,
%µi
⊗ 1 is just the Radon–Nikodym cocycle for Fi—recall that we furnish

X×G with the product measure µ×λR. Hence (c) follows immediately from
(a). Notice that the condition (ii) of Theorem 0.1 is equivalent to (a) plus
(b). Therefore Theorem 0.1 follows from Theorem 0.2.
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