A \mathbb{Z}^{d} GENERALIZATION OF THE DAVENPORT-ERDŐS CONSTRUCTION OF NORMAL NUMBERS
BY
MORDECHAY B. LEVIN (RAMAT-GAN) AND MEIR SMORODINSKY (TEL-AVIV)
Dedicated to the memory of the late Anzelm Iwanik, a friend and fellow mathematician

Abstract

We extend the Davenport and Erdős construction of normal numbers to the \mathbb{Z}^{d} case.

1. Introduction. A number $\alpha \in(0,1)$ is said to be normal to the base b if in the b-ary expansion of $\alpha, \alpha=. d_{1} d_{2} \ldots\left(d_{i} \in\{0,1, \ldots, b-1\}\right.$, $i=1,2, \ldots$), each fixed finite block of digits of length k appears with an asymptotic frequency of b^{-k} along the sequence $\left(d_{i}\right)_{i \geq 1}$. Normal numbers were introduced by Borel $[B]$. Champernowne $[C]$ gave an explicit construction of such a number, namely

$$
\theta=.123456789101112 \ldots
$$

obtained by successively concatenating all the natural numbers written to base 10 .

Let $\varphi(x)=\alpha x^{r}+\alpha_{1} x^{r-1}+\ldots+\alpha_{r-1} x+\alpha_{r}(\alpha>0, r \geq 1)$ be a polynomial with integer coefficients such that $\varphi(n) \geq 0(n=1,2, \ldots)$. Davenport and Erdős [DE] generalized Champernowne's construction and proved that the number

$$
. \varphi(1) \varphi(2) \ldots \varphi(n) \ldots
$$

obtained by successively concatenating the b-expansions of the numbers $\varphi(n)$ $(n=1,2, \ldots)$ is also normal. We refer the reader to other generalizations of Champernowne's construction which appear in [AKS] and [SW].

In [LeSm] we extend Champernowne's construction to $\mathbb{Z}^{d}, d>1$, arrays of random variables, which we shall call \mathbb{Z}^{d}-processes. We shall deal with stationary \mathbb{Z}^{d}-processes, that is, processes with distribution invariant

[^0]Work supported in part by the Israel Science Foundation Grant No. 366-172.
under the \mathbb{Z}^{d} action. We shall call a specific realization of a \mathbb{Z}^{d}-process a "configuration".

In this note we generalize the Davenport and Erdős construction to the \mathbb{Z}^{d} case. For the sake of clarity, we carry out the proof only for the case $d=2$. The generalization for general $d>2$ is easy and straightforward. We begin with a very simple generalization (see also [Ci] and $[\mathrm{KT}]$).

We denote by \mathbb{N} the set of non-negative integers. Let $d, b \geq 2$ be two integers, $\mathbb{N}^{d}=\left\{\left(n_{1}, \ldots, n_{d}\right) \mid n_{i} \in \mathbb{N}, i=1, \ldots, d\right\}, \Delta_{b}=\{0,1, \ldots, b-1\}$, $\Omega=\Delta_{b}^{\mathbb{N}^{d}}$.

We shall call $\omega \in \Omega$ a configuration (lattice configuration). A configuration is thus a function $\omega: \mathbb{N}^{d} \rightarrow \Delta_{b}$.

Given a subset F of $\mathbb{N}^{d}, \omega_{F}$ will be the restriction of the function ω to F. Let $\mathbf{N} \in \mathbb{N}^{d}, \mathbf{N}=\left(N_{1}, \ldots, N_{d}\right)$. We denote a rectangular block by

$$
F_{\mathbf{N}}=\left\{\left(f_{1}, \ldots, f_{d}\right) \in \mathbb{N}^{d} \mid 0 \leq f_{i}<N_{i}, i=1, \ldots, d\right\}
$$

$\mathbf{h}=\left(h_{1}, \ldots, h_{d}\right), h_{i} \geq 1, i=1, \ldots, d ; G=G_{\mathbf{h}}$ is a fixed block of digits $G=\left(g_{\mathbf{i}}\right)_{\mathbf{i} \in F_{\mathbf{h}}}, g_{\mathbf{i}} \in \Delta_{b}, \chi_{\omega, G}(\mathbf{f})$ is the characteristic function of the block of digits G shifted by the vector \mathbf{f} in the configuration ω :

$$
\chi_{\omega, G}(\mathbf{f})= \begin{cases}1 & \text { if } \omega(\mathbf{f}+\mathbf{i})=g_{\mathbf{i}}, \forall \mathbf{i} \in F_{\mathbf{h}} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Definition. $\omega \in \Omega$ is said to be rectangular normal if for any $\mathbf{h} \in \mathbb{N}^{d}$ and block $G_{\mathbf{h}}$,

$$
\begin{equation*}
\#\left\{\mathbf{f} \in F_{\mathbf{N}} \mid \chi_{\omega, G}(\mathbf{f})=1\right\}-b^{-h_{1} \ldots h_{d}} N_{1} \ldots N_{d}=o\left(N_{1} \ldots N_{d}\right) \tag{2}
\end{equation*}
$$

as $\max \left(N_{1}, \ldots, N_{d}\right) \rightarrow \infty$.
As remarked, in what follows we shall consider the case $d=2$.
Construction. The map

$$
L\left(f_{1}, f_{2}\right)= \begin{cases}f_{1}^{2}+f_{2} & \text { if } f_{2}<f_{1} \tag{3}\\ f_{2}^{2}+2 f_{2}-f_{1} & \text { if } f_{2} \geq f_{1}\end{cases}
$$

is a bijection between \mathbb{N} and \mathbb{N}^{2}, inducing a total order on \mathbb{N}^{2} from the usual one on \mathbb{N}. Let $I_{n}=\left[\alpha^{-1 /(2 r)} b^{2 n^{2} / r}\right], n=1,2, \ldots$ We define the configuration ω_{n} on $F_{\left(2 n I_{n}, 2 n I_{n}\right)}$ as the concatenation of $I_{n}^{2} 2 n \times 2 n$ blocks of digits with the lower left corner $(2 n x, 2 n y), 0 \leq x, y<I_{n}$. To each of these blocks we assign the number $\varphi(L(x, y))$. Next we use the b-expansion of $\varphi(L(x, y))$ according to the order L to obtain the digits of the $2 n \times 2 n$ block considered. It is easy to obtain an analytic expression for the digits of the configuration ω_{n} :

$$
\begin{equation*}
\omega_{n}(2 n x+s, 2 n y+t)=a_{L(s, t)}(u) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
u=u(x, y)=\varphi(L(x, y)) \tag{5}
\end{equation*}
$$

s, t, x, y are integers, $0 \leq x, y<I_{n}, 0 \leq s, t<2 n$, and

$$
\begin{equation*}
n=\sum_{i \geq 0} a_{i}(n) b^{i} \tag{6}
\end{equation*}
$$

is the b-expansion of the integer n.
Next we define inductively a sequence of increasing configurations ω_{n} on $F_{\left(2 n I_{n}, 2 n I_{n}\right)}$. Put $\omega_{1}^{\prime}=\omega_{1}, \omega_{n+1}^{\prime}(\mathbf{f})=\omega_{n}^{\prime}(\mathbf{f})$ for $\mathbf{f} \in F_{\left(2 n I_{n}, 2 n I_{n}\right)}$ and $\omega_{n+1}^{\prime}(\mathbf{f})=\omega_{n+1}(\mathbf{f})$ otherwise. Put
(7) $\quad \omega_{\infty}=\lim \omega_{n}^{\prime}, \quad\left(\omega_{\infty}\right)_{F_{\left(2 n I_{n}, 2 n I_{n}\right)}}=\omega_{n}^{\prime}, \quad n=1,2, \ldots$

Theorem. ω_{∞} is rectangular normal.
The proof of the Theorem is given in Section 3.
2. Auxiliary notation and results. Let $\left(u_{x}\right)_{x \geq 0}$ be an arbitrary sequence in $[0,1)$. The quantity

$$
\begin{equation*}
D(N)=D\left(\left(u_{x}\right)_{x=0}^{N-1}\right)=\sup _{\gamma \in(0,1]}\left|\frac{1}{N} \#\left\{0 \leq n \leq N-1 \mid u_{x} \in[0, \gamma)\right\}-\gamma\right| \tag{8}
\end{equation*}
$$

is called the discrepancy of $\left(u_{x}\right)_{x=0}^{N-1}$. The sequence $\left(u_{x}\right)_{x \geq 0}$ is said to be uniformly distributed in $[0,1)$ if $D(N) \rightarrow 0$.

To estimate the discrepancy we use the Erdős-Turán inequality (see, for example, [DrTi], p. 15)

$$
\begin{equation*}
N D(N) \leq \frac{3}{2}\left(\frac{2 N}{H+1}+\sum_{0<|m| \leq H} \frac{\left|\sum_{x=0}^{N-1} e\left(m u_{x}\right)\right|}{\bar{m}}\right) \tag{9}
\end{equation*}
$$

where $e(y)=e^{2 \pi i y}, \bar{m}=\max (1,|m|)$ and $H \geq 1$ is arbitrary.
We shall use the following Weyl inequality (see, for example, [DrTi], p. 15):

$$
\begin{equation*}
\left|\sum_{x=1}^{L} e(\psi(x))\right| \leq C(\theta) L^{1+\theta}\left(q^{-1}+L^{-1}+q L^{-k}\right)^{2^{1-k}} \tag{10}
\end{equation*}
$$

where $\psi(x)=\beta x^{k}+\beta_{1} x^{k-1}+\ldots+\beta_{k-1} x+\beta_{k},|\beta-p / q|<1 / q^{2},(p, q)=1$ and $\theta>0$ is arbitrary.
3. Proof of the Theorem. Consider the configuration ω_{n}, where n satisfies the following inequality:

$$
2(n-1) I_{n-1} \leq \max \left(N_{1}, N_{2}\right)<2 n I_{n}
$$

Let $h_{1}, h_{2} \geq 1$ be integers and

$$
d_{i_{1}, i_{2}} \in\{0,1, \ldots, b-1\}, \quad 0 \leq i_{1}<h_{1}, 0 \leq i_{2}<h_{2} .
$$

We consider the block of digits $G=\left(d_{i_{1}, i_{2}}\right)_{0 \leq i_{1}<h_{1}, 0 \leq i_{2}<h_{2}}$, the configuration ω_{n}, and the block of digits $\omega_{0}=\left(\omega_{n}(i, j)\right)_{0 \leq i<N_{1}, 0 \leq j<N_{2}}$.

To compute the number of appearances of the block G in the configuration ω_{0}, we introduce the following notation (see (1)):

$$
\begin{align*}
V_{n, G}\left(L_{1}, M_{1} ;\right. & \left.L_{2}, M_{2}\right) \tag{11}\\
& =\bigcup_{(i, j) \in\left[L_{1}, L_{1}+M_{1}\right) \times\left[L_{2}, L_{2}+M_{2}\right)}\left\{(i, j) \mid \chi_{\omega_{n}, G}(i, j)=1\right\},
\end{align*}
$$

$$
\begin{equation*}
V_{n, G}\left(N_{1}, N_{2}\right)=V_{n, G}\left(0, N_{1} ; 0, N_{2}\right) . \tag{12}
\end{equation*}
$$

Let
(13) $\quad N_{1}=2 n N_{11}+N_{12}, \quad N_{2}=2 n N_{21}+N_{22}, \quad$ with $N_{12}, N_{22} \in[0,2 n)$.

Next, we fix $s, t \in[0,2 n)$, and compute the number of appearances of G in the configuration $\omega_{0}=\left(\omega_{n}(i, j)\right)_{0 \leq i<N_{1}, 0 \leq j<N_{2}}$ such that the shift of the block G by the vector (i, j) satisfies $i \equiv s(\bmod 2 n), j \equiv t(\bmod 2 n)$. Set

$$
\begin{align*}
A_{s, t, G}\left(M_{1}, M_{2}\right)= & \bigcup_{(i, j) \in\left[0,2 n M_{1}\right) \times\left[0,2 n M_{2}\right)}\left\{(i, j) \mid \chi_{\omega_{n}, G}(i, j)=1\right. \text { and } \tag{14}\\
& i \equiv s, j \equiv t(\bmod 2 n)\} .
\end{align*}
$$

Let $\varepsilon>0$ be arbitrary. To complete the proof of the Theorem it is sufficient to prove that for all $s, t \in[\varepsilon n, 2 n(1-\varepsilon))$,

$$
\left|\# A_{s, t, G}\left(M_{1}, M_{2}\right)-b^{-h_{1} h_{2}} M_{1} M_{2}\right|<\varepsilon M_{1} M_{2}
$$

Observe that
(15) $V_{n, G}\left(N_{1}, N_{2}\right)=V_{n, G}\left(2 n N_{11}, 2 n N_{21}\right) \cup V_{n, G}\left(0,2 n N_{1} ; 2 n N_{21}, N_{22}\right)$

$$
\cup V_{n, G}\left(2 n N_{11}, N_{12} ; 0, N_{2}\right)
$$

and

$$
\begin{align*}
& V_{n, G}\left(2 n N_{11}, 2 n N_{21}\right)=\bigcup_{0 \leq s<2 n} \bigcup_{0 \leq t<2 n} A_{s, t, G}\left(N_{11}, N_{21}\right), \tag{16}\\
& V_{n, G}\left(0,2 n N_{11} ; 2 n N_{21}, N_{22}\right) \\
& \quad=\bigcup_{0 \leq s<2 n} \bigcup_{0 \leq t<N_{22}}\left(A_{s, t, G}\left(N_{11}, N_{21}+1\right) \backslash A_{s, t, G}\left(N_{11}, N_{21}\right)\right) .
\end{align*}
$$

Now let
(18)

$$
v\left(i_{1}, i_{2}\right)=v\left(s, t, i_{1}, i_{2}\right)=L\left(s+i_{1}, t+i_{2}\right) .
$$

Everywhere below $0 \leq s, t<2 n-h_{1} h_{2}$.
Using (4)-(6) we see that the condition
(19) $\quad \omega_{n}\left(2 n x+s+i_{1}, 2 n y+t+i_{2}\right)=d_{i_{1}, i_{2}}, \quad \forall\left(i_{1}, i_{2}\right) \in\left[0, h_{1}\right) \times\left[0, h_{2}\right)$,
is equivalent to the statement

$$
\begin{equation*}
a_{v\left(i_{1}, i_{2}\right)}(u(x, y))=d_{i_{1}, i_{2}}, \quad \forall\left(i_{1}, i_{2}\right) \in\left[0, h_{1}\right) \times\left[0, h_{2}\right) . \tag{20}
\end{equation*}
$$

From (14), (1) and (19), (20) we obtain

$$
\begin{align*}
A_{s, t, G}\left(M_{1},\right. & \left.M_{2}\right) \tag{21}\\
= & \left\{(2 n x+s, 2 n y+t) \in\left[0,2 n M_{1}\right) \times\left[0,2 n M_{2}\right) \mid\right. \\
& \left.a_{v\left(i_{1}, i_{2}\right)}(u(x, y))=d_{i_{1}, i_{2}}, \forall\left(i_{1}, i_{2}\right) \in\left[0, h_{1}\right) \times\left[0, h_{2}\right)\right\} .
\end{align*}
$$

Let $k_{1}, \ldots, k_{h}\left(h=h_{1} h_{2}\right)$ be an increasing sequence of integers from the set
(22) $\left\{v\left(s, t, i_{1}, i_{2}\right)+1 \mid i_{1}=0,1, \ldots, h_{1}-1, i_{2}=0,1, \ldots, h_{2}-1\right\}$,
and $\mu\left(i_{1}, i_{2}\right) \in[1, h]\left(\left(i_{1}, i_{2}\right) \in\left[0, h_{1}\right) \times\left[0, h_{2}\right)\right)$ be a sequence of integers so that
(23) $\quad \mu\left(i_{1}, i_{2}\right)>\mu\left(j_{1}, j_{2}\right) \Leftrightarrow v\left(s, t, i_{1}, i_{2}\right)>v\left(s, t, j_{1}, j_{2}\right)$,
where $i_{\nu}, j_{\nu} \in\left[0, h_{\nu}\right), \nu=1,2$. It is evident that
(24) $\quad k_{\mu\left(i_{1}, i_{2}\right)}=v\left(s, t, i_{1}, i_{2}\right)+1, \quad i_{1}=0,1, \ldots, h_{1}-1, i_{2}=0,1, \ldots, h_{2}-1$.

Now put
(25)

$$
d_{\mu\left(i_{1}, i_{2}\right)}=d_{i_{1}, i_{2}}, \quad i_{1}=0,1, \ldots, h_{1}-1, i_{2}=0,1, \ldots, h_{2}-1
$$

From (21)-(25) we see that

$$
\left.\begin{array}{rl}
A_{s, t, G}\left(M_{1}, M_{2}\right)=\{(2 n x+s, 2 n y+t) & \in\left[0,2 n M_{1}\right) \times\left[0,2 n M_{2}\right) \mid \tag{26}\\
& a_{k_{i}-1}(u(x, y))=d_{i},
\end{array} \forall i \in\left[1, h_{1} h_{2}\right]\right\} .
$$

Lemma 1. Let $M_{1}, M_{2} \in\left[0, I_{n}\right), I_{n}=\left[\alpha^{-1 /(2 r)} b^{2 n^{2} / r}\right], s, t \in[0,2 n-$ $15 h], h=h_{1} h_{2}$. Then

$$
\begin{align*}
\# A_{s, t, G} & \left(M_{1}, M_{2}\right) \tag{27}\\
& =\sum_{x_{2}=0}^{b^{k_{2}-k_{1}-1}-1} \cdots \sum_{x_{h}=0}^{b^{k_{h}-k_{h-1}-1}-1} B_{s t}\left(M_{1}, M_{2}, d\left(x_{2}, \ldots, x_{h}\right)\right),
\end{align*}
$$

where
(28) $B_{s t}\left(M_{1}, M_{2}, d\right)=\#\left\{(x, y) \in\left[0, M_{1}\right) \times\left[0, M_{2}\right) \mid\right.$

$$
\left.\left\{u(x, y) b^{-k_{h}}\right\} \in\left[d / b^{k_{h}-k_{1}+1},(d+1) / b^{k_{h}-k_{1}+1}\right)\right\}
$$

and

$$
\begin{align*}
d & =d\left(x_{2}, \ldots, x_{h}\right) \tag{29}\\
& =d_{1}+x_{2} b+d_{2} b^{k_{2}-k_{1}}+\ldots+x_{h} b^{k_{h-1}-k_{1}+1}+d_{h} b^{k_{h}-k_{1}} .
\end{align*}
$$

Proof. From (6), we see that the condition $a_{k_{i}-1}(u(x, y))=d_{i}, \forall i \in$ $[1, h]$, is equivalent to the statement
$u(x, y)=x_{1}+d_{1} b^{k_{1}-1}+x_{2} b^{k_{1}}+d_{2} b^{k_{2}-1}+\ldots+x_{h} b^{k_{h-1}}+d_{h} b^{k_{h}-1}+x_{h+1} b^{k_{h}}$, with $x_{i} \in\left[0, b^{k_{i}-k_{i-1}-1}\right), k_{0}=0, i=1,2, \ldots, h, x_{h+1} \geq 0$. Using (26) and (29) we get
(30) $A_{s, t, G}\left(M_{1}, M_{2}\right)$

$$
\begin{array}{r}
=\bigcup_{x_{2}=0}^{b^{k_{2}-k_{1}-1}-1} \cdots \bigcup_{x_{h}=0}^{b^{k_{h}-k_{h-1}-1}-1}\left\{(2 n x+s, 2 n y+t) \in\left[0,2 n M_{1}\right) \times\left[0,2 n M_{2}\right) \mid\right. \\
\left.u(x, y)=x_{1}+d\left(x_{2}, \ldots, x_{h}\right) b^{k_{1}-1}+x_{h+1} b^{k_{h}}\right\}
\end{array}
$$

for arbitrary integers $x_{1} \in\left[0, b^{k_{1}-1}\right), x_{h+1} \geq 0$. Bearing in mind that the condition

$$
u(x, y)=x_{1}+d b^{k_{1}-1}+x_{h+1} b^{k_{h}}
$$

is equivalent to the condition

$$
\left\{u(x, y) b^{-k_{h}}\right\} \in\left[\frac{d}{b^{k_{h}-k_{1}+1}}, \frac{d+1}{b^{k_{h}-k_{1}+1}}\right)
$$

we deduce from (30) and (28) that

$$
\begin{aligned}
& A_{s, t, G}\left(M_{1}, M_{2}\right) \\
& =\bigcup_{x_{2}=0}^{b^{k_{2}-k_{1}-1}-1} \cdots \bigcup_{x_{h}=0}^{b^{k_{h}-k_{h-1}-1}-1}\left\{(2 n x+s, 2 n y+t) \in\left[0,2 n M_{1}\right) \times\left[0,2 n M_{2}\right) \mid\right. \\
& \\
& \left.\left\{u(x, y) b^{-k_{h}}\right\} \in\left[d / b^{k_{h}-k_{1}+1},(d+1) / b^{k_{h}-k_{1}+1}\right)\right\} .
\end{aligned}
$$

LEMMA 2. Let $1 \leq M_{2} \leq M_{1} \in\left[b^{\xi 2 n^{2} / r}, I_{n}\right), I_{n}=\left[\alpha^{-1 /(2 r)} b^{2 n^{2} / r}\right], \xi=$ $(1-\varepsilon)^{2}+\varepsilon \in(0,1), s, t \in[\varepsilon n, 2 n(1-\varepsilon)], h=h_{1} h_{2}, n \geq 4 / \varepsilon^{2}, \varepsilon \in(0,1 /(4 r))$ and $0<|m| \leq H=b^{k_{h}-k_{1}+s+t}$. Then
(31) $\quad S(m)=\sum_{y=0}^{M_{2}-1} \sum_{x=0}^{M_{1}-1} e\left(m u(x, y) b^{-k_{h}}\right)=O\left(M_{1} M_{2} H^{-1} b^{-n^{2} \varepsilon^{2} 2^{-2 r-2}}\right)$.

Proof. By (22), (18) and the condition of the lemma, we get
(32) $\quad k_{1}=\max \left(s^{2}+t, t^{2}+t-s\right), \quad k_{1}-s-t>\varepsilon^{2} n^{2} / 2$,
(33) $0 \leq k_{h}-k_{1} \leq 2 s h_{1}+2 t h_{2}+2 h_{1}^{2}+2 h_{2}^{2} \leq 8 n h+4 h^{2}$,

$$
H=O\left(b^{16 n h}\right)
$$

Let

$$
\begin{equation*}
M_{0} \in\left[b^{\xi_{1} 2 n^{2} / r}, I_{n}\right], \quad \xi_{1}=(1-\varepsilon)^{2}+\varepsilon^{2} \tag{34}
\end{equation*}
$$

and

$$
\sigma(y)=\sum_{x=0}^{M_{0}-1} e\left(m \varphi\left(x^{2}+y\right) b^{-k_{h}}\right)
$$

Applying Weyl's inequality (10) with $\theta=\varepsilon^{2} r 2^{-2 r-2}, L=M_{0}, k=2 r$, $\beta=\alpha m b^{-k_{h}}, q=b^{k_{h}} / d$ and $d=\operatorname{gcd}\left(b^{k_{h}}, \alpha m\right)$, where $\alpha>0$ is an integer, we obtain
(35) $|\sigma(y)|$

$$
\leq C\left(\varepsilon^{2} r 2^{-2 r-2}\right) M_{0}^{1+\varepsilon^{2} r 2^{-2 r-2}}\left(b^{-k_{h}} d+M_{0}^{-1}+b^{k_{h}} d^{-1} M_{0}^{-2 r}\right)^{2^{-2 r+1}}
$$

Using the assumption of the lemma, (34), (18), (22) and (32), (33) we get
(36)

$$
\begin{align*}
b^{-k_{h}} d & \leq b^{-k_{h}} \alpha|m| \leq \alpha b^{-k_{h}} H=\alpha b^{-k_{1}+s+t} \\
& =O\left(b^{-k_{1} / 2}\right)=O\left(b^{-\varepsilon^{2} n^{2} / 2}\right), \\
M_{0}^{-1} & \leq b^{-2\left((1-\varepsilon)^{2}+\varepsilon^{2}\right) n^{2} / r}<b^{-n^{2} / r}, \tag{37}\\
b^{k_{h}} d^{-1} M_{0}^{-2 r} & \leq b^{\left(k_{h}\right)_{\max }}\left(M_{0}\right)_{\min }^{-2 r} \leq b^{4 n^{2}(1-\varepsilon)^{2}+2 n-2 r\left(\left((1-\varepsilon)^{2}+\varepsilon^{2}\right) 2 n^{2} / r\right)} \\
& =b^{-4 n^{2} \varepsilon^{2}+2 n}=O\left(b^{-2 n^{2} \varepsilon^{2}}\right) .
\end{align*}
$$

Now from (33)-(38) we have

$$
M_{0}^{-1} \sigma(y)=O\left(M_{0}^{\varepsilon^{2} r 2^{-2 r-2}} b^{-\varepsilon^{2} n^{2} 2^{-2 r}}\right)=O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-1}}\right)
$$

and
(39)

$$
H M_{0}^{-1} \sigma(y)=O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}\right)
$$

Putting
(40)

$$
\begin{aligned}
& \sigma_{1}=\sum_{x=0}^{M_{2}^{2}-1} e\left(m \varphi(x) b^{-k_{h}}\right) \\
& \sigma_{2}=\sum_{y=0}^{M_{2}-1} \sum_{x=0}^{M_{1}-1} e\left(m \varphi\left(x^{2}+y\right) b^{-k_{h}}\right), \\
& \sigma_{3}=\sum_{x, y=0}^{M_{2}-1} e\left(m \varphi\left(x^{2}+y\right) b^{-k_{h}}\right),
\end{aligned}
$$

and using (5) and (31), we obtain

$$
\begin{equation*}
S(m)-\sigma_{1}=\sum_{y=0}^{M_{2}-1} \sum_{x=M_{2}}^{M_{1}-1} e\left(m u(x, y) b^{-k_{h}}\right)=\sigma_{2}-\sigma_{3} . \tag{43}
\end{equation*}
$$

If $M_{2}<b^{\xi_{1} 2 n^{2} / r}$, we apply (39) with $M_{0}=M_{1}$ for σ_{2}, and the trivial estimate for σ_{1} and σ_{3} :

$$
\begin{align*}
H M_{1}^{-1} M_{2}^{-1} S(m) & =O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}+\left(H M_{1}^{-1} M_{2}^{-1}\right) M_{2}^{2}\right) \tag{44}\\
& =O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}+b^{16 n h+\left(\xi_{1}-\xi\right) 2 n^{2} / r}\right) \\
& =O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}\right) .
\end{align*}
$$

Now let $M_{2} \geq b^{\xi_{1} 2 n^{2} / r}$. We apply (39) with $M_{0}=M_{2}$ for σ_{2} and for σ_{3} :

$$
\begin{equation*}
H M_{1}^{-1} M_{2}^{-1}\left(\left|\sigma_{2}\right|+\left|\sigma_{3}\right|\right)=O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}\right) \tag{45}
\end{equation*}
$$

To estimate the sum σ_{1} we apply Weyl's inequality with $\theta=\varepsilon^{2} r 2^{-2 r-3}$, $L=M_{2}^{2}, k=r, \beta=\alpha m b^{-k_{h}}, q=b^{k_{h}} / d, d=\operatorname{gcd}\left(b^{k_{h}}, \alpha m\right)$, and repeat the calculations (35)-(39):

$$
\begin{equation*}
H M_{1}^{-1} M_{2}^{-1}\left|\sigma_{1}\right|=O\left(b^{-\varepsilon^{2} n^{2} 2^{-2 r-2}}\right) \tag{46}
\end{equation*}
$$

By (44)-(46) the assertion of the lemma follows.
Lemma 3. Under the assumptions of Lemma 2,

$$
\begin{equation*}
D=D\left(\left(\left\{u(x, y) b^{-k_{h}}\right\}\right)_{x=0, y=0}^{M_{1}-1, M_{2}-1}\right)=O\left(b^{k_{1}-k_{h}-s-t}\right) . \tag{47}
\end{equation*}
$$

Proof. We apply Lemma 2, (31), (33) and Erdős-Turán's inequality with $H=b^{k_{h}-k_{1}+s+t}$ to get

$$
\begin{aligned}
D & =O\left(H^{-1}+\left(M_{1} M_{2}\right)^{-1} \sum_{0<|m| \leq H} \frac{|S(m)|}{\bar{m}}\right) \\
& =O\left(H^{-1}\left(1+\frac{1}{s+t+1} \sum_{0<|m| \leq H} \frac{1}{\bar{m}}\right)\right) \\
& =O\left(H^{-1}\left(1+(s+t+1)^{-1} \log H\right)\right) \\
& =O\left(H^{-1}\left(1+(s+t+1)^{-1}\left(k_{h}-k_{1}+s+t\right)\right)\right)=O\left(H^{-1}\right) .
\end{aligned}
$$

Using the definition of discrepancy (8), we get:
Corollary 1. Under the assumptions of Lemma 2,

$$
\begin{equation*}
B_{s t}\left(M_{1}, M_{2}, d\right)=M_{1} M_{2} b^{k_{1}-k_{h}-1}\left(1+O\left(b^{-s-t}\right)\right) \tag{48}
\end{equation*}
$$

where $B_{s t}\left(M_{1}, M_{2}, d\right)$ is defined in (28).
Corollary 2. Under the assumptions of Lemma 2,

$$
\begin{equation*}
\# A_{s, t, G}\left(M_{1}, M_{2}\right)=b^{-h} M_{1} M_{2}+O\left(M_{1} M_{2} b^{-s-t}\right) \tag{49}
\end{equation*}
$$

Proof. This follows from (28), Lemma 1 and Corollary 1.
Lemma 4. Under the assumptions of Lemma 2, let $1 \leq N_{2} \leq N_{1} \in$ $\left[2 n b^{\xi 2 n^{2} / r}, 2 n I_{n}\right)$. Then
$\# V_{n, G}\left(N_{1}, N_{2}\right)-b^{-h} 4 n^{2} N_{1} N_{2}=200 \varepsilon_{0} N_{1} N_{2}+O\left(N_{1} N_{2} / n\right), \quad\left|\varepsilon_{0}\right| \leq \varepsilon$.
Proof. Using (16) we have

$$
\begin{align*}
& V_{n, G}\left(2 n N_{11}, 2 n N_{21}\right) \tag{50}\\
& \quad=\bigcup_{\varepsilon n \leq s, t<2 n(1-\varepsilon)} \bigcup_{\min (s, t)<\varepsilon n} \bigcup_{2 n(1-\varepsilon) \leq \max (s, t)<2 n} A_{s, t, G}\left(N_{11}, N_{21}\right) . . . ~ . ~
\end{align*}
$$

We apply (49) to the first union and the trivial estimates to the other unions:

$$
\begin{align*}
& \# V_{n, G}\left(2 n N_{11}, 2 n N_{21}\right) \tag{51}\\
& \quad=\sum_{\varepsilon n \leq s, t<2 n(1-\varepsilon)}\left(b^{-h} N_{11} N_{21}+O\left(N_{11} N_{21} b^{-s-t}\right)\right)+16 \varepsilon_{1} n^{2} N_{11} N_{21}
\end{align*}
$$

$$
\begin{aligned}
=b^{-h} 4 n^{2} N_{11} N_{21}+32 \varepsilon_{2} n^{2} N_{11} N_{21}+ & O\left(N_{11} N_{21}\right), \\
& N_{21} \geq 1, \quad\left|\varepsilon_{i}\right|<\varepsilon, i=1,2 .
\end{aligned}
$$

Similarly, from (17) and (49) we obtain

$$
\begin{align*}
\# V_{n, G} & \left(0,2 n N_{11} ; 2 n N_{21}, N_{22}\right) \tag{52}\\
& =\sum_{0 \leq s<2 n} \sum_{0 \leq t<N_{22}}\left(b^{-h} N_{11}+O\left(N_{11} b^{-s-t}\right)\right)+16 \varepsilon_{3} n N_{11} N_{22} \\
& =b^{-h} 2 n N_{11} N_{22}+32 \varepsilon_{4} n N_{11} N_{22}+O\left(N_{11} N_{22}\right)
\end{align*}
$$

5 with $\left|\varepsilon_{i}\right|<\varepsilon, i=3,4$. We get a trivial estimate from (11)-(13):

$$
\# V_{n, G}\left(2 n N_{11}, N_{12} ; 0, N_{2}\right) \leq N_{2} N_{12} \leq 2 n N_{2}<N_{1} N_{2} / n
$$

Now the assertion of the lemma follows from (13), (15), and (51)-(52).
Similar notation is introduced for the configuration ω (instead of ω_{n}):

$$
\begin{align*}
V_{G}\left(P_{1}, P_{2}\right)= & \left\{\left(v_{1}, v_{2}\right) \in\left[0, P_{1}\right) \times\left[0, P_{2}\right) \mid\right. \tag{53}\\
& \left.\omega\left(v_{1}+i_{1}, v_{2}+i_{2}\right)=d_{i_{1}, i_{2}}, \forall\left(i_{1}, i_{2}\right) \in\left[0, h_{1}\right) \times\left[0, h_{2}\right)\right\}
\end{align*}
$$

We prove the Theorem for the case $N_{1} \geq N_{2}$. The other case is similar.

End of the proof of the Theorem. Let $1 \leq N_{2} \leq N_{1}, N_{1} \geq 4 b^{8}$. Then there exists $n \geq 3$ so that

$$
\begin{equation*}
N_{1} \in\left[2(n-1) I_{n-1}-h, 2 n I_{n}-h\right) \tag{54}
\end{equation*}
$$

Now let

$$
\begin{equation*}
N_{1}^{\prime}=2(n-1) I_{n-1}-h, \quad N_{2}^{\prime}=\min \left(N_{2}, N_{1}^{\prime}\right) \tag{55}
\end{equation*}
$$

From (53) and the definition of the configurations ω, ω_{n} we get

$$
\begin{align*}
\# V_{G}\left(N_{1}, N_{2}\right)= & \# V_{n, G}\left(N_{1}, N_{2}\right)-\# V_{n, G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right)+\# V_{G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right) \tag{56}\\
& +2 \varepsilon_{1} h N_{2}^{\prime}+2 \varepsilon_{2} N_{1} \min \left(h, N_{2}-N_{2}^{\prime}\right)
\end{align*}
$$

with $\left|\varepsilon_{i}\right| \leq 1, i=1,2$. It is easy to see that if $N_{2} \leq n$, then $N_{2}=N_{2}^{\prime}$, otherwise $h \leq h N_{2} / n$ and

$$
\begin{align*}
\# V_{G}\left(N_{1}, N_{2}\right)-\# V_{n, G}\left(N_{1}, N_{2}\right)= & \# V_{G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right)-\# V_{n, G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right) \tag{57}\\
& +4 \varepsilon_{3} h N_{1} N_{2} / n \quad \text { with }\left|\varepsilon_{3}\right| \leq 1
\end{align*}
$$

Analogously
(58) $\# V_{G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right)-\# V_{n, G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right)=\# V_{G}\left(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}\right)-\# V_{n-1, G}\left(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}\right)$

$$
+4 \varepsilon_{4} h N_{1} N_{2} / n
$$

where

$$
\begin{equation*}
N_{1}^{\prime \prime}=2(n-2) I_{n-2}-h, \quad N_{2}^{\prime \prime}=\min \left(N_{2}, N_{1}^{\prime \prime}\right), \quad\left|\varepsilon_{4}\right| \leq 1 \tag{59}
\end{equation*}
$$

It is evident that

$$
\begin{equation*}
\# V_{G}\left(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}\right)+\# V_{n, G}\left(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}\right) \leq 2 N_{1}^{\prime \prime} N_{2}^{\prime \prime}<2 N_{1} N_{2} / n \tag{60}
\end{equation*}
$$

From (56)-(60) we obtain

$$
\begin{aligned}
\# V_{G}\left(N_{1}, N_{2}\right)= & \# V_{n, G}\left(N_{1}, N_{2}\right)-\# V_{n, G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right) \\
& +\# V_{n-1, G}\left(N_{1}^{\prime}, N_{2}^{\prime}\right)+O\left(N_{1} N_{2} / n\right)
\end{aligned}
$$

It is easy to verify that

$$
b^{\xi 2 n^{2} / r}=o\left(I_{n-1}\right),
$$

where $\xi=(1-\varepsilon)^{2}+\varepsilon \in(0,1)$, and $I_{n}=\left[\alpha^{-1 /(2 r)} b^{2 n^{2} / r}\right]$. Hence $N_{1} \in$ $\left[2 n b^{\xi 2 n^{2} / r}, 2 n I_{n}\right)$ and we can apply Lemma 4:

$$
\begin{aligned}
& \# V_{G}\left(N_{1}, N_{2}\right) \\
& \quad=b^{-h} N_{1} N_{2}-b^{-h} N_{1}^{\prime} N_{2}^{\prime}+400 \varepsilon_{5} N_{1} N_{2}+b^{-h} N_{1}^{\prime} N_{2}^{\prime}+O\left(N_{1} N_{2} / n\right) \\
& \quad=b^{-h} N_{1} N_{2}+400 \varepsilon_{5} N_{1} N_{2}+O\left(N_{1} N_{2} / n\right) \quad \text { with }\left|\varepsilon_{5}\right| \leq \varepsilon .
\end{aligned}
$$

Now from (1), (2), and (53) we obtain the assertion of the Theorem.
Acknowledgments. We are grateful to the referee for his corrections and suggestions.

REFERENCES

[AKS] R. Adler, M. Keane and M. Smorodinsky, A construction of a normal number for the continued fraction transformation, J. Number Theory 13 (1981), 95-105.
[B] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[C] D. J. Champernowne, The construction of decimals normal in the scale ten, J. London Math. Soc. 8 (1933), 254-260.
[Ci] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1, Monatsh. Math. 64 (1960), 201-225.
[DE] H. Davenport and P. Erdős, Note on normal numbers, Canad. J. Math. 4 (1953), 58-63.
[DrTi] M. Drmota and R. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997.
[KT] P. Kirschenhofer and R. F. Tichy, On uniform distribution of double sequences, Manuscripta Math. 35 (1981), 195-207.
[LeSm] M. B. Levin and M. Smorodinsky, On explicit construction of normal lattices, preprint.
[SW] M. Smorodinsky and B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts, Israel J. Math. 59 (1987), 225-233.

Department of Mathematics and Computer Science Bar-Ilan University
52900 Ramat-Gan, Israel
E-mail: mlevin@macs.biu.ac.il

School of Mathematical Sciences Tel Aviv University 69978 Tel-Aviv, Israel
E-mail: meir@math.tau.ac.il

Received 27 August 1999; revised 17 February 2000

[^0]: 2000 Mathematics Subject Classification: Primary 11K16, 28D15.

