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STRETCHING THE OXTOBY–ULAM THEOREM

BY

ETHAN AKIN (NEW YORK, NY)

Abstract. On a manifold X of dimension at least two, let µ be a nonatomic measure
of full support with µ(∂X) = 0. The Oxtoby–Ulam Theorem says that ergodicity of µ is
a residual property in the group of homeomorphisms which preserve µ. Daalderop and
Fokkink have recently shown that density of periodic points is residual as well. We provide
a proof of their result which replaces the dependence upon the Annulus Theorem by a
direct construction which assures topologically robust periodic points.

Introduction. The classical Oxtoby–Ulam Theorem [10] says that for a
general class of measures (the OU measures) on a compact, connected mani-
fold of dimension at least two the ergodic homeomorphisms form a dense Gδ
subset of the completely metrizable group of all homeomorphisms preserving
the measure. A beautiful exposition of the theorem together with a number
of generalizations can be found in Alpern and Prasad’s forthcoming book
[2]. Using their language we will call a nonzero, finite, Borel measure µ on
a compact manifold X an Oxtoby–Ulam, or OU, measure if it is nonatomic,
of full support and is zero on the boundary.

A key step in the proof is the Homeomorphic Measures Theorem which
says that if µ and ν are OU measures on a topological ball B such that
µ(B) = ν(B) then there exists a homeomorphism h on B which restricts to
the identity on the boundary sphere ∂B and which maps µ to ν, i.e. h∗µ = ν
([10], Theorem 2; see also [2], Appendix 2).

Recently Daalderop and Fokkink [4] have shown that the condition of
dense periodic points is residual as well. Since an ergodic homeomorphism
for an OU measure is topologically transitive, there exist, for every posi-
tive ε, orbits which are ε-dense in X. Such an orbit is easily perturbed to
obtain a closed orbit. The difficulty is to obtain closed orbits which persist
under further perturbation. To obtain them Daalderop and Fokkink use
strong theorems from algebraic topology including the Annulus Theorem
of Kirby and Freedman. It is our purpose here to provide a simple direct
construction. By following the original argument of Oxtoby [7] (see also [9]),
it requires only a little additional work to provide a relatively self-contained
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proof (modulo the Homeomorphic Measures Theorem) of the genericity of
topological transitivity as well. The stronger ergodicity results require much
more work.

1. Transitive systems on manifolds. A dynamical system (X, f),
where f is a homeomorphism on a compact metric space X, is called topo-
logically transitive, or just transitive, if for some x in X the forward orbit
{f(x), f2(x), . . .} is dense in X. Equivalently, the nonwandering relation

(1.1) N f =

∞⋃
n=1

fn ⊂ X ×X

is all of X ×X (see [1], Theorem 4.12). It is sufficient that for every ε > 0
there exists a point with an ε-dense forward orbit. The system is called
central when every point is nonwandering, i.e. when the diagonal 1X is
contained in N f . It is totally transitive when (X, fk) is transitive for every
positive integer k. Finally, the system is weak mixing when the product
system (X × X, f × f) is transitive. Any weak mixing system is totally
transitive and the converse is true when the periodic points are dense (see
[3], Theorem 1.1). A point x is periodic for (X, f) if fp(x) = x for some
positive integer p.

Following the notation of [1] we denote by Cf the chain relation of f :
(x, y) ∈ Cf iff for every ε > 0, there is an ε-chain from x to y, that
is, a sequence {x0, . . . , xk} with x0 = x, k > 0 and xk = y such that
d(f(xi−1), xi) ≤ ε for i = 1, . . . , k. The system (X, f) is called chain tran-
sitive when Cf = X ×X.

By a measure µ on a compact metric space X we mean a nonzero, finite,
Borel measure. The measure has full support if µ(U) > 0 for every nonempty
open subset U of X. If µ({x}) = 0 for every point x ∈ X then µ is called
nonatomic. If f∗µ = µ for a homeomorphism f on X then we say that f
preserves µ or µ is invariant for f . Such an invariant measure µ is called
ergodic if for every Borel subset A of X, f(A) = A implies µ(A) equals 0
or µ(X).

1.1. Proposition. Let f be a homeomorphism on a compact , connected ,
metric space X. If f preserves a measure µ of full support then the system
(X, f) is central and chain transitive. If , in addition, µ is ergodic then (X, f)
is transitive.

P r o o f. We briefly review the proofs of these largely well known results.
That the system is central is Poincaré’s Recurrence Theorem. This ob-

serves that if A is a wandering Borel set, i.e. the sequence {fk(A) : k =
0, 1, . . .} is pairwise disjoint, then µ(A) = 0 for any invariant measure µ. So
if µ has full support, every nonempty open subset is nonwandering.
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For any connected space X, the trivial system (X, 1X) is chain transitive
(see [1], Exercise 1.9b). Now we apply [1], Proposition 1.11(c), which says
that the operator C on closed relations is idempotent. Hence

(1.2) X ×X = C(1X) ⊂ C(N f) ⊂ C(Cf) = Cf.

Thus, (X, f) is chain transitive.

If, in addition, µ is ergodic then any invariant nonempty open subset
U of X satisfies µ(U) = µ(X) and so U is dense. This implies (X, f) is
transitive, because it is central.

For a manifold X, i.e. a finite-dimensional topological manifold equipped
with a metric d, we denote the boundary by ∂X and its complement, X\∂X,
by IntX. For a topological ball B, ∂B is the boundary sphere and IntB is
the interior open ball. By a ball in a manifold we will mean a closed, codi-
mension zero topological ball. If B is a ball in a manifold X then by the
Invariance of Domain Theorem, IntB is open in IntX and so is contained in
the topological interior of B with equality when B ⊂ IntX. An OU measure
µ on X is a nonatomic measure of full support such that µ(∂X) = 0. If µ
is an OU measure on X and B is a ball in X then µ(IntB) > 0 and we
will call B a µ-ball if µ(∂B) = 0. For any ball B in X we can choose a
homeomorphism h from B onto a rectangular region R in Rn, i.e. a product
of n closed bounded intervals of positive length. Only countably many hy-
perplanes which are parallel to the coordinate hyperplanes can intersect R
in sets of positive measure with respect to h∗µ. So we can shrink R slightly
to obtain a rectangular region R′ in R with h∗µ(∂R′) = 0. Thus, we can
obtain B′ = h−1(R′) a µ-ball contained in and arbitrarily close to B. By
composing h with a dilation we can assume that µ(B′) = λ(B′) where λ
is Lebesgue measure. So by the Homeomorphic Measures Theorem we can
take h to be a homeomorphism from the µ-ball B′ to a rectangular region
R′ such that h maps µ on B′ to λ on R′.

For a compact manifold X and an OU measure µ we let H(X) denote
the completely metrizable group of homeomorphisms equipped with the sup
metric and Hµ(X) denote the closed subgroup of µ-preserving homeomor-
phisms. Our goal is the following theorem of Daalderop and Fokkink.

1.2. Theorem. Let µ be an Oxtoby–Ulam measure on a compact , con-
nected manifold X of dimension at least 2. The set

(1.3) {f ∈ Hµ(X) : (X, f) is a weak mixing dynamical system

with periodic points dense in X}

contains a dense Gδ subset H∗ of Hµ(X). In fact , if H ′µ(X) = {f ∈ Hµ(X) :
f |∂X = 1∂X} then in each coset of the closed subgroup H ′µ(X) in Hµ(X)
the points of H∗ are dense.
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Our main tool will be an open condition which assures the occurrence of
fixed points. For example, suppose a ball B in a manifold X is inward for a
homeomorphism f on X, that is, f(B) ⊂ IntB. Then B is still inward for
maps close enough to f and so such maps have fixed points by the Brouwer
Fixed Point Theorem. However, a measure preserving map has no proper
inward subsets. We consider instead a topological version of hyperbolicity.

Let D be a ball of dimension at least 1. Let I be the interval [−2, 2] with
I− = [−2,−1], I0 = [−1, 1], I+ = [1, 2]. A continuous function g : I0 ×D →
I ×D is called a stretch map if it satisfies the following conditions:

(1.4) g(I0 ×D) ⊂ Int(I ×D), g({±1} ×D) ⊂ Int(I± ×D).

If for (t, z) ∈ I0 ×D we write

(1.5) g(t, z) = (τ(t, z), G(t, z)),

then the conditions (1.4) are equivalent to

(1.6) G(t, z) ∈ IntD for (t, z) ∈ I0 ×D
and

(1.7) 1 < ±τ(±1, z) < 2 for z ∈ D.

The proof of the required fixed point result was suggested to me by my
colleague Hironori Onishi.

1.3. Lemma. Every stretch map has a fixed point.

P r o o f. We can assume that D is the unit ball in the Euclidean space Rn.
If g fails to have a fixed point then, for some ε > 0, d(g(x), x) > ε for

all x ∈ I0 × D. Then any function close enough to g also fails to have a
fixed point. Also, the conditions (1.4) are open conditions on the continuous
map g. Thus, by perturbing slightly we can assume that g is smooth. By
Sard’s Theorem we can further perturb by a translation to reduce to the
case where G : I0 × D → IntD is smooth and 0 is a regular value for
V : I0 ×D → Rn defined by

(1.8) V (t, z) = z −G(t, z),

as well as for the restrictions of V to {±1} ×D. It then follows that

(1.9) Fix = {(t, z) : G(t, z) = z},
the zero-set of V , is a smooth manifold of dimension 1 whose boundary lies
in ∂(I0 × D). By (1.6) the boundary is in fact in {−1, 1} × D. Condition
(1.6) also says that for each t ∈ I0, z 7→ V (t, z) is an outward pointing vector
field on D. Thus, Fix consists of a finite number of smooth loops, contained
in Int(I0×D), and a finite number of arcs which intersect {−1, 1}×D in the
endpoints. If for every such arc either both ends were in {1}×D or both in
{−1} ×D then Fix∩({+1} ×D) and Fix∩({−1} ×D) would each consist
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of an even number of points. But the mod 2 version of the Poincaré–Hopf
Index Theorem says that an outward pointing, smooth vector field on D
with nondegenerate zeros has an odd number of zeros (see [5], Chapter 6).
Hence some arc in Fix has endpoints {−1} × D and {+1} × D. By (1.7),
τ(t, z)− t is negative on {−1} ×D and is positive on {+1} ×D. Applying
the Intermediate Value Theorem to the arc in Fix which spans these sets,
we obtain (t∗, z∗) ∈ Fix such that τ(t∗, z∗) = t∗. That is, (t∗, z∗) is a fixed
point for g.

Assume f is a homeomorphism on a manifold X of dimension at least 2.
A triple of subsets (B−, B0, B+) with union a ball B in X is called a stretch
for (X, f) if f(B0) ⊂ B and there exists a homeomorphism h : B → I ×D,
where I = [−2, 2] and D is a ball so that

h(B±) = I± ×D, h(B0) = I0 ×D,
(1.10)

h ◦ f ◦ h−1 : I0 ×D → I ×D is a stretch map.

Notice that if (B−, B0, B+) is a stretch for f , then, by using the same hom-
eomorphism h, the triple is a stretch for any homeomorphism close enough
to f . So Lemma 1.3 implies that each such homeomorphism has a fixed
point in B0.

Now let X and µ be fixed as in the hypotheses of Theorem 1.2. For
each positive ε and positive integer k we define the subset Gk,ε of Hµ(X) as
follows: f ∈ Gk,ε if there exists a positive integer p and a triple (B−, B0, B+)
of subsets of X such that

(1.11) (B−, B0, B+) is a stretch for (X, fpk),

(1.12)
⋃p−1
i=0 f

ik(B0) is ε-dense in X, i.e. every point in X has d-distance
less than ε from some point in the union,

(1.13) for i = 0, . . . , p− 1, the d-diameter of f ik(B0) is less than ε.

In the following section we will prove:

1.4. Claim. Gk,ε has a dense intersection with each coset of H ′µ(X) in
Hµ(X).

Proof of Theorem 1.2. EachGk,ε is an open subset ofHµ(X). Intersecting
over positive integers k and rationals ε we obtain a Gδ set H∗ which by
Claim 1.4 and the Baire Category Theorem intersects each coset in a dense
subset. If f ∈ Gk,ε and p, (B−, B0, B+) satisfy (1.11), (1.12) and (1.13) then
fpk has a fixed point x ∈ B0 and by (1.12) and (1.13) the fk-orbit of x is a
2ε-dense subset of X. Thus, if f ∈ H∗ then for each positive integer k, fk

is transitive with dense periodic points. That f is weak mixing then follows
from [3], Theorem 1.1.
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2. Perturbation constructions. We begin with a property closely
related to that of generalized homogeneity in [1], Exercise 7.40 (see also
[10], Lemma 13, [2], Theorem 2.4, and [6]).

2.1. Proposition. Let X be a compact manifold equipped with a met-
ric d. Assume that the dimension of X is at least 2. For every ε > 0 there
exists δ > 0 such that if {x1, . . . , xm, y1, . . . , ym} is any list of 2m distinct
points in IntX satisfying d(xi, yi) < δ for i = 1, . . . ,m then there exists
a list {B1, . . . , Bm} of pairwise disjoint balls contained in IntX, each of
d-diameter less than ε and satisfying {xi, yi} ⊂ IntBi for i = 1, . . . ,m.

P r o o f. First assume the dimension of X is at least 3. In the piecewise
linear (= p.l.) case we connect the pairs {xi, yi} by arcs and then use general
position to make the arcs disjoint. For the general result we will use local
linear structures given by charts.

Consider the covering of X by all topological balls of diameter at most ε.
Let δ > 0 be the Lebesgue number of the cover by the topological interiors
of these balls. So for each pair {xi, yi} in the list we can choose a topological

ball B̃i with {xi, yi} ⊂ Int B̃i. By choosing some homeomorphism of B̃i into

Euclidean space we can put a linear structure on B̃i. Of course, the linear
structures induced on the overlap between different balls need not be even
p.l. equivalent.

By induction on k for 1 ≤ i ≤ k ≤ m, find arcs Aki ⊂ Int B̃i with
endpoints {xi, yi} such that {Ak1 , . . . , Akk} are pairwise disjoint. Each Aki
meets Int B̃k+1 in a countable union of disjoint intervals with endpoints in

∂B̃k+1 ∪ {xi, yi}. Let Ak+1
k+1 be the segment in Int B̃k+1 connecting xk+1

and yk+1. Only finitely many of the Aki ∩ Int B̃k+1 intervals meet Ak+1
k+1.

Change Aki on each of these open intervals to obtain an arc with the same

endpoints which is p.l. relative to B̃k+1. Using general position and dimen-

sion B̃k+1 ≥ 3 we can ensure that the adjusted Aki ’s now labelled Ak+1
i are

disjoint from Ak+1
k+1 for i = 1, . . . , k. Since the adjustments can be made arbi-

trarily small we can preserve the containments Ak+1
i ⊂ Int B̃i for i = 1, . . . , k

and disjointness among {Ak+1
1 , . . . , Ak+1

k }. Finally, having obtained pairwise
disjoint arcs {Am1 , . . . , Amm} we can make one final adjustment to obtain

{A1, . . . , Am} pairwise disjoint such that Ai ⊂ Int B̃i and B̃i is a p.l. arc
with endpoints {xi, yi}. Thicken these up to obtain balls Bi with Ai⊂ IntBi,

Bi ⊂ Int B̃i with Bi p.l. relative to B̃i. With the balls chosen close enough
to the arcs we obtain {B1, . . . , Bm} pairwise disjoint.

For dimension 2 we cannot use the general position argument which let
us separate arcs by arbitrarily small changes. Instead we use the fact that a
2-dimensional compact manifold can be triangulated as a p.l. manifold and
then adapt the proof of Oxtoby’s Gerrymandering Theorem from [8].
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Assume K is a 2-dimensional simplicial complex triangulating a mani-
fold. For each simplex σ of K, let D(σ) be the regular neighborhood of σ, i.e.
the union of those simplices of the barycentric subdivision K ′ of K which
meet σ. Then D(σ1)∩D(σ2) is nonempty iff σ1 and σ2 have a common face
τ = σ1∩σ2, in which case the intersection is D(τ). Each D(σ) is a p.l. disc.
Now suppose σ1 ∩ σ = τ1 and σ2 ∩ σ = τ2 with dimension σ = 2. There
exists an edge τ3 of σ which is neither τ1 nor τ2. Let σ3 be a simplex of
maximum dimension such that σ3 ∩ σ = τ3. So dimσ3 = 2 unless τ3 is a
boundary edge, in which case σ3 = τ3. In either case, the barycenter of σ3
lies in the boundary of D(σ) but not in IntD(σ1) or IntD(σ2). Now we can
explain the following:

2.2. Lemma. Let K be a simplicial complex triangulating a 2-dimensional
p.l. manifold X. Let U be an open subset of X, let F1, . . . , Fm be disjoint
finite sets and let σ1, . . . , σm be 2-simplices of K. There exist disjoint p.l.
arcs A1, . . . , Am such that Fi ⊂ Ai ⊂ U ∩ IntD(σi) for i = 1, . . . ,m iff for
each i, Fi is contained in a single component of U ∩ IntD(σi).

P r o o f. This result is a manifold version of Theorem 1 of [8]. Necessity is
obvious and the proof of sufficiency simply mimics Oxtoby’s inductive proof
with the following adjustments. Because of the special nature of these discs
we need not worry about their diameters nor pick out the largest diameter
disc upon which to build the induction. The subarc Ci in Oxtoby’s proof is
defined to be the arc of the boundary circle which is contained in IntD(σj)
for some j. By the above remarks for any pair of points on ∂D(σi) at most
one of the two arcs connecting the pair is contained in some IntD(σj). It is
easy to check that IntD(σj)∩∂D(σi) is either an open arc or is empty. The
details are left to the industrious reader.

To complete the proof of the dimension 2 case we triangulate X and
then subdivide to obtain K such that for each σ ∈ K, diam(D(σ)) < ε.
Let δ > 0 be the Lebesgue number of the open cover consisting of the
topological interiors of D(σ) as σ varies over the 2-simplices of K. For each
pair {xi, yi} from our list we can choose a 2-simplex σi of K such that
{xi, yi} ⊂ IntD(σi), i = 1, . . . ,m. Apply Lemma 2.2 with Fi = {xi, yi} and
U = IntX to obtain the disjoint arcs {A1, . . . , Am}. Finally, thicken them
up to obtain disjoint p.l. balls.

The volume preserving homeomorphisms we will use are obtained by
integrating divergence free vector fields on Rn (with n ≥ 2). It will be con-
venient to distinguish the first coordinate, writing (t, z) = (t, z1, . . . , zn−1)
for a typical point so that t ∈ R and z ∈ Rn−1. For r > 0 define smooth
functions a, b : R→ R such that



90 E. AKIN

a(t) =

{
1 if |t| ≤ r,
0 if |t| ≥ 2r,

(2.1)

b(t) = a(t)t for all t.(2.2)

On Rn we define the vector field (T̃ , Z̃) by

(2.3)

T̃ (t, z) = a(t)

n−1∏
j=1

b′(zj),

Z̃i(t, z) = − a′(t)b(zi)
n−1∏

j=1, j 6=i

b′(zj) /(n− 1).

The vector field vanishes outside (I2r)
n while in (Ir)

n, (T̃ , Z̃)=(1, 0, 0, . . . , 0)
where Is = [−s, s] for s > 0. Hence near a point in Int(Ir)

n the flow is just
translation at unit speed until the solution path leaves (Ir)

n. By rotating
and translating this picture we see that we can move any point to any other
within a ball in Rn by using diffeomorphisms which are the identity on the
boundary. Because the vector fields have divergence zero, these diffeomor-
phisms preserve Lebesgue measure.

Our stretch will be built using the vector field (T,Z):

(2.4)

T (t, z) = (n− 1)b(t)

n−1∏
j=1

b′(zj),

Zi(t, z) = − b′(t)b(zi)
n−1∏

j=1, j 6=i

b′(zj).

This vector field, also vanishes outside (I2r)
n while for (t, z) ∈ (Ir)

n we have

(2.5)
T (t, z) = (n− 1)t,

Zi(t, z) = − zi for i = 1, . . . , n− 1.

Let Qs : Rn → Rn be the time s map of the associated flow. Again, Qs

preserves Lebesgue measure because the vector field (T,Z) has divergence
zero. If |t| ≤ e−(n−1)sr and |zi| ≤ r for i = 1, . . . , n− 1, then

(2.6) Qs(t, z) = (e(n−1)st, e−sz).

Now we are ready to prove Claim 1.4: Given a positive integer k, positive

reals ε, δ > 0 and f ∈ Hµ(X) we will construct f̃ ∈ Gk,ε such that f̃ |∂X =

f |∂X and d(f, f̃) < δ. We are using the sup metric on Hµ(X) induced
from d on X.

First choose δ1 > 0 so that, as in Proposition 2.1, disjoint pairs of di-
ameter less than δ1 can be enclosed in disjoint balls of diameter less than
δ/4.
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By Proposition 1.1, fk is a chain transitive homeomorphism on X.
Choose a finite subset of IntX which is ε-dense in X. Then choose δ1-chains
for fk from one point to the next and then back to the first element. Next
fill in by f -orbits of length k. Thus, there exists for some positive integer p
a sequence {x0, x1, . . . , xpk} in IntX such that

d(f(xi−1), xi) < δ1 for i = 1, . . . , pk,(2.7)

xpk = x0,(2.8)

{x0, xk, . . . , x(p−1)k} is ε-dense in X.(2.9)

Since X has no isolated points we can move the points slightly so that
{x1, . . . , xpk} consists of pk distinct points. Since f is injective and x0 = xpk,
{f(x0), f(x1), . . . , f(xpk−1)} consists of pk distinct points as well. Finally,
choose {y1, . . . , ypk} in IntX so that

(2.10) d(f(xi−1), yi), d(yi, xi) < δ1 for i = 1, . . . , pk,

(2.11) {f(x0), . . . , f(xpk−1), y1, . . . , ypk}, {y1, . . . , ypk, x1, . . . , xpk} each
consist of 2pk distinct points.

By the choice of δ1 there exist two lists {A1, . . . , Apk} and {B1, . . . , Bpk}
of pairwise disjoint balls contained in IntX, of diameter less than δ/4 and
such that

(2.12) {f(xi−1), yi} ⊂ IntAi, {yi, xi} ⊂ IntBi.

By shrinking slightly we can assume Ai and Bi are µ-balls and so by the
Homeomorphic Measures Theorem and the use of vector fields like (2.3) we
can construct q1/2, q1 ∈ Hµ(X) with q1/2 the identity outside

⋃
i IntAi and

q1 the identity outside
⋃
i IntBi and so that in Ai, q1/2(f(xi−1)) = yi, and in

Bi, q1(yi) = xi for i = 1, . . . , pk. Since the balls have diameter less than δ/4,
d(q1/2, 1X) and d(q1, 1X) are both less than δ/4. So f1 ≡ q1◦q1/2◦f ∈ Hµ(X)
satisfies

d(f1, f) < δ/2,(2.13)

f1(xi−1) = xi, i = 1, . . . , pk.(2.14)

Thus, x0 is a periodic point for fk1 whose fk1 -orbit is ε-dense in X. Because
{x0, . . . , xpk−1} consists of pk distinct points we can choose B a µ-ball con-
tained in IntX such that x0 ∈ IntB and

B, f1(B), . . . , fpk−11 (B) are disjoint,(2.15)

diameter(B) < δ/2,(2.16)

diameter(f ik1 (B)) < ε for i = 0, . . . , p− 1.(2.17)

By the Homeomorphic Measures Theorem, for some r > 0 and there
exists a homeomorphism of B on (I2r)

n which maps µ on B to the Lebesgue
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measure on the cube. We will regard the homeomorphism as a coordinatiza-
tion writing B = (I2r)

n = I2r×D2r where for s > 0, Ds = (Is)
n−1 is a cube

in Rn−1 where the z-coordinate of the point (t, z) lives. Furthermore, by
moving the coordinates x0 if necessary, we can assume it is at the origin, i.e.

(2.18) x0 = (0, 0) in I2r ×D2r.

So we can choose r1 such that 0 < r1 < r and

(2.19) fpk1 (Ir1 × 0) ⊂ Int(Ir ×Dr) ⊂ B.

Now define q2 ∈ Hµ(X) to be the identity outside Ir ×Dr with q2(x0) = x0
and q2(fpk1 (±r1, 0)) = (±r1, 0). Define f2 = q2 ◦ f1 ∈ Hµ(X). Since q2 is
supported by B, (2.15) implies

(2.20)
f i2|B = f i1|B for i = 1, . . . , pk − 1,

fpk2 |B = q2 ◦ (fpk1 |B).

In particular, it follows that

(2.21) fpk2 (0, 0) = (0, 0) and fpk2 (±r1, 0) = (±r1, 0)

and

(2.22) fpk2 (Ir1 × 0) ⊂ Int(Ir ×Dr).

Now we can choose r2 such that 0 < r2 < r and

(2.23) fpk2 (Ir1 ×Dr2) ⊂ Int(Ir ×Dr).

Furthermore, by (2.21) we can choose r2 small enough for the first coor-

dinate to be positive on fpk2 ({r1}×Dr2) and negative on fpk2 ({−r1}×Dr2).
We can then choose r3 so that 0 < r3 < r1 and

(2.24)
fpk2 ({r1} ×Dr2) ⊂ Int([r3, r]×Dr),

fpk2 ({−r1} ×Dr2) ⊂ Int([−r,−r3]×Dr).

Now we use the flow of the vector field (2.4). Choose s so that

e(n−1)sr3 > r1,(2.25)

e−sr < r2.(2.26)

That is, choose s larger than ln(r/r2) and (n − 1)−1 ln(r1/r3). Define r4
and r5 by

(2.27) e(n−1)sr4 = r1 and e−sr = r5,

so that 0 < r4 < r3 and 0 < r5 < r2.

Because Qs is the identity outside I2r × D2r = B in Rn we can define
q̃ ∈ Hµ(X) to be Qs on B and the identity on X\B. Define f̃ = q̃ ◦ f2 ∈
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Hµ(X). As in (2.20) we have

(2.28)
f̃ i|B = f i2|B for i = 1, . . . , pk − 1,

f̃pk|B = Qs ◦ (fpk2 |B).

In particular,

(2.29) f̃ i(x0) = xi for i = 0, . . . , pk.

The stretch for f̃pk is defined by

(2.30)

B− = Qs([−r,−r4]×Dr),

B0 = Qs(Ir4 ×Dr),

B+ = Qs([r4, r]×Dr).

By (2.6) and (2.27), Qs(Ir4 × Dr) = Ir1 × Dr5 . Hence, by (2.23), (2.28)
and (2.30),

f̃pk(B0) = f̃pk(Qs(Ir4 ×Dr))(2.31)

⊂ Qsfpk2 (Ir1 ×Dr2) ⊂ Qs(Int(Ir ×Dr))

= Int(B− ∪B0 ∪B+).

Because B0 ∩B± = Qs({±r4} ×Dr) we similarly show from (2.24) that

(2.32) f̃pk(B0 ∩B±) ⊂ IntB±.

Thus, (B−, B0, B+) is a stretch for f̃pk. By (2.17), (2.20) and (2.28),

diameter(f̃ ik(B0)) < ε for i = 0, 1, . . . , p− 1.

Since xik = f̃ ik(x0) ∈ f̃ ik(B0) it follows that
⋃p−1
i=0 f̃

ik(B0) is ε-dense. Thus,

f̃ ∈ Gk,ε. Because q̃ ◦ q2 is supported by B, it follows that d(f̃ , f1) <

δ/2 by (2.16). So by (2.13), d(f̃ , f) < δ. Finally, q1/2, q1, q2 and q̃ are all

supported by unions of balls contained in IntX. Thus, on ∂X, f̃ equals f .
This completes the construction required by Claim 1.4.
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