
COLLOQU IUM MATHEMAT ICUM
VOL. 84/85 2000 PART 1

MIXING PROPERTIES
OF NEARLY MAXIMAL ENTROPY MEASURES

FOR Zd SHIFTS OF FINITE TYPE

BY

E. ARTHUR R O B I N S O N, J R. (WASHINGTON, DC)
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Abstract. We prove that for a certain class of Zd shifts of finite type with positive
topological entropy there is always an invariant measure, with entropy arbitrarily close
to the topological entropy, that has strong metric mixing properties. With the additional
assumption that there are dense periodic orbits, one can ensure that this measure is
Bernoulli.

1. Introduction. It is well known that a topologically mixing shift of
finite type (SFT) in one dimension has positive topological entropy and a
unique measure of maximal entropy. Moreover, with respect to this measure,
the shift is metrically isomorphic to a Bernoulli shift. For a Zd SFT with
d > 1, topological mixing is a much weaker condition. For example, such
a shift may have topological entropy zero (see [6], [8]). Positive topological
entropy can be achieved by imposing a stronger topological mixing property
such as Burton and Steif’s strong irreducibility (see [1]) or the slightly weaker
uniform filling property (UFP) studied in [9] and [10]. However, even though
these properties lead to a more manageable theory (see [9] and [10]), their be-
havior is still different from the one-dimensional case. A multi-dimensional
strongly irreducible SFT may have nonunique measures of maximal entropy
(see [1]). Moreover, with respect to an ergodic measure of maximal entropy,
the shift need not be metrically weakly mixing (see [2]).

In this paper we show that for a SFT satisfying the UFP, weak mixing
can always be achieved provided one is willing to accept a measure of slightly
less than maximal entropy (i.e., a measure of nearly maximal entropy). In
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fact, we show that nearly maximal entropy measures with much stronger
mixing properties can always be found.

To state our results, let h(Y, S) denote the topological entropy of a
SFT (Y, S), let M(Y, S) denote the S-invariant measures on Y and for
ν ∈M(Y, S), let h(Y, ν, S) denote the metric entropy of (Y, ν, S). Our main
result is:

Theorem 1.1. Let (Y, S) be a Zd shift of finite type satisfying the UFP.
Then for any ε > 0 there exists ν′ ∈ M(Y, S) such that (Y, ν′, S) has the
K-property and h(Y, ν′, S) > h(Y, S)− ε.

Now suppose that (Y, S) is a SFT as in the statement of Theorem 1.1
which also has dense periodic orbits. In [10] we use Theorem 1.1 to prove a
modeling theorem for such a SFT. We show that if (X,µ, T ) is an ergodic,
measure preserving Zd action with h(X,µ, T ) < h(Y, S), then there is a
measure ν ∈ M(Y, S) such that (X,µ, T ) is isomorphic to (Y, ν, S). The
corollary stated below now follows easily by applying this modeling theorem
to a Bernoulli Zd action (X,µ, T ) with entropy h(Y, S) > h(X,µ, T ) >
h(Y, S)− ε.

Corollary 1.2. Let (Y, S) be a Zd shift of finite type which satisfies
the UFP and has dense periodic orbits. Then for any ε > 0 there exists
ν′ ∈ M(Y, S) such that (Y, ν′, S) is a Bernoulli action and h(Y, ν′, S) >
h(Y, S)− ε.

We note that in the case d = 2 a SFT with the UFP always has dense
periodic orbits (see [11]), so in this case we obtain the conclusion of Corol-
lary 1.2 assuming only the hypotheses of Theorem 1.1. It is not known
whether the UFP implies the existence of dense periodic orbits for d > 2.

Our proof of Theorem 1.1 uses a result of Fieldsteel and Friedman [3],
which says that every positive entropy Zd action is evenly Kakutani equiva-
lent to an action with the K-property. We will show how to apply this result
to (Y, ν, S), where ν is a measure of maximal entropy, to obtain a new ac-

tion that will be denoted by (Y, ν, Sα
−1

) and that will have the K-property.

Although Sα
−1

will not be the shift on Y , we will show that it is possible
to use the UFP to find a factor of Sα

−1

modeled by a measure in M(Y, S)
that will have entropy close to (Y, ν, S). Theorem 1.1 will follow since the
K-property is closed under factorization.

2. Shifts of finite type and the uniform filling property. Let A be

finite. For y ∈ AZd

and ~m = (m1, . . . ,md) ∈ Zd, let y[~m] denote the element

of A occurring in the ~mth position of y. AZd

is compact and metrizable in
the product topology, and the shift (S~ny)[~m] = y[~m + ~n] is a continuous
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Zd action. A subshift (Y, S) is the restriction of S to a closed S-invariant

subspace Y ⊆ AZd

. We call A the alphabet of the subshift.

If R ⊆ Zd is finite, we call b ∈ AR a finite block with shape R. We let

Rc denote the complement of R. The block obtained by restricting y ∈ AZd

to R is denoted by y[R]. For ~v, ~w ∈ Zd, with wi > vi for all i, let [~v, ~w] =∏d
i=1[vi, wi] ⊆ Zd. In this context, we regard a scalar r to be equivalent to a

vector with all entries equal to r. Thus, for example, [−r, r] denotes a cube
with sides of length 2r + 1 and [~v − r,~v + r] denotes a box thickened by r.

Given a finite collection of finite blocks F = {f1, . . . , fn} with shapes
{R1, . . . , Rd}, we define a subshift, called a shift of finite type (SFT), by

YF = {y ∈ AZd

: (S~ny)[Rj ] 6= fj for any fj ∈ F , ~n ∈ Zd}. Without loss of
generality we can assume there is an s ≥ 0, called the step size, so that all
the blocks in F have shape R = [−s, s].

Definition 2.1. A SFT (Y, S) satisfies the uniform filling property
(UFP) with filling length l > 0 if

(i) card(Y ) > 1, and

(ii) for any y1, y2 ∈ Y , and any [~v, ~w], there exists y ∈ Y such that

y[[~v, ~w]] = y1[[~v, ~w]] and y[[~v − l, ~w + l]c] = y2[[~v − l, ~w + l]c].

3. Cocycles and orbit equivalences. Let (X,µ, T ) be a measure pre-
serving Zd action. A measurable mapping α : X×Zd → Zd is called a cocycle
for T if it satisfies the cocycle condition: α(x, ~n+ ~m) = α(x, ~n)+α(T ~nx, ~m).
Fixing x ∈ X, we have a mapping αx : Zd → Zd defined by αx(~n) = α(x, ~n).
We call α a bijective cocycle if αx is a bijection for µ-a.e. x ∈ X. Note that
αx(~0) = ~0 and

(3.1) αT~nx = τ−α(x,~n) ◦ αx ◦ τ~n,
where τ~v denotes translation by ~v.

Given a bijective cocycle α we define a mapping α−1 : X × Zd → Zd
by α−1(x,~v) = α−1x (~v) (see [3]) and a new measure preserving Zd action

(X,µ, Tα
−1

) by (Tα
−1

)~nx = Tα
−1(x,~n)x. This new action has the same orbits

as T . Heuristically, the cocycle α rearranges the points in the orbit of x; their
new order determines the new action. We say the two actions T and Tα

−1

are orbit equivalent. Conversely, given any measure preserving Zd action
(X,µ,R) with the same orbits as (X,µ, T ), there exists a bijective cocycle

α such that R = Tα
−1

.

In this paper, we will make use of bijective cocycles (or equivalently,
orbit equivalences) that satisfy two additional properties. The first property
is that α is a cocycle that implements an even Kakutani equivalence (see [5]
or [3]). Such a cocycle is called a Kakutani cocycle and is characterized by
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the property that for almost every x there is a full density subset I(x) ⊆ Zd
such that

lim
‖~v‖→∞
~v∈I(x)

‖α(x,~v)− ~v‖
‖~v‖

= 0,

where ‖ · ‖ denotes the box metric (see [3]). The following result is due to
Nadler, and a proof can be found in [4], Corollary 3.

Theorem 3.1. For a Kakutani cocycle α, h(X,µ, T ) = h(X,µ, Tα
−1

).

The second property the cocycle α will satisfy is more technical and
requires a preliminary discussion. The Kakutani cocycle α constructed in
[3] has some additional geometric structure, called the sequential blocking
property, that leaves the relative ordering on large blocks of orbits intact.
We now describe a minor modification of this sequential blocking property,
using exactly the same notation as in [3]. In the discussion that follows s
and l are fixed positive integers. Later they will play the role of the step
size and filling length of a SFT (Y, S).

Let (J,K,L) be a triple of positive integers with

(3.2) K + J + s+ l ≤ L < J + 4K.

We say a permutation π of the cube [−L,L] ⊆ Zd is a (J,K,L)-permutation
if there exists ~v ∈ [−K,K] such that

(3.3) π|[−J,J](~w) = ~v + ~w,

and

(3.4) π|[−L,L]\[−L+s+l,L−s−l] = id.

More generally, a permutation π of [−L,L] + ~t is called a (J,K,L)-
permutation if it is of the form π = τ~t ◦ π′ ◦ τ−~t, where π′ is a (J,K,L)-
permutation of [−L,L].

We say a bijection γ : Zd → Zd is (J,K,L)-blocked if there is a disjoint
collection {[−L,L]+~tj} of translates of [−L,L] in Zd satisfying the following:

(i) on each set [−L,L] + ~tj , γ acts as a (J,K,L)-permutation, and
(ii) on (

⋃
j [−L,L] + ~tj)

c, γ acts as the identity.

In particular, the definition of a blocked bijection implicitly includes a choice
of the sets [−L,L] +~tj and the vectors ~vj from the definition of a (J,K,L)-
blocked permutation on [−L,L] + ~tj .

Using the same terminology as [3], we call the sets [−J, J ] + ~tj rigid
blocks, and denote them by Bj(γ). We let Aj(γ) = Bj(γ) + ~vj . We call
these blocks translated rigid blocks and denote their union by A(γ). We let
E(γ) = (

⋃
j([−L+ s, L− s] +~tj))

c. We let Cj(γ) = ([−L+ s, L− s] \ [−L+

s+ l, L− s− l]) + ~vj and Dj(γ) = ([−L+ s+ l, L− s− l] +~tj) \Aj(γ). We



NEARLY MAXIMAL ENTROPY 47

put C(γ) =
⋃
j(Cj(γ) ∪Dj(γ)), and we call C(γ) the collar set for γ. Note

that the disjoint union of A(γ), C(γ), and E(γ) is Zd.

Lemma 3.2 ([9]). Let γ be a (J,K,L)-blocked bijection of Zd, with A(γ),
C(γ), and E(γ) as above. Suppose that there is y ∈ AA(γ)∪E(γ) such that

(i) for all j, there exists y′j ∈ Y with

y[Aj(γ)] = y′j [Aj(γ)],

(ii) there exists y′ ∈ Y with

y[E(γ)] = y′[E(γ)].

Then there exists y ∈ Y such that

y[A(γ) ∪ E(γ)] = y[A(γ) ∪ E(γ)].

This result follows from the UFP since each component Cj(γ) ∪ Dj(γ)
of the collar set C(γ) contains a collar Cj(γ) of thickness l.

A bijective cocycle β is called a (J,K,L)-blocked cocycle if for µ-a.e.
x, βx is a (J,K,L)-blocked bijection for a particular specified measurable
choice of the sets [−L,L] + ~tj and vectors ~vj . In particular, the set Cβ =

{x : ~0 ∈ C(βx)} ⊆ X is measurable, as are the sets Aβ , Eβ ⊆ X defined
similarly. Given ε > 0 we say a (J,K,L)-blocked cocycle is (J,K,L, ε)-
blocked if µ(Aβ) > 1− ε. In this case, we have µ(Cβ) < ε.

A sequence α1, α2, . . . of cocycles converges to a cocycle α, in symbols
limαi = α, if for µ-a.e. x ∈ X and ~n ∈ Zd,

(3.5) α(x, ~n) = lim
j→∞

αj(x, ~n).

It is easy to see that α is a cocycle. For two cocycles β1 and β2 we define
β2 ◦ β1 by (β2 ◦ β1)(x, ~n) = β2(x, β1(x, ~n)). Given a sequence β1, β2, . . . we
put α1 = β1, and for j > 1, αj = βj ◦ αj−1. If α = limαj , where αj is as
defined above, we write α =

∏
j βj .

Given a sequence {(Ji,Ki, Li, εi)} as above, we say that a cocycle α is
{(Ji,Ki, Li, εi)}-sequentially blocked if α=

∏
i βi, where βi is a (Ji,Ki, Li, εi)-

blocked cocycle. This is the second property (in addition to being a Kakutani
cocycle) that we require the cocycle α to satisfy.

The following theorem is the main result of [3] in the positive entropy
case, adapted to include (3.2), (3.3) and (3.4).

Theorem 3.3 (Fieldsteel and Friedman, [3]). Let (X,µ, T ) be a measure
preserving Zd action with h(X,µ, T ) > 0. Let εi be an arbitrary summable
sequence of positive numbers, and let l and s be positive integers. Then there
exists

(i) a sequence {(Ji,Ki, Li)} of triples satisfying (3.2) for each i, and
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(ii) a sequence βi of {(Ji,Ki, Li)}-blocked cocycles such that α =
∏
i βi is

a {(Ji,Ki, Li, εi)}-sequentially blocked bijective Kakutani cocycle and (X,µ,

Tα
−1

) has the K-property.

One can check that the proof in [3] is not affected by the minor modifi-
cations we have made in the geometry of the blocked cocycle.

4. Proof of Theorem 1.1. Let (Y, S) be as given in the statement of
Theorem 1.1. Let s be the step size, l the filling length and A the alphabet
of Y .

Let (X,µ, T ) be a measure preserving Zd action. A measurable partition
Q on X is a measurable mapping Q : X → A. The Q-name of x ∈ X is

the element y ∈ AZd

satisfying y[~v ] = Q(T~vx) for all ~v ∈ Zd. We define a

map φQ :M(X,T ) →M(AZd

, S) by φQ(µ)(E) = µ({x ∈ X : Q(x) ∈ E}).
Since Y ⊂ AZd

we have M(Y, S) ⊂M(AZd

, S), and we call Q a type (Y, S)
Markov partition for (X,µ, T ) if φQ(µ) ∈M(Y, S). Equivalently, Q is a type
(Y, S) Markov partition for (X,µ, T ) if the Q-name y of x satisfies y ∈ Y
for µ-a.e. x ∈ X.

We need the following elementary lemma on the entropy of partitions:

Lemma 4.1. For any ε > 0 there exists δ such that if Q1 and Q2 are two
partitions on (X,µ, T ) with µ(Q1 4Q2) < δ, then

|h(X,µ, T,Q1)− h(X,µ, T,Q2)| < ε.

Let P denote the time zero partition of (Y, S) and let ν be a measure of
maximal entropy. Given ε > 0, we choose δ > 0 according to Lemma 4.1.
Let εi > 0 be a sequence so that

∑
i εi < δ. We apply Theorem 3.3 to obtain

a {(Ji,Ki, Li, εi)}-sequentially blocked bijective Kakutani cocycle α =
∏
i βi

such that the corresponding action (Y, ν, Sα
−1

) has the K-property.

Since P is still a generating partition for (Y, ν, Sα
−1

), the map φP :

M(Y, Sα
−1

)→M(AZd

, S) models (Y, ν, Sα
−1

) on the full shift onA. Namely,

(AZd

, φP (µ), S) is measurably isomorphic to (Y, ν, Sα
−1

). However, since

Sα
−1

is not the shift on Y , P is generally not a type (Y, S) Markov partition

for (Y, ν, Sα
−1

), and thus φP (µ) is generally not an element of M(Y, S).

We now construct a new partition Q of Y that will be a type (Y, S)

Markov partition for Sα
−1

and that will be close to P in the sense of
Lemma 4.1. Note that if Cβi

is the collar set for the bijection βi in step
i, then by the construction of α, we have ν(Cβi) < εi for all i. Letting
Cα =

⋃
i Cβi , we have

(4.1) µ(Cα) ≤
∑
i

µ(Cβi
) ≤

∑
i

εi < δ.
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The partition Q will have the property that

(4.2) Q(x) = P (x) for x ∈ Cc
α.

Thus, using (4.1) and (4.2) with Lemma 4.1, followed by Theorem 3.1 and
Theorem 3.3, we will have

h(Y, ν, Sα
−1

, Q) ≥ h(Y, ν, Sα
−1

, P )− ε(4.3)

= h(Y, ν, S)− ε = h(Y, S)− ε.

The construction of Q proceeds as follows. For each x ∈ Y (thinking of

x as a point for the dynamical system (Y, ν, Sα
−1

)) we construct a sequence
yi(x) ∈ Y for i = 0, 1, . . . by induction, beginning with y0(x) = x.

Given yi−1(x) ∈ Y we construct yi(x) ∈ Y as follows. We look at the
ith cocycle βi in the product α =

∏
i βi and the corresponding bijection βi,x

on the orbit of x. Recall that the sets A(βi,x), E(βi,x) and C(βi,x) (defined
before Lemma 3.2) partition Zd. We put

(4.4) yi(x)[E(βi,x)] = yi−1(x)[E(βi,x)].

Next, recall that A(βi,x) is a disjoint union of sets Aj(βi,x), each of which
is a translation of a set Bj(βi,x) by a vector ~vj . We define

(4.5) yi(x)[Aj(βi,x)] = (S−~vjyi−1(x))[Bj(βi,x)].

By (4.4), (4.5) and the induction hypothesis, the block obtained by re-
stricting yi(x) to one of the sets Aj(βi,x) or to E(βi,x) can be extended to a
point y′ ∈ Y (namely, some shift of yi−1(x)). Thus we can use Lemma 3.2
to fill in the collar set C(βi,x) in yi(x), to obtain an extension yi(x) ∈ Y .
For the sake of uniqueness, we choose the lexicographically smallest filling
for each Cj(βi,x) ∪Dj(βi,x).

It follows from (3.5) that for µ-a.e. x ∈ X and every M ∈ N, there exists

a positive integer N = N(x,M) so that αx =
∏N
j=1 βj,x on [−M,M ] ⊆ Zd.

Thus if we define y(x)[−M,M ] = yN(x,M)(x)[−M,M ] for all M , we have

y(x) ∈ Y . It follows from (3.1), (4.4) and (4.5) that y((Sα
−1

)~vx) = S~vy(x).
Putting Q(x) = y(x)[~0], we find that Q is a type (Y, S) Markov partition for

(Y, ν, Sα
−1

). To see that (4.2) holds, we note that x 6∈ Cα implies Q(x) =
y(x)[~0] = x[~0] = P (x).

To complete the proof, we let ν′ = φQ(ν) ∈ M(AZd

, S). Since Q is a
type (Y, S) Markov partition we actually have ν′ ∈M(Y, S). Also, (Y, ν′, S)

is the factor of (Y, ν, Sα
−1

) corresponding to the partition Q, so by defini-
tion, Q is a generating partition for this factor. It follows from (4.3) that

h(Y, ν′, S) = h(Y, ν, Sα
−1

, Q) ≥ h(Y, S)− ε. Finally, we note that (Y, ν′, S)

has the K-property since (Y, ν, Sα
−1

) has the K-property and the K-property
is inherited by factors.
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