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Abstract. In 1988 Anosov [1] published the construction of an example of a flow
(continuous real action) on a cylinder or annulus with a phase portrait strikingly different
from our normal experience. It contains orbits whose ω-limit sets contain a non-periodic
orbit along with a simple closed curve of fixed points, but these orbits do not wrap down
on this simple closed curve in the usual way. In this paper we modify some of Anosov’s
methods to construct a flow on a surface of genus 2 with equally striking behavior that does
not occur on a surface of genus 1 or a cylinder. Moreover, our construction is relatively
simple and can easily be modified to produce a variety of examples exhibiting similar
types of behavior.

The key idea that we use from Anosov’s paper can be described in the following way.
A flow on a cylinder can always be slowed down near one of the boundary circles so
that it becomes fixed. If you slow a flow down very rapidly as you approach a bound-
ing circle, then you can also spin the orbits further and further around the axis of the
cylinder as you approach the boundary without destroying the flow. In particular, the
boundary circle remains fixed, but orbits that approach even a single point on it now
spiral toward it.

1. Introduction. Before we describe the properties of the examples
mentioned in the Abstract more fully, we need to state more explicitly the
mathematical context. Let M be a compact connected surface and let M̃ be
its universal cover. A flow or continuous real action on M is a continuous
mapping φ : M × R → M , where R is the reals, such that φ(φ(x, t), s) =
φ(x, t + s) and φ(x, 0) = x for all x ∈ M and s, t ∈ R. For convenience
we will often follow the convention of writing xt for φ(x, t). As is often the
case, our flow will be constructed from an autonomous differential equation
ẋ = f(x) by taking the solution which is x at time 0 and evaluating it at
time t to obtain φ(x, t).

The set of fixed points of φ is F = {x ∈ M : xt = x for all t ∈ R}. If
x 6∈ F , then we say x is a moving point. The orbit of x is defined by O(x) =
{xt : t ∈ R}. The positive semiorbit of x is defined by O+(x) = {xt : t ≥ 0},
and the negative semiorbit of x is defined by O−(x) = {xt : t ≤ 0}. The
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ω-limit set of x is defined by ω(x) =
⋂

t≥0
O+(xt), and the α-limit set of x

is defined by α(x) =
⋂

t≤0
O−(xt).

A local cross section Σ of φ at a point x ∈ M is a closed subset Σ
of M containing x such that the map (x, t) 7→ xt is a homeomorphism of
Σ× [−ε, ε] onto the closure on an open neighborhood V of x for some ε > 0.
If x is a moving point, then there exists a local cross section at x.

The flow on M lifts to a unique flow φ̃ on M̃ such that the covering
projection π : M̃ → M is a homomorphism of flows, i.e., π(φ̃(x̃, t)) =

φ(π(x̃), t), and every covering transformation T of M̃ is an automorphism of

the flow φ̃, i.e., T φ̃(x̃, t) = φ̃(T x̃, t). Moreover, π(x̃) ∈ F if and only if x̃ ∈ F̃ ,

where F̃ denotes the fixed points of φ̃. These results are a consequence of
the homotopy lifting theorem and can be found in [3]. For Anosov’s example

M̃ is an infinite planar strip of the form R× [0, 1], and for our example M̃
will be the interior of the unit disk.

Anosov’s example, which can easily be imbedded in a flow on a torus, has
orbits in M̃ which are neither bounded nor go to infinity. In other words,
there exists x̃ in M̃ such that φ̃(x̃, t) neither stays in a closed bounded

subset of M̃ for all positive t nor eventually stays outside of every such set
as t goes to infinity. Anosov goes on to prove in Theorem 1 of [1] that this
phenomenon cannot occur when the fixed points are contractible.

In contrast to Anosov’s example, O+(q̃ ), a lift of the interesting orbit in

our example, will actually approach a point σ on the unit circle bounding M̃
as t approaches infinity. However, it is the way that it approaches this point
at infinity which is of interest. There is a periodic orbit γ0 on M with a lift
γ̃0 to M̃ which approaches the same point σ on the unit circle as t goes to
infinity. The periodic orbit is not contained in the ω-limit set of our special
orbit. But this ω-limit set does contain an orbit γ2, and a simple closed
curve γ1 of fixed points which is not homotopic to the periodic orbit γ0. The
orbit γ2 wraps down on γ1 in such a way that O+(q̃ ) tends to follow lifts
of γ2 for long periods of time that take it far away from γ̃0. Geometrically,
what we observe on M̃ is that for positive t the hyperbolic distance between
q̃t and γ̃0 is unbounded. Such an example would be impossible on the torus.
N. Markley showed that a lifted positive semiorbit O+(x̃) of a continuous
flow on the torus that goes to infinity (i.e., |x̃t| → ∞ as t → ∞) will lie
between two parallel lines if there is a moving point in the ω-limit set of
π(x̃) (Theorem 5 of [4]).

We will use the following notation found in [4] for segments of curves and
orbits. If C is a simple curve, hence homeomorphic to an interval, and a and b
lie on C, then (a, b)C will denote the open segment of C between a and b.
If s, τ ∈ R, then [xs, xτ ]φ will denote {xt : s ≤ t ≤ τ} or {xt : τ ≤ t ≤ s}
according as s < τ or τ < s.
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2. Construction of a planar flow. We are now ready to describe the
construction. We begin with the following system of differential equations
which defines a flow on R

2:

(1) ẋ = 1, ẏ = 1− y2.

Denote this system by ż = F (z), where z = (x, y). Let z(t, (x0, y0)) denote
the solution which is (x0, y0) at time 0. Observe that z(t, (0, 0)) = (t, tanh t),
z(t, (0, 1)) = (t, 1), and z(t, (0,−1)) = (t,−1).

Let f(x) = 1

4
(1 + cos πx). Note that f(x) is a smooth periodic function

of period 2; f(0) = 1/2; f(1) = 0; f(x) is strictly decreasing on the interval
(0, 1); and f(x) is strictly increasing on (1, 2). Define Φ : R2 → R

2 by

Φ(x, y) = (x, (1 + f(x))y + f(x)),

where w = Φ(x, y) = (u, v). Let Φ′ denote the matrix of partials of Φ(x, y).
If z(t) is a solution to ż = F (z), then Φ(z(t)) = (u(t), v(t)) = w(t) is a
solution to

(2) ẇ = G(w) = Φ′(Φ−1(w))F (Φ−1(w)) = (g1(u, v), g2(u, v)).

Let w(t, (u0, v0)) denote the solution to ẇ = G(w) which is (u0, v0) at
time 0. Observe that Φmaps the solution z(t, (0, 0)) = (t, tanh t) of ż = F (z)
to the solution w(t, (0, 1/2)) = (t, (1 + f(t)) tanh t + f(t)) of ẇ = G(w).
Also note that Φ maps the solutions z(t, (0, 1)) = (t, 1) and z(t, (0,−1)) =
(t,−1) to the solutions w(t, (0, 2)) = (t, 2f(t)+1) and w(t, (0,−1)) = (t,−1),
respectively.

There exists t′ such that (3/2)f(t) + 1/2 < w(t, (0, 1/2)) < 2f(t) + 1
for all t ≥ t′. Hence for t ≥ t′, w(t, (0, 1/2)) has a minimum between any
two consecutive maximums of 2f(t) + 1, and w(t, (0, 1/2)) has a maximum
between any two consecutive minimums of 2f(t) + 1.

Consider the system ẇ = ̺(v)G(w), where ̺(v) is a C∞-function for
which ̺(v) > 0 for v < 2 and which vanishes together with its derivatives
when v ≥ 2. The line v = 2 now consists entirely of fixed points. Note
that the solution w(t, (0, 2)) is now broken into a sequence of fixed points
at (2n, 2), n ∈ Z, and a sequence of orbits for which ω(w) = (2n, 2) and
α(w) = (2(n − 1), 2). Solutions not intersecting the region v ≥ 2 remain
unchanged except for a change in speed. We will now restrict our attention
to the strip R× [−1, 2].

The following technique is directly from Anosov [1]. Let h(u, v) = (u +
λ(v), v), where z = h(u, v) = (x, y) and λ(v) is a C∞-function for v < 2
such that λ(v) ≥ 0, λ(v) = 0 for |v| ≤ 1.5, λ(v) is strictly increasing for
v > 1.5 and λ(v) → ∞ as v → 2. If w(t) is a solution to ẇ = ̺(v)G(w),
then h(w(t)) is a solution to

(3) ż = H(z) = h′(h−1(z))̺(y)G(h−1(z)).
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Setting H(z) = 0 for the given function λ, when v = 2, gives a C2-field on
R× [−1, 2], if ̺ and its derivatives vanish fast enough near v = 2.

A trajectory of ẇ = ̺(v)G(w) that passes through (2n + 1, 1) and lies
on {(u, v) : 2n ≤ u ≤ 2(n + 1), v = 2f(u) + 1} is mapped by h onto a
curve which lies in the strip 1 < |y| < 2 and asymptotically approaches (in
positive and negative time) the line y = 2. For −1 ≤ y ≤ 1.5, the phase
portraits of ż = H(z) and ẇ = ̺(v)G(w) will be identical. Let φ1(t, ζ) =
(x(t, ζ), y(t, ζ)) = ζt denote the solution to ż = H(z) such that φ1(0, ζ) = ζ
(which defines a flow on R× [−1, 2]).
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Fig. 1. Phase portrait of ẇ = ̺(v)G(w)
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Fig. 2. Phase portrait of (extended) ż = H(z)

For n ∈ Z let Cn be the vertical line segment with endpoints (2n + 1, 1.5)
and (2n + 1, 2), and let Σn be the vertical line segment with endpoints
(2n + 1,−1) and (2n + 1, 1). Let p = (1, 1) and q = (0, 1/2). Note that for
each n ∈ Z, Σn is a local cross section. The following lemmas and corol-
lary describe the behavior of the orbits through p and q. Their proofs are
immediate consequences of the following facts: f(u) is strictly decreasing on
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(0, 1) and strictly increasing on (1, 2); λ(v) is strictly increasing for v > 1.5;
H(x+2, y)=H(x, y); and w(t, (0, 1/2)) has a maximum (minimum) between
any two successive minimums (maximums) of f(t).

Lemma 2.1. There exist sequences {tn}
∞
n=1 and {t−n}

∞
n=1, with tn → ∞

and t−n → −∞, such that

(1) ptn and pt−n ∈ Cn,

(2) pτ ∈ Ck, k ≥ 1 ⇔ τ ∈ {tn}
∞
n=1 or τ ∈ {t−n}

∞
n=1,

(3) y(tn, p) ր 2 and y(t−n, p) ր 2, and

(4) y(tn+1, p) > y(t−n, p) > y(tn, p) for n ≥ 1.

Note that there also exists a unique solution to pτ ∈ C0, which we will
denote t0, and which satisfies t−1 < t0 < 0.

Lemma 2.2. There exists {τn}
∞
n=0 with τn → ∞ such that qτn ∈ Σn,

y(τn, q) ր 1, and (qτn, qτn+1)φ1
∩Σj = ∅ for all j ∈ Z, n ∈ Z

+. Moreover ,
there exists {sn}

∞
n=0, τn < sn ≤ τn+1, such that x(sn, q) − x(τn, q) → ∞,

and x(t, q)− x(τn, q) ≤ x(sn, q)− x(τn, q) for τn ≤ t ≤ τn+1.

Corollary 2.3. There exist µ ∈ Z
+ and s, ŝ ∈ R with τµ < s < ŝ <

τµ+1, such that

(1) x(sµ, q)− x(τµ, q) > 6,

(2) qs, qŝ ∈ Cµ+3,

(3) x(t, q) < 2µ+ 7 for τµ ≤ t < s and ŝ < t ≤ τµ+1, and

(4) y(t3, p) > y(s, q) > y(ŝ, q) > y(t−2, p).

We are now able to construct our example on a compact genus 2 surface.

3. A flow on a compact surface. Since H(x + 2, y) = H(x, y), the
system ż = H(z) defines a flow on S1 × [−1, 2]. Let γ2 = O(p), let γ0 =
S1 × {−1} and let γ1 = S1 × {2} denote the two bounding circles of the
cylinder. Observe that γ0 is a periodic orbit of period 2, and γ1 consists
entirely of fixed points. Note that ω(p) = α(p) = γ1. Also note that ω(q)=
γ1 ∪ γ2, which is not locally connected. By the Poincaré–Bendixson Theory,
α(q) = γ0. Let C = πC0 and let z1 = C ∩ γ1. Let Σ = πΣ0 and let
z0 = Σ ∩ γ0.

We now describe how to imbed this flow into a surface of genus 2 so that
γ0 and γ1 have different homotopy types, and neither is null homotopic.
(We also orient γ1 to have the same orientation as γ0, with the natural
orientation of γ0 given by the flow.)

Let D be the projection of {(x, y) : 2f(x)+1 < y < 1.5} into S1×[−1, 2].
Note that D is open and connected. Let D0 and D1 be disjoint closed discs
in D. Modify the flow so that ∂D0 and ∂D1 are fixed and remove their
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interiors. Since γ1 and ∂D1 are fixed, we can glue γ1 and ∂D1 to obtain a
torus with two holes: γ0 and ∂D0.

We now construct a flow on the cylinder S1 × [0, 1] using the system

ẋ = y2, ẏ = 0.

Note that S1 × {0} is fixed, and S1 × {1} is a periodic orbit. Finally, we
attach this cylinder to the torus with two holes by gluing ∂D0 to S1 × {0}
and γ0 to S1 × {1} to obtain a flow φ on a surface M of genus 2.

Let µ, s, and ŝ be as described in Corollary 2.3. Henceforth p, q, γ0, γ1,
z0, z1, C and Σ will be in M . We restate Lemma 2.2 and Corollary 2.3 for
(M,φ).

Lemma 3.1. There exists a sequence {tn}
∞
n=−∞, with tn → ∞ and t−n →

−∞ as n → ∞, such that

(1) pτ ∈ C ⇔ τ ∈ {tn}
∞
n=−∞,

(2) {ptn}
∞
n=0 and {pt−n}

∞
n=0 converge strictly monotonely to z1, and

(3) pt−n ∈ (ptn, ptn+1)C for n ≥ 1.

Lemma 3.2. There exists a sequence {τn}
∞
n=0, τn → ∞, such that qτn

∈ Σ, (qτn, qτn+1)φ ∩ Σ = ∅, and {qτn} converges strictly monotonely to p.
Moreover , there exist µ ∈ Z

+, and s, ŝ ∈ R with τµ < s < ŝ < τµ+1

such that qs, qŝ ∈ (pt−2, pt3)C , and qt 6∈ (pt−2, pt3)C for τµ ≤ t < s and

ŝ < t ≤ τµ+1.

Note that for i ≥ 1, [qτi, qτi+1]φ ∪ (qτi+1, qτi)Σ is homotopic to γ0, and
[pti, pti+1]φ ∪ (pti+1, pti)C is homotopic to γ1. Observe that the following
three loops are null homotopic: [p, pt3]φ ∪ (pt3, qs)C ∪ [qs, qτµ]φ ∪ (qτµ, p)Σ ;
[qτµ+1, qŝ ]φ ∪ (qŝ, pt−2)C ∪ [pt−2, p]φ ∪ (p, qτµ+1)Σ ; and [qs, qŝ ]φ ∪ (qŝ, qs)C .

In the next section we will describe the properties of the lifted flow.

4. The lifted flow. Since the genus of M is 2, M̃ is the Poincaré disc:
the open unit disc equipped with the hyperbolic metric dh derived from the
differential

ds =
2
√

dx2 + dy2

1− x2 − y2
.

The covering transformations are hyperbolic linear fractional transforma-
tions and preserve the hyperbolic metric on the interior of the unit disk.
Each covering transformation has exactly two fixed points (one is attracting
and the other repelling), and these points lie on the unit circle. A covering
transformation T is called primitive if T = Sj , S ∈ Γ , implies that |j| = 1.

The lifted flow φ̃ can be extended to the closed disk by taking the bound-
ary circle of M̃ , which we denote by S∞, to be fixed points of φ̃. The fol-
lowing definitions can be found in [1, 2, 4]. If there exists σ ∈ S∞ such that
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|x̃t−σ| → 0 as t → ∞, then we say that O+(x̃) tends to a point of S∞. We
write this as x̃t → σ as t → ∞. Suppose x̃t → σ ∈ S∞ as t → ∞, and let
C be a hyperbolic ray through x̃ limiting to σ. If there exists K > 0 such
that dh(x̃t, C) < K for all t ≥ 0, then we say that O+(x̃) is the type of an

h-ray.
We now return to our example. Let Σ̃ be a lift of Σ and let z̃0, p̃, q̃τµ

denote the lifts of z0, p, qτµ, respectively, contained in Σ̃. Let C̃ denote

the lift of C containing p̃t1 and let z̃1 denote the lift of z1 contained in C̃.
Let γ̃0 and γ̃1 denote the extended lifts of γ0 and γ1 containing z̃0 and z̃1,
respectively.

There exists a primitive transformation S ⊂ Γ with attracting and re-
pelling fixed points α+ and α−, respectively, such that Sγ̃1 = γ̃1. Note that

p̃t → α+ as t → ∞. Moreover, p̃tn ∈ Sn−1C̃ for n ≥ 1.
There exists a primitive transformation T ⊂ Γ with attracting and

repelling fixed points σ+ and σ−, respectively, such that T γ̃0 = γ̃0 and
z̃0t → σ+ as t → ∞. Clearly, q̃t → σ+ as t → ∞, and q̃τµ+1 ∈ TnΣ̃ for
n ≥ 1. We will show that for positive t the hyperbolic distance between q̃t
and z̃0t is unbounded.

Lemma 4.1. p̃(−t) → T−1α+ as t → ∞.

P r o o f. We first show that the points q̃s and q̃ ŝ lie on S2C̃. Recall that
the loop [p, pt3]φ∪ (pt3, qs)C ∪ [qs, qτµ]φ∪ (qτµ, p)Σ is null homotopic. Thus,

since q̃τµ ∈ Σ̃, p̃ ∈ Σ̃, and p̃t3 ∈ S2C̃, it follows that q̃s ∈ S2C̃. Because

[qs, qŝ ]φ∪(qŝ, qs)C is null homotopic and q̃s ∈ S2C̃, we also have q̃ ŝ ∈ S2C̃.

There exists a lift of pt−2, say Hp̃t−2, which lies on S2C̃. Clearly, H 6=I

and (Hp̃t−2)(−t)→ α+ as t→∞. Since qŝ ∈ S2C̃,Hp̃t−2 ∈ S2C̃, q̃τµ+1 ∈

TΣ̃, and [qτµ+1, qŝ ]φ ∪ (qŝ, pt−2)C ∪ [pt−2, p]φ ∪ (p, qτµ+1)Σ is null homo-

topic, we have Hp̃ ∈ TΣ̃. Recall that p̃ ∈ Σ̃ and thus T p̃ ∈ TΣ̃. Hence
Hp̃ = T p̃, and so (T p̃)(−t) → α+ as t → ∞. Therefore p̃(−t) → T−1α+ as
t → ∞.

Lemma 4.2. O+(q̃ ) is not the type of an h-ray.

P r o o f. Since qτn → p as n → ∞, and q̃τµ+n ∈ TnΣ̃ for n≥1, we have
T−nq̃τµ+n→ p̃. Since α+ 6=σ+, and T is an isometry, the result immediately
follows by continuity in initial conditions.

Let γ̃2 be the extended orbit of p̃, i.e., γ̃2 = O(p̃) ∪ α+ ∪ T−1α+. Let J
be the Jordan curve determined by the following orbit and section pieces:
O+(p̃) ∪ α+, α+ ∪ O−(T p̃), (T p̃, T z̃0)TΣ̃

, [T z̃0, z̃0]γ̃0
, and (z̃0, p̃)Σ̃ . By ap-

plying all powers of T to the curve J we build a region Q whose boundary
consists of γ̃0 and

⋃
n∈Z

Tnγ̃2. Note that TQ = Q, Q is invariant under
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the flow, and O(q̃ ) ⊂ Q. Since the α-limit set of q is γ1, it follows that
q̃(−t) → σ− as t → ∞ and O−(q̃ ) is the type of an h-ray. It is not hard to
see that the Hausdorff limit of {T−nO(q̃ )} as n → ∞ is

⋃∞

n=−∞ Tnγ̃2.

We summarize the results of this paper with the following theorem.

Theorem 4.3. There exists a flow φ on a surface M of genus 2 that has

the following properties:

(1) There exists a periodic point z0 whose orbit γ0 is not null homotopic.

(2) There exists a simple closed curve of fixed points γ1 which is not null

homotopic and is not homotopic to γ0.

(3) There exists a point p such that ω(p) = α(p) = γ1.

(4) There exists an open set Q of points such that for any q ∈ Q we have

α(q) = γ0 and ω(q) = O(p) ∪ γ1, and ω(q) is not locally connected.

Furthermore, the lift φ̃ of φ to the Poincaré disk with the hyperbolic

metric has the following additional properties:

(5) If p̃ is a lift of p, then there exists a point α+ on the unit circle

S∞ such that φ̃(p̃, t) → α+ as t → ∞, and there exist a primitive covering

transformation T and a lift γ̃0 of the periodic orbit γ0 such that T γ̃0 = γ̃0

and φ̃(p̃,−t) → T−1α+ as t → ∞.

(6) If q̃ is a lift of q ∈ Q, then there exist points σ+ and σ− in S∞ and

a lift z̃0 of z such that φ̃(q̃, t) → σ+, φ̃(z̃0, t) → σ+, φ̃(q̃,−t) → σ−, and

φ̃(z̃0,−t) → σ− as t → ∞. Moreover , O−(q̃ ) is the type of an h-ray , but
O+(q̃ ) is not the type of an h-ray.

The basic properties of this example are predicted by the results in [5].
By using multiples of 2 as the period of H(z) to construct a flow on the
cylinder, we can construct flows with more points whose behavior is like
that of p and have more regions like D to use in attaching handles.

REFERENCES

[1] D. V. Anosov, On the behavior in the Euclidean or Lobachevsky plane of trajectories
that cover trajectories of flows on closed surfaces. I, Math. USSR-Izv. 30 (1988),
15–38.

[2] S. H. Aranson and V. Z. Gr ines, On some invariants of dynamical systems on
two-dimensional manifolds (necessary and sufficient conditions for the topological
equivalence of transitive dynamical systems), Math. USSR-Sb. 19 (1973), 365–393.

[3] E. Lima, Common singularities of commuting vector fields on 2-manifolds, Com-
ment. Math. Helv. 39 (1964), 97–110.

[4] N. G. Mark ley, Invariant simple closed curves on the torus, Michigan Math. J. 25
(1978), 45–52.



AN EXOTIC FLOW 243

[5] M. H. Vanderschoot, Limit sets for continuous flows on surfaces, Ph.D. thesis,
Univ. of Maryland, College Park, 1999.

Lehigh University
27 Memorial Dr. W
Bethlehem, PA 18015
U.S.A.
E-mail: ngm2@lehigh.edu

Mathematics Department
Concordia College
901 8th St. S

Moorhead, MN 56562
U.S.A.

E-mail: vandersc@cord.edu

Received 15 July 1999; (3791)
revised 15 December 1999


