LINEAR GROWTH OF THE DERIVATIVE FOR
MEASURE-PRESERVING DIFFEOMORPHISMS

BY
KRZYSZTOF FRsACZEK (TORUŃ)

Abstract

We consider measure-preserving diffeomorphisms of the torus with zero entropy. We prove that every ergodic C^{1}-diffeomorphism with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{1}-cocycle. We also show that for no positive $\beta \neq 1$ does there exist an ergodic C^{2}-diffeomorphism whose derivative has polynomial growth with degree β.

1. Introduction. Let M be a compact Riemannian C^{1}-manifold, \mathcal{B} its Borel σ-algebra and μ its probability Lebesgue measure. Assume that $f:(M, \mathcal{B}, \mu) \rightarrow(M, \mathcal{B}, \mu)$ is a measure-preserving C^{1}-diffeomorphism of the manifold M.

Definition 1. We say that the derivative of f has linear growth if the sequence

$$
n^{-1} D f^{n}: M \rightarrow \mathcal{L}(T M)
$$

converges μ-a.e. to a measurable μ-nonzero function $g: M \rightarrow \mathcal{L}(T M)$, i.e. there exists a set $A \in \mathcal{B}$ such that $\mu(A)>0$ and $g(x) \neq 0$ for all $x \in A$.

Our purpose is to study ergodic diffeomorphisms of the torus with linear growth of the derivative.

By \mathbb{T}^{2} (resp. \mathbb{T}) we will mean the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}($ resp. the circle $\mathbb{R} / \mathbb{Z})$ which most often will be treated as the square $[0,1) \times[0,1)$ (resp. the interval $[0,1)$) with addition $\bmod 1 ; \lambda$ will denote Lebesgue measure on \mathbb{T}^{2}. An example of an ergodic diffeomorphism with linear growth of the derivative is a skew product of an irrational rotation on the circle and a circle C^{1}-cocycle with nonzero topological degree. Let $\alpha \in \mathbb{T}$ be an irrational number and let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be a C^{1}-cocycle. We denote by $d(\varphi)$ the topological degree of φ. Consider the skew product $T_{\varphi}:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ defined by

$$
T_{\varphi}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\varphi\left(x_{1}\right)\right) .
$$

[^0]Lemma 1. The sequence $n^{-1} D T_{\varphi}^{n}$ converges uniformly to the matrix

$$
\left[\begin{array}{cc}
0 & 0 \\
d(\varphi) & 0
\end{array}\right] .
$$

Proof. Observe that

$$
n^{-1} D T_{\varphi}^{n}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
n^{-1} & 0 \\
n^{-1} \sum_{k=0}^{n-1} D \varphi\left(x_{1}+k \alpha\right) & n^{-1}
\end{array}\right] .
$$

By the Ergodic Theorem, the sequence $n^{-1} \sum_{k=0}^{n-1} D \varphi(\cdot+k \alpha)$ converges uniformly to $\int_{\mathbb{T}} D \varphi(x) d x=d(\varphi)$.

It follows that if $d(\varphi) \neq 0$, then T_{φ} is an ergodic (see [3]) diffeomorphism with linear growth of the derivative.

We will say that diffeomorphisms f_{1} and f_{2} of \mathbb{T}^{2} are algebraically conjugate if there exists a group automorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ such that $f_{1} \circ \psi=$ $\psi \circ f_{2}$. It is clear that if f_{1} has linear growth of the derivative and f_{1} and f_{2} are algebraically conjugate, then f_{2} has linear growth of the derivative. Therefore every C^{1}-diffeomorphism of \mathbb{T}^{2} algebraically conjugate to a skew product T_{φ} with $d(\varphi) \neq 0$ has linear growth of the derivative.

The aim of this paper is to prove that every ergodic measure-preserving C^{1}-diffeomorphism of the torus with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{1}-cocycle with nonzero degree. In [3], A. Iwanik, M. Lemańczyk and D. Rudolph have proved that if φ is a C^{2}-cocycle with $d(\varphi) \neq 0$, then the skew product T_{φ} has countable Lebesgue spectrum on the orthocomplement of the space of functions depending only on the first variable. Therefore every ergodic measure-preserving C^{2}-diffeomorphism of the torus with linear growth of the derivative has countable Lebesgue spectrum on the orthocomplement of its eigenfunctions.

It would be interesting to modify the definition of linear growth of the derivative. For example, one could study a weaker property that there exist positive constants a, b such that

$$
0<a \leq\left\|D f^{n}\right\| / n \leq b
$$

for every natural n. Of course, if a diffeomorphism is C^{1}-conjugate to a skew product of an irrational rotation on the circle and a circle C^{1}-cocycle with nonzero degree, then it satisfies this weaker condition and is ergodic. The converse might also be true.
2. Linear growth. We will identify functions on \mathbb{T}^{2} with \mathbb{Z}^{2}-periodic functions (i.e. periodic of period 1 in each coordinate) on \mathbb{R}^{2}. Assume that $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is a measure-preserving C^{1}-diffeomorphism. Then there
exists a matrix $\left\{a_{i j}\right\}_{i, j=1,2} \in M_{2}(\mathbb{Z})$ and C^{1}-functions $\widetilde{f}_{1}, \widetilde{f}_{2}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ such that

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\widetilde{f}_{1}\left(x_{1}, x_{2}\right), a_{21} x_{1}+a_{22} x_{2}+\widetilde{f}_{2}\left(x_{1}, x_{2}\right)\right)
$$

Denote by $f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the functions given by

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=a_{11} x_{1}+a_{12} x_{2}+\widetilde{f}_{1}\left(x_{1}, x_{2}\right) \\
& f_{2}\left(x_{1}, x_{2}\right)=a_{21} x_{1}+a_{22} x_{2}+\widetilde{f}_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Then

$$
\left|\operatorname{det}\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\bar{x}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{array}\right]\right|=1 \quad \text { for all } \bar{x} \in \mathbb{R}^{2} .
$$

Suppose that the diffeomorphism f is ergodic. We will need the following lemmas.

LEMMA 2. If the sequence $n^{-1} D f^{n}: \mathbb{T}^{2} \rightarrow M_{2}(\mathbb{R})$ converges λ-a.e. to a measurable function $g: \mathbb{T}^{2} \rightarrow M_{2}(\mathbb{R})$, then

$$
g(\bar{x})=g\left(f^{n} \bar{x}\right) D f^{n}(\bar{x})
$$

for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$ and all natural n.
Proof. Let $A \subset \mathbb{T}^{2}$ be a full measure f-invariant set such that if $\bar{x} \in A$, then $\lim _{n \rightarrow \infty} n^{-1} D f^{n}(\bar{x})=g(\bar{x})$. Assume that $\bar{x} \in A$. Then for any natural m, n we have

$$
\frac{m+n}{m} \frac{1}{m+n} D f^{m+n}(\bar{x})=\frac{1}{m} D f^{m}\left(f^{n} \bar{x}\right) D f^{n}(\bar{x})
$$

and $f^{n} \bar{x} \in A$. Letting $m \rightarrow \infty$, we obtain

$$
g(\bar{x})=g\left(f^{n} \bar{x}\right) D f^{n}(\bar{x}) \quad \text { for } \bar{x} \in A \text { and } n \in \mathbb{N} .
$$

Lemma 3.

$$
\lambda \otimes \lambda\left(\left\{(\bar{x}, \bar{y}) \in \mathbb{T}^{2} \times \mathbb{T}^{2}: g(\bar{y}) g(\bar{x})=0\right\}\right)=1
$$

and

$$
\lambda\left(\left\{\bar{x} \in \mathbb{T}^{2}: g(\bar{x})^{2}=0\right\}\right)=1
$$

Proof. Choose a sequence $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ of measurable subsets of A (see proof of Lemma 2) such that the function $g: A_{k} \rightarrow M_{2}(\mathbb{R})$ is continuous, all open subsets of A_{k} (in the induced topology) have positive measure and $\lambda\left(A_{k}\right)>1-1 / k$ for any natural k. Since the transformation $f_{A_{k}}$: $\left(A_{k}, \lambda_{A_{k}}\right) \rightarrow\left(A_{k}, \lambda_{A_{k}}\right)$ induced by f on A_{k} is ergodic, for every natural k we can find a measurable subset $B_{k} \subset A_{k}$ such that for any $\bar{x} \in B_{k}$ the sequence $\left\{f_{A_{k}}^{n} \bar{x}\right\}_{n \in \mathbb{N}}$ is dense in A_{k} in the induced topology and $\lambda\left(B_{k}\right)=\lambda\left(A_{k}\right)$.

Let $\bar{x}, \bar{y} \in B_{k}$. Then there exists an increasing sequence $\left\{m_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $f_{A_{k}}^{m_{i}} \bar{x} \rightarrow \bar{y}$. Hence there exists an increasing sequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $f^{n_{i}} \bar{x} \rightarrow \bar{y}$ and $f^{n_{i}} \bar{x} \in A_{k}$
for all $i \in \mathbb{N}$. Since $g: A_{k} \rightarrow M_{2}(\mathbb{R})$ is continuous, we get $g\left(f_{n_{i}} \bar{x}\right) \rightarrow g(\bar{y})$. Since

$$
\frac{1}{n_{i}} g(\bar{x})=g\left(f^{n_{i}} \bar{x}\right) \frac{1}{n_{i}} D f^{n_{i}}(\bar{x}),
$$

letting $i \rightarrow \infty$ we obtain $g(\bar{y}) g(\bar{x})=0$. Therefore

$$
B_{k} \times B_{k} \subset\left\{(\bar{x}, \bar{y}) \in \mathbb{T}^{2} \times \mathbb{T}^{2}: g(\bar{y}) g(\bar{x})=0\right\}
$$

and

$$
B_{k} \subset\left\{\bar{x} \in \mathbb{T}^{2}: g(\bar{x})^{2}=0\right\}
$$

for any natural k. It follows that

$$
\lambda \otimes \lambda\left(\left\{(\bar{x}, \bar{y}) \in \mathbb{T}^{2} \times \mathbb{T}^{2}: g(\bar{y}) g(\bar{x})=0\right\}\right)>(1-1 / k)^{2}
$$

and

$$
\lambda\left(\left\{\bar{x} \in \mathbb{T}^{2}: g(\bar{x})^{2}=0\right\}\right)>1-1 / k
$$

for any natural k, which proves the lemma.
Lemma 4. Let $A, B \in M_{2}(\mathbb{R})$ be nonzero matrices. Suppose that

$$
A^{2}=B^{2}=A B=B A=0
$$

Then there exist real numbers $a, b \neq 0$ and c such that

$$
A=\left[\begin{array}{cc}
a c & -a c^{2} \\
a & -a c
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
b c & -b c^{2} \\
b & -b c
\end{array}\right]
$$

or

$$
A=\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right] .
$$

Proof. Since $A^{2}=0$ and $A \neq 0$, we immediately see that the Jordan form of the matrix A is $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. It follows that there exist matrices $C=$ $\left\{c_{i j}\right\}_{i, j=1,2}, C^{\prime}=\left\{c_{i j}^{\prime}\right\}_{i, j=1,2} \in M_{2}(\mathbb{C})$ such that $\operatorname{det} C=\operatorname{det} C^{\prime}=1$ and

$$
\begin{aligned}
& A=C\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] C^{-1}=\left[\begin{array}{cc}
c_{12} c_{22} & -c_{12}^{2} \\
c_{22}^{2} & -c_{12} c_{22}
\end{array}\right], \\
& B=C^{\prime}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left(C^{\prime}\right)^{-1}=\left[\begin{array}{cc}
c_{12}^{\prime} c_{22}^{\prime} & -c_{12}^{\prime 2} \\
c_{22}^{\prime 2} & -c_{12}^{\prime} c_{22}^{\prime}
\end{array}\right] .
\end{aligned}
$$

Since the matrices A and B commute, their eigenvectors belonging to 0 , i.e. $\left(c_{12}, c_{22}\right)$ and $\left(c_{12}^{\prime}, c_{22}^{\prime}\right)$, generate the same subspace. Therefore there exist real numbers $a, b \neq 0$ and c such that

$$
A=\left[\begin{array}{cc}
a c & -a c^{2} \\
a & -a c
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
b c & -b c^{2} \\
b & -b c
\end{array}\right]
$$

or

$$
A=\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]
$$

Lemma 5. Suppose that $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is an ergodic measurepreserving C^{1}-diffeomorphism such that the sequence $n^{-1} D f^{n}$ converges λ a.e. to a nonzero measurable function $g: \mathbb{T}^{2} \rightarrow M_{2}(\mathbb{R})$. Then there exist a measurable function $h: \mathbb{T}^{2} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ such that

$$
g(\bar{x})=h(\bar{x})\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right] \quad \text { for } \lambda \text {-a.e. } \bar{x} \in \mathbb{T}^{2}
$$

or

$$
g(\bar{x})=h(\bar{x})\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { for } \lambda \text {-a.e. } \bar{x} \in \mathbb{T}^{2}
$$

Moreover, $h(\bar{x}) \neq 0$ for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$.
Proof. Denote by $F \subset \mathbb{T}^{2}$ the set of all points $\bar{x} \in \mathbb{T}^{2}$ with $g(\bar{x}) \neq 0$. By Lemma 2, the set F is f-invariant. As f is ergodic and $\lambda(F)>0$ we have $\lambda(F)=1$. By Lemma 3, we can find $\bar{y} \in \mathbb{T}^{2}$ such that $g(\bar{y}) \neq 0, g(\bar{y})^{2}=0$ and $g(\bar{x}) \neq 0, g(\bar{x})^{2}=g(\bar{x}) g(\bar{y})=g(\bar{y}) g(\bar{x})=0$ for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$. An application of Lemma 4 completes the proof.

Assume that $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is an ergodic measure-preserving C^{1}-diffeomorphism with linear growth of the derivative. Then the sequence $n^{-1} D f^{n}$ converges λ-a.e. to a function $g: \mathbb{T}^{2} \rightarrow M_{2}(\mathbb{R})$. In the remainder of this section we assume that g can be represented as

$$
g=h\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right]
$$

where $h: \mathbb{T}^{2} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. We can do it because the second case

$$
g=h\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

reduces to $c=0$ after interchanging the coordinates, which is an algebraic isomorphism.

Now by Lemma 2,

$$
h(\bar{x}) h(f \bar{x})^{-1}\left[\begin{array}{cc}
c & -c^{2} \tag{1}\\
1 & -c
\end{array}\right]=\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right] D f(\bar{x})
$$

for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$. It follows that

$$
\begin{aligned}
h(\bar{x}) h(f \bar{x})^{-1} c & =c \frac{\partial f_{1}}{\partial x_{1}}(\bar{x})-c^{2} \frac{\partial f_{2}}{\partial x_{1}}(\bar{x}), \\
-h(\bar{x}) h(f \bar{x})^{-1} c & =\frac{\partial f_{1}}{\partial x_{2}}(\bar{x})-c \frac{\partial f_{2}}{\partial x_{2}}(\bar{x})
\end{aligned}
$$

for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$. Therefore

$$
-c \frac{\partial}{\partial x_{1}}\left(f_{1}(\bar{x})-c f_{2}(\bar{x})\right)=\frac{\partial}{\partial x_{2}}\left(f_{1}(\bar{x})-c f_{2}(\bar{x})\right)
$$

for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$. Since the functions $f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are of class C^{1} the equality holds for every $\bar{x} \in \mathbb{R}^{2}$. Then there exists a C^{1}-function $u: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}\right)-c f_{2}\left(x_{1}, x_{2}\right)=u\left(x_{1}-c x_{2}\right) \tag{2}
\end{equation*}
$$

Lemma 6. If c is irrational, then $f\left(x_{1}, x_{2}\right)=\left(x_{1}+d, x_{2}+e\right)$, where $d, e \in \mathbb{R}$.

Proof. Represent the diffeomorphism f as

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=a_{11} x_{1}+a_{12} x_{2}+\widetilde{f}_{1}\left(x_{1}, x_{2}\right) \\
& f_{2}\left(x_{1}, x_{2}\right)=a_{21} x_{1}+a_{22} x_{2}+\widetilde{f}_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

where $\left\{a_{i j}\right\}_{i, j=1,2} \in M_{2}(\mathbb{Z})$ and $\widetilde{f}_{1}, \widetilde{f}_{2}: \mathbb{T}^{2} \rightarrow \mathbb{R}$. From (2),

$$
\begin{align*}
u\left(x_{1}-c x_{2}\right)= & \left(a_{11}-c a_{21}\right) x_{1}+\left(a_{12}-c a_{22}\right) x_{2} \tag{3}\\
& +\widetilde{f}_{1}\left(x_{1}, x_{2}\right)-c \widetilde{f}_{2}\left(x_{1}, x_{2}\right) .
\end{align*}
$$

Since the function $\widetilde{f}_{1}-c \widetilde{f}_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is \mathbb{Z}^{2}-periodic, there exists $\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right) \in \mathbb{R}^{2}$ such that

$$
\frac{\partial \widetilde{f}_{1}}{\partial x_{1}}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)-c \frac{\partial \widetilde{f}_{2}}{\partial x_{1}}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)=\frac{\partial \widetilde{f}_{1}}{\partial x_{2}}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)-c \frac{\partial \widetilde{f}_{2}}{\partial x_{2}}\left(\widetilde{x}_{1}, \widetilde{x}_{2}\right)=0
$$

From (3) it follows that

$$
D u\left(\widetilde{x}_{1}-c \widetilde{x}_{2}\right)=a_{11}-c a_{21}, \quad-c D u\left(\widetilde{x}_{1}-c \widetilde{x}_{2}\right)=a_{12}-c a_{22}
$$

Hence

$$
\begin{equation*}
a_{12}-c a_{22}=-c\left(a_{11}-c a_{21}\right) \tag{4}
\end{equation*}
$$

Then

$$
u\left(x_{1}-c x_{2}\right)=\left(a_{11}-c a_{21}\right)\left(x_{1}-c x_{2}\right)+\widetilde{f}_{1}\left(x_{1}, x_{2}\right)-c \widetilde{f}_{2}\left(x_{1}, x_{2}\right)
$$

Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be given by $v(x)=u(x)-\left(a_{11}-c a_{21}\right) x$. As $\widetilde{f}_{1}-c \widetilde{f}_{2}$ is \mathbb{Z}^{2}-periodic we have

$$
v(x+1)=\widetilde{f}_{1}(x+1,0)-c \widetilde{f}_{2}(x+1,0)=\widetilde{f}_{1}(x, 0)-c \widetilde{f}_{2}(x, 0)=v(x)
$$

and

$$
v(x+c)=\widetilde{f}_{1}(x,-1)-c \widetilde{f}_{2}(x,-1)=\widetilde{f}_{1}(x, 0)-c \widetilde{f}_{2}(x, 0)=v(x)
$$

Since v is continuous and c is irrational we conclude that the function v is constant and equal to a real number v. Therefore $\widetilde{f}_{1}-c \widetilde{f}_{2}=v$ and

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+c \widetilde{f}_{2}\left(x_{1}, x_{2}\right)+v, a_{21} x_{1}+a_{22} x_{2}+\widetilde{f}_{2}\left(x_{1}, x_{2}\right)\right)
$$

As the diffeomorphism f preserves the measure λ we have $\operatorname{det} D f=\varepsilon$, where $\varepsilon \in\{-1,1\}$. Then

$$
\begin{aligned}
\varepsilon & =\left(a_{11}+c \frac{\partial \widetilde{f}_{2}}{\partial x_{1}}\right)\left(a_{22}+\frac{\partial \widetilde{f}_{2}}{\partial x_{2}}\right)-\left(a_{12}+c \frac{\partial \widetilde{f}_{2}}{\partial x_{2}}\right)\left(a_{21}+\frac{\partial \widetilde{f}_{2}}{\partial x_{1}}\right) \\
& =a_{11} a_{22}-a_{12} a_{21}+\left(c a_{22}-a_{12}\right) \frac{\partial \widetilde{f}_{2}}{\partial x_{1}}+\left(a_{11}-c a_{21}\right) \frac{\partial \widetilde{f}_{2}}{\partial x_{2}} \\
& =a_{11} a_{22}-a_{12} a_{21}+\left(c a_{22}-a_{12}\right)\left(\frac{\partial \widetilde{f}_{2}}{\partial x_{1}}+c \frac{\partial \widetilde{f}_{2}}{\partial x_{2}}\right),
\end{aligned}
$$

by (4). Since for a certain $\bar{x} \in \mathbb{R}, \frac{\partial \widetilde{f}_{2}}{\partial x_{1}}(\bar{x})=\frac{\partial \widetilde{f}_{2}}{\partial x_{2}}(\bar{x})=0$ we see that

$$
a_{11} a_{22}-a_{12} a_{21}=\varepsilon \quad \text { and } \quad \frac{\partial \widetilde{f}_{2}}{\partial x_{1}}+c \frac{\partial \widetilde{f}_{2}}{\partial x_{2}}=0
$$

Therefore there exists a C^{1}-function $s: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
s\left(c x_{1}-x_{2}\right)=\widetilde{f}_{2}\left(x_{1}, x_{2}\right)
$$

Since \widetilde{f}_{2} is \mathbb{Z}^{2}-periodic and c is irrational, the function s is constant and equal to a real number s. It follows that

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+d, a_{21} x_{1}+a_{22} x_{2}+e\right)
$$

where $d=c s+v$ and $e=s$. Then

$$
D f^{n}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{n}
$$

for any natural n. It follows that the function g is constant and finally that h is constant. From (1), we get

$$
\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right]=\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Hence $1=a_{11}-c a_{21}$ and $-c=a_{12}-c a_{22}$. Since c is irrational, we conclude that $a_{11}=1, a_{12}=0, a_{21}=0, a_{22}=1$.

Lemma 7. If c is rational, then there exist a group automorphism ψ : $\mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$, a real number α, a C^{1}-function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ and $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$ such that

$$
\psi \circ f \circ \psi^{-1}\left(x_{1}, x_{2}\right)=\left(\varepsilon_{1} x_{1}+\alpha, \varepsilon_{2} x_{2}+\varphi\left(x_{1}\right)\right) .
$$

Proof. Denote by p and q the integers such that $q>0, \operatorname{gcd}(p, q)=1$ and $c=p / q$. Choose $a, b \in \mathbb{Z}$ with $a p+b q=1$. Consider the group automorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ defined by $\psi\left(x_{1}, x_{2}\right)=\left(q x_{1}-p x_{2}, a x_{1}+b x_{2}\right)$. Let $\widehat{f}=\psi \circ f \circ \psi^{-1}$ and let $\pi_{i}: \mathbb{T}^{2} \rightarrow \mathbb{T}$ be the projection on the i th coordinate for $i=1,2$.

From (2),

$$
\begin{aligned}
\widehat{f}_{1}\left(x_{1}, x_{2}\right) & =q f_{1} \circ \psi^{-1}\left(x_{1}, x_{2}\right)-p f_{2} \circ \psi^{-1}\left(x_{1}, x_{2}\right) \\
& =q u\left(\pi_{1} \circ \psi^{-1}\left(x_{1}, x_{2}\right)-\frac{p}{q} \pi_{2} \circ \psi^{-1}\left(x_{1}, x_{2}\right)\right)=q u\left(\frac{1}{q} x_{1}\right) .
\end{aligned}
$$

Therefore, \widehat{f}_{1} depends only on the first variable. Then

$$
D \widehat{f}=\left[\begin{array}{cc}
\frac{\partial \widehat{f_{1}}}{\partial x_{1}} & 0 \\
\frac{\partial \widehat{f}_{2}}{\partial x_{1}} & \frac{\partial \hat{f}_{2}}{\partial x_{2}}
\end{array}\right]
$$

and

$$
\frac{\partial \widehat{\widehat{f}_{1}}}{\partial x_{1}} \frac{\partial \widehat{\widehat{f}_{2}}}{\partial x_{2}}=\operatorname{det} D \widehat{f}=\varepsilon \in\{-1,1\} .
$$

Since $\frac{\partial \widehat{f}_{2}}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\varepsilon / \frac{\partial \widehat{f}_{1}}{\partial x_{1}}\left(x_{1}, 0\right)$, there exists a C^{1}-function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\widehat{f}_{2}\left(x_{1}, x_{2}\right)=\frac{\varepsilon}{\frac{\partial \hat{f}_{1}}{\partial x_{1}}\left(x_{1}, 0\right)} x_{2}+\varphi\left(x_{1}\right) .
$$

Hence $\varepsilon / \frac{\partial \widehat{f}_{1}}{\partial x_{1}}\left(x_{1}, 0\right)$ is an integer constant. As the map

$$
\mathbb{T} \ni x \mapsto \widehat{f}_{1}(x, 0) \in \mathbb{T}
$$

is continuous, it follows that $\frac{\partial \hat{f}_{1}}{\partial x_{1}}\left(x_{1}, 0\right)=\varepsilon_{1} \in\{-1,1\}$. Therefore

$$
\widehat{f}\left(x_{1}, x_{2}\right)=\left(\varepsilon_{1} x_{1}+\alpha, \varepsilon_{1} \varepsilon x_{2}+\varphi\left(x_{1}\right)\right) .
$$

Theorem 8. Every ergodic measure-preserving C^{1}-diffeomorphism of \mathbb{T}^{2} with linear growth of the derivative is algebraically conjugate to a skew product of an irrational rotation on \mathbb{T} and a circle C^{1}-cocycle with nonzero degree.

Proof. Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be an ergodic C^{1}-diffeomorphism with linear growth of the derivative. Then the sequence $n^{-1} D f^{n}$ converges λ-a.e. to a nonzero measurable function $g: \mathbb{T}^{2} \rightarrow M_{2}(\mathbb{R})$. By Lemma 5 , there exist a measurable function $h: \mathbb{T}^{2} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ such that

$$
g(\bar{x})=h(\bar{x})\left[\begin{array}{cc}
c & -c^{2} \\
1 & -c
\end{array}\right]
$$

for λ-a.e. $\bar{x} \in \mathbb{T}^{2}$. First note that c is rational. Suppose, contrary to our claim, that c is irrational. By Lemma $6, D f^{n}=\mathbb{I}$ for all natural n. Therefore the sequence $n^{-1} D f^{n}$ converges uniformly to zero, which is impossible.

By Lemma 7 , there exist a group automorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$, a real number α, a C^{1}-function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ and $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$ such that

$$
\psi \circ f \circ \psi^{-1}\left(x_{1}, x_{2}\right)=\left(\varepsilon_{1} x_{1}+\alpha, \varepsilon_{2} x_{2}+\varphi\left(x_{1}\right)\right) .
$$

As f is ergodic, the map

$$
\mathbb{T} \ni x \mapsto \varepsilon_{1} x+\alpha \in \mathbb{T}
$$

is ergodic. It follows immediately that $\varepsilon_{1}=1$ and α is irrational.
Next note that $\varepsilon_{2}=1$. Suppose, contrary to our claim, that $\varepsilon_{2}=-1$.
Then

$$
\begin{aligned}
& (2 n)^{-1} D\left(\psi \circ f^{2 n} \circ \psi^{-1}\right)\left(x_{1}, x_{2}\right) \\
& \quad=\left[\begin{array}{cc}
(2 n)^{-1} & 0 \\
(2 n)^{-1} \sum_{k=0}^{n-1}\left(D \varphi\left(x_{1}+\alpha+2 k \alpha\right)-D \varphi\left(x_{1}+2 k \alpha\right)\right) & (2 n)^{-1}
\end{array}\right] .
\end{aligned}
$$

By the Ergodic Theorem,
$\frac{1}{2 n} \sum_{k=0}^{n-1}\left(D \varphi\left(x_{1}+\alpha+2 k \alpha\right)-D \varphi\left(x_{1}+2 k \alpha\right)\right) \rightarrow \frac{1}{2} \int_{\mathbb{T}}(D \varphi(x+\alpha)-D \varphi(x)) d x=0$
uniformly. Therefore the sequence $(2 n)^{-1} D f^{2 n}$ converges uniformly to zero, which is impossible. It follows that

$$
\psi \circ f \circ \psi^{-1}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\varphi\left(x_{1}\right)\right)
$$

where α is irrational. By Lemma 1, the sequence $n^{-1} D\left(\psi \circ f^{n} \circ \psi^{-1}\right)$ converges uniformly to the matrix $\left[\begin{array}{cc}0 & 0 \\ d(\varphi) & 0\end{array}\right]$. It follows that the topological degree of φ is not zero, which completes the proof.

For measure-preserving C^{1}-diffeomorphisms Lemma 1 and Theorem 8 give the following characterization of the property of being algebraically conjugate to a skew product of an irrational rotation and a C^{1}-cocycle with nonzero degree.

Corollary 1. Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{1} diffeomorphism. Then the following are equivalent:
(i) f is ergodic and has linear growth of the derivative;
(ii) f is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{1}-cocycle with nonzero degree.
3. Polynomial growth. Assume that $f:(M, \mathcal{B}, \mu) \rightarrow(M, \mathcal{B}, \mu)$ is a measure-preserving C^{2}-diffeomorphism of a compact Riemannian C^{2}-manifold M. Let β be a positive number. We say that the derivative of f has polynomial growth with degree β if the sequence $n^{-\beta} D f^{n}$ converges μ-a.e. to a measurable μ-nonzero function.

It is clear that replacing n by n^{β} in the lemmas of the previous section we obtain the following property. Every ergodic measure-preserving C^{2}-diffeomorphism whose derivative has polynomial growth with degree β is algebraically conjugate to a diffeomorphism $\widehat{f}:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ of the
form

$$
\widehat{f}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, \varepsilon x_{2}+\varphi\left(x_{1}\right)\right)
$$

where α is irrational, $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{2}-cocycle and $\varepsilon \in\{-1,1\}$. Note that $\varepsilon=1$. Suppose, contrary to our claim, that $\varepsilon=-1$. Then

$$
\begin{aligned}
& (2 n)^{-\beta} D \widehat{f}^{2 n}\left(x_{1}, x_{2}\right) \\
& \quad=\left[\begin{array}{cc}
(2 n)^{-\beta} & 0 \\
(2 n)^{-\beta} \sum_{k=0}^{n-1}\left(D \varphi\left(x_{1}+\alpha+2 k \alpha\right)-D \varphi\left(x_{1}+2 k \alpha\right)\right) & (2 n)^{-\beta}
\end{array}\right] .
\end{aligned}
$$

Recall (see [2], p. 73) that if $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ is the sequence of denominators of an irrational number γ and $\xi: \mathbb{T} \rightarrow \mathbb{R}$ is a function of bounded variation then

$$
\left|\sum_{k=0}^{q_{n}-1} \xi(x+k \gamma)-q_{n} \int_{\mathbb{T}} \xi(t) d t\right| \leq \operatorname{Var} \xi
$$

for any $x \in \mathbb{T}$ and $n \in \mathbb{N}$.
Denote by $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ the sequence of denominators of 2α. As $\int_{\mathbb{T}}(D \varphi(t+\alpha)$ $-D \varphi(t)) d t=0$, we obtain

$$
\left|\sum_{k=0}^{q_{n}-1}(D \varphi(x+\alpha+2 k \alpha)-D \varphi(x+2 k \alpha))\right| \leq 2 \operatorname{Var} D \varphi
$$

for any $x \in \mathbb{T}$. Hence the sequence $\left(2 q_{n}\right)^{-\beta} D \widehat{f}^{2 q_{n}}$ converges uniformly to zero, which is impossible. Therefore $\varepsilon=1$.

Since the derivative of \widehat{f} has polynomial growth with degree β and

$$
n^{-\beta} D \widehat{f}^{n}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
n^{-\beta} & 0 \\
n^{-\beta} \sum_{k=0}^{n-1} D \varphi\left(x_{1}+k \alpha\right) & n^{-\beta}
\end{array}\right]
$$

it follows that the sequence $n^{-\beta} \sum_{k=0}^{n-1} D \varphi(\cdot+k \alpha)$ converges a.e. to a nonzero measurable function $h: \mathbb{T} \rightarrow \mathbb{R}$. Choose $x \in \mathbb{T}$ such that

$$
\lim _{n \rightarrow \infty} n^{-\beta} \sum_{k=0}^{n-1} D \varphi(x+k \alpha)=h(x) \neq 0
$$

Now denote by $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ the sequence of denominators of α. Since

$$
\left|\sum_{k=0}^{q_{n}-1} D \varphi(x+k \alpha)-q_{n} \int_{\mathbb{T}} D \varphi(t) d t\right| \leq \operatorname{Var} D \varphi
$$

we have

$$
\lim _{n \rightarrow \infty}\left(q_{n}^{-\beta} \sum_{k=0}^{q_{n}-1} D \varphi(x+k \alpha)-q_{n}^{1-\beta} \int_{\mathbb{T}} D \varphi(t) d t\right)=0 .
$$

Hence

$$
\lim _{n \rightarrow \infty} q_{n}^{1-\beta} \int_{\mathbb{T}} D \varphi(t) d t=h(x) \neq 0 .
$$

It follows that $\beta=1$ and $d(\varphi)=\int_{\mathbb{T}} D \varphi(t) d t \neq 0$. From the above we deduce
Theorem 9. For no positive $\beta \neq 1$ does there exist an ergodic measurepreserving C^{2}-diffeomorphism whose derivative has polynomial growth with degree β.

REFERENCES

[1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[2] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 5-234.
[3] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.
[4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.

Faculty of Mathematics and Computer Science
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: fraczek@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification: Primary 37A05, 37C05, 37C40.
 Research partly supported by KBN grant 2 P03A 00214 (1998) and by Foundation for Polish Science.

