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COUNTING PARTIAL TYPES IN SIMPLE THEORIES

BY

OLIVIER L E S S M A N N (CHICAGO, IL)

Abstract. We continue the work of Shelah and Casanovas on the cardinality of fam-
ilies of pairwise inconsistent types in simple theories. We prove that, in a simple theory,
there are at most λ<κ(T )+2µ+|T | pairwise inconsistent types of size µ over a set of size λ.
This bound improves the previous bounds and clarifies the role of κ(T ). We also compute
exactly the maximal cardinality of such families for countable, simple theories.

The main tool is the fact that, in simple theories, the collection of nonforking ex-
tensions of fixed size of a given complete type (ordered by reverse inclusion) has a chain
condition. We show also that for a notion of dependence, this fact is equivalent to Kim–
Pillay’s type amalgamation theorem; a theory is simple if and only if it admits a notion
of dependence with this chain condition, and furthermore that notion of dependence is
forking.

1. Introduction. Counting types to understand the complexity of a
first order theory was initiated in the 1950s. It has been a recurring theme
of model theory since, and became central with Saharon Shelah’s stability
theory, where the number of types is used to characterize key model-theoretic
properties.

One such property is the independence property; it is equivalent to the
existence, in each cardinal λ, of a set over which there are 2λ complete
types. Since all simple unstable theories and some nonsimple theories have
the independence property, to count types in simple theories, it is necessary
to shift the focus from counting complete types to counting partial types.
This is done by considering a chain condition on the poset consisting of
small partial types over a large set.

Shelah pointed this out when he introduced simple theories already [Sh].
In addition to proving that a theory is simple if and only if forking has local
character, he characterized simplicity in terms of a bound on the number
of pairwise inconsistent partial types of fixed size over a larger set (Theo-
rem 0.2 of [Sh]). Enrique Casanovas [Ca] extended this and also character-
ized supersimplicity in this way (see below for precise statements). Moreover,
Casanovas showed that this characterization can be used to show the sim-
plicity of a theory. Thus far, in contrast to the case of stable theories, the
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main method of showing the simplicity of a theory had been to use a theo-
rem of Byunghan Kim and Anand Pillay (building on the work of Kim [K])
asserting that a theory is simple if and only if it possesses a dependence
relation satisfying a canonical list of nice properties (Theorem 4.2 of [KP]).

This paper continues the work of Shelah and Casanovas. In order to state
the results, we need to introduce some notation. For cardinals µ and λ, we
let NT(µ, λ) (NT stands for Number of Types) be the supremum of the
cardinality of families of pairwise inconsistent partial types, each of size µ,
over a fixed set of cardinality λ. Notice that for λ = µ ≥ |T |, we retrieve the
usual way of counting types in stability theory, so this point of view is an
extension of the original way of counting types.

In [Ca] Casanovas proves the following theorems.

Theorem (2.8 of [Ca]). The following conditions are equivalent :

(1) T is simple.
(2) For all µ, λ, NT(µ, λ) ≤ λ|T | + 2µ.
(3) For some regular µ ≥ |T |+, for all λ, NT(µ, λ) ≤ λ|T | + 2µ.
(4) There are µ, λ such that λ<µ = λ and NT(µ, λ) < λκ.

Theorem (3.2 of [Ca]). The following conditions are equivalent :

(1) T is supersimple.
(2) For all µ, λ, NT(µ, λ) ≤ λ+ 2µ+|T |.
(3) For some µ, for all λ, NT(µ, λ) ≤ λ+ 2µ+|T |.
(4) There are µ, λ such that NT(µ, λ) < λω.

In this paper, we prove the following results:

Theorem A. If T is simple, then NT(µ, λ) ≤ λ<κ(T ) + 2µ+|T | for
all µ, λ.

This bound makes the role of κ(T ) explicit. It improves (1)⇒(2) of The-
orem 2.8 (since κ(T ) ≤ |T |+) and gives (1)⇒(2) of Theorem 3.2 (since for
supersimple theories κ(T ) = ℵ0). The presence of the term λ<κ(T ) plays
a similar role in Shelah’s stability spectrum theorem (Corollary III 3.8
of [Sh a]). For stable theories, the bound NT(µ, λ) ≤ λ<κ(T ) + µ0 (µ0 is
the first stability cardinal) follows directly from the stability spectrum the-
orem (see Proposition 2.2 below).

The proof of Theorem A proceeds very differently from the proof of the
upper bound in [Ca]. The idea is to prove that, when the theory is sim-
ple, the poset consisting of nonforking extensions of a given size of a fixed
complete type (partially ordered by reverse inclusion) has a chain condi-
tion (Theorem 2.4). This chain condition is interesting in its own right; it
is to the Kim–Pillay type amalgamation theorem [KP] in simple theories,
what the bound on the number of nonforking extensions is to stationarity in
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stable theories. Similar posets were introduced by Shelah in [Sh] for “weak
dividing”, and in [GIL] for forking. We also show (Theorem 2.6) that a the-
ory is simple if and only if it admits a notion of dependence which satisfies
the chain condition; furthermore the notion of dependence coincides with
forking. This provides a new way to prove that a theory is simple.

Using the work of Casanovas and Shelah, we can show a converse to
Theorem A. The improvement in (2)⇒(1) is that it gives a bound on κ(T ).

Theorem B. For a theory T and a cardinal κ the following conditions
are equivalent :

(1) T is simple and κ(T ) ≤ κ.
(2) NT(µ, λ) ≤ λ<κ + 2µ+|T | for each µ, λ.

Finally, Theorem A and lower bounds derived from [Ca] also allow us
to complete the computation of the numbers NT(µ, λ) for infinite µ and λ,
when T is simple and countable. For stable, countable T , this was done
in [Ca]. Similarly to the stability spectrum (see Section III.5 of [Sh a]) and
to [Ke], it seems significantly more difficult to compute NT(µ, λ) when T is
uncountable.

Theorem C. Let T be simple and countable.

(1) If T is stable, then NT(µ, λ) = λ<κ(T ) + µ0 for all infinite µ, λ
(µ0 is the first stability cardinal).

(2) If T is unstable, then NT(µ, λ) = λ<κ(T ) + 2µ+|T | for all infinite
µ, λ.

The notation is standard. T denotes a complete, first order theory. We
work inside the monster model, a large sufficiently saturated model of T . All
sets, models, sequences, and elements are assumed to be inside the monster
model. We use letters a, b to denote finite sequences of elements and occa-
sionally write AB for A∪B. Types are not assumed to be complete, unless
specified. A type is over a set A if its parameters come from the set A. The
reader is referred to [Sh a] and [KP] for the model-theoretic background.

2. Counting types. Consider the set S(A,µ) of types q over A such
that |q| ≤ µ (identify types which are equivalent), partially ordered by
q1 ≤ q2 if q1 ` q2. We will count types in this poset by considering the
size of antichains. In this poset, two types are incompatible if their union
is not consistent. Hence, an antichain A in S(A,µ) is a family of pairwise
inconsistent types in S(A,µ). We restate the basic definition of [Ca].

Definition 2.1. Let µ ≤ λ be cardinals. Let

NT(µ, λ) = sup{|A| : there exists A of size λ and

A is an antichain in S(A,µ)}.
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Notice that for µ1 ≤ µ2 and λ1 ≤ λ2 we have NT(µ1, λ1) ≤ NT(µ2, λ2).
Notice also that for λ ≥ |T |, NT(λ, λ) is the supremum of |S(A)| for A of
cardinality λ. This allows us to show the following motivating proposition.

Proposition 2.2. Let T be stable and let µ0 be the first stability cardinal.
Then for every µ, λ we have NT(µ, λ) ≤ λ<κ(T ) + µ0.

P r o o f. Let T be stable. Let χ = λ<κ(T ) + µ0. Then, by the stability
spectrum theorem (Corollary III 3.8 of [Sh a]), T is stable in χ. Hence
NT(µ, λ) ≤ NT(χ, χ) ≤ χ.

The previous proposition follows from the fact that, because of the sta-
tionarity of types over models in a stable theory, a type can have at most
2µ pairwise inconsistent nonforking extensions of size µ (µ ≥ |T |). A similar
bound exists in simple theories.

In order to prove our theorems, we introduce another partial order. Fix
a cardinal µ, a set A, and a complete type p over a subset of A. Consider the
set NFp(A,µ) of all types q over A such that |q| ≤ µ and p∪q is a nonforking
extension of p (identify two types that are equivalent over p). Order this set
by q1 ≤ q2 if p ∪ q1 ` p ∪ q2. When µ ≥ |p|, the notation can be simplified,
but it is also interesting to consider the case when µ = ℵ0. In this partial
order, two types q1 and q2 are incompatible if and only if p ∪ q1 ∪ q2 is not
a nonforking extension of p.

Definition 2.3. We say that forking has the chain condition if, for every
cardinal µ, each set A, and each complete type p over a subset of A, the poset
NFp(A,µ) has the (2µ+|p|)+-chain condition, i.e. if {pi | i < (2µ+|p|)+} is
such that |pi| ≤ µ and p∪pi is a nonforking extension of p for i < (2µ+|p|)+,
then there exist i < j < (2µ+|p|)+ such that p ∪ pi ∪ pj is a nonforking
extension of p.

The proof is a straightforward extension of Shelah’s original argument
(appearing only in [GIL] as Theorem 5.8). It uses the basic properties of
forking in simple theories.

Theorem 2.4 (Chain Condition). If T is simple then forking has the
chain condition.

P r o o f. Let µ, A, p, and {pi | i < (2µ+|p|)+} be given as in the previous
definition. Choose B ⊆ A such that p ∈ S(B). By increasing the size of each
pi if necessary, we may assume that µ ≥ |p|, that each pi is a nonforking
extension of p, and that there exist Ci containing B with |Ci| ≤ µ and
pi ∈ S(Ci) for each i < (2µ)+.

Let 〈Mi | i < (2µ)+〉 be an increasing, continuous chain of models of size
2µ such that B ⊆M0 and Ci ⊆Mi+1 for each i < (2µ)+.
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Let S := {δ < (2µ)+ | cf δ = µ+}. Then S is a stationary subset of (2µ)+.
Now define f : S → (2µ)+ by f(δ) := min{j | tp(Cδ/Mδ) does not fork
over Mj}.

Since T is simple, for every δ ∈ S there exists Bδ ⊆Mδ of cardinality at
most µ such that tp(Cδ/Mδ) does not fork over Bδ. Since cf δ = µ+, there is
j < δ such that Bδ ⊆Mj . This shows that f(δ) < δ for every δ ∈ S. Hence,
by Fodor’s Lemma, there exists a stationary S∗ ⊆ S and a fixed j < (2µ)+

such that tp(Cδ/Mδ) does not fork over Mj for every δ ∈ S∗. Without loss
of generality, we may assume that S∗ = (2µ)+ and j = 0, i.e., tp(Ci/Mi)
does not fork over M0 for every i < (2µ)+.

By simplicity again, for every i < (2µ)+ there exists Ni ⊆ M0 of car-
dinality µ such that Ni contains B and tp(Ci/M0) does not fork over Ni.
Hence, by the pigeonhole principle, there exists a subset S∗ ⊆ (2µ)+ of car-
dinality (2µ)+ and a model N ⊆ M0 of cardinality µ such that Ni = N for
every i ∈ S∗. Without loss of generality, we may assume that S∗ = (2µ)+,
i.e., tp(Ci/M0) does not fork over N for every i < (2µ)+. By transitivity
of forking, tp(Ci/Mi) does not fork over N for each i < (2µ)+. Hence, by
monotonicity of forking, we have

(∗) tp(Ci/NCj) does not fork over N for every j < i < (2µ)+.

Since pi does not fork over B by definition, we can find qi ∈ S(NCi)
extending pi such that qi does not fork over B for every i < (2µ)+. By the
pigeonhole principle again, there exists a subset S∗ ⊆ (2µ)+ of cardinality
(2µ)+ and a type q ∈ S(N) such that qi�N = q for every i ∈ S∗. Without
loss of generality, we may assume that S∗ = (2µ)+, i.e., qi�N = q for every
i < (2µ)+.

Thus, by the choice of qi,

(∗∗) qi is a nonforking extension of q ∈ S(N) for every i < (2µ)+.

Hence, by the type amalgamation theorem over models applied to (∗)
and (∗∗), we see that qi ∪ qj does not fork over N , for each j < i < (2µ)+.
Hence, by monotonicity and transitivity, pi ∪ pj does not fork over B for
each i < j.

Remark 2.5. By applying the argument in the previous proof inductively
(in a similar way to the argument in the next proof), one can show that for
every integer n < ω, if {pi | i < (2µ+|p|)+} is such that p∪pi is a nonforking
extension of p and |pi| ≤ µ, then there exist i1 < . . . < in < (2µ+|p|)+ such
that p ∪ pi1 ∪ . . . ∪ pin is a nonforking extension of p.

As in [KP], a notion of dependence is a relation Γ on triples of sets
satisfying invariance, finite character, local character, extension, symmetry,
and transitivity (see Definition 4.1 of [KP]). We say tp(a/B) Γ -forks over A
if (a,B,A) is in Γ . Theorem 4.2 of [KP] states that a theory is simple if and
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only if it admits a notion of dependence Γ satisfying the type amalgamation
theorem over models. Further, the notion of dependence Γ coincides with
forking. We say that a notion of dependence Γ has the chain condition if it
satisfies Definition 2.3 with “nonforking” replaced by “Γ -nonforking”. The
next theorem shows that the chain condition has the same consequence as
the type amalgamation theorem for a notion of dependence. Hence, it can
be used to show that a theory is simple. The proof proceeds similarly to
Theorem 4.2 of [KP]. Note that the proof yields a little more than what the
theorem states: a theory is simple if it has a notion of dependence which has
the chain condition for types pi over finitely many parameters.

Theorem 2.6. Let T be an arbitrary theory. T is simple if and only if T
admits a notion of dependence which has the chain condition. Furthermore,
the dependence relation is forking.

P r o o f. If T is simple, it follows from [K] and [Sh] that forking is a notion
of dependence. By Theorem 2.4 above, forking has the chain condition.

We now show the converse and the furthermore. It is enough to show that
tp(a/Ab) does not Γ -fork over A if and only if tp(a/Ab) does not fork over
A. Kim and Pillay showed that for a notion of dependence Γ , if tp(a/Ab)
Γ -forks over A then tp(a/Ab) forks over A. Moreover, if tp(a/Ab) does not
Γ -fork and does not divide, then tp(a/Ab) does not fork (see [KP], Claim I
and Claim III of the proof of Theorem 4.2). Hence, it is enough to show that
if tp(a/Ab) does not Γ -fork over A then tp(a/Ab) does not divide over A.

Assume that tp(a/Ab) does not Γ -fork over A. Let p(x, b) = tp(a/Ab).
Let 〈bi | i < ω〉 be indiscernible over A. To show that p(x, b) does not
divide over A it is enough to show that

⋃
i<ω p(x, bi) is consistent. Let 〈bi |

i<(2|A|+|T |)+〉 extending 〈bi | i<ω〉 be indiscernible over A. By invariance,
p(x, bi) is a Γ -nonforking extension of tp(a/A) for i < (2|A|+|T |)+. We show
by induction on n < ω that

⋃
i≤n p(x, bi) is a Γ -nonforking extension of p.

To do this, we show by induction on n that

p(x, bi0) ∪ p(x, bi1) ∪ . . . ∪ p(x, bin) is a Γ -nonforking extension of tp(a/A)

for every i0 < . . . < in < (2|A|+|T |)+. For n = 0 this is the assumption.
Assume inductively, that for every i0 < . . . < in < (2|A|+|T |)+, the type
p(x, bi0) ∪ . . . ∪ p(x, bin) is a Γ -nonforking extension of tp(a/A). There are
(2|A|+|T |)+ many types of this form, so by the chain condition the union of
two distinct such types is a Γ -nonforking extension of tp(a/A). Hence, there
are i0 < . . . < in < in+1 < (2|A|+|T |)+ such that p(x, bi0) ∪ . . . ∪ p(x, bin) ∪
p(x, bin+1

) is a Γ -nonforking extension of tp(a/A). By indiscernibility and
invariance, this is true for all such (n+1)-tuples, which finishes the induction.
Thus,

⋃
i≤n p(x, bi) is a Γ -nonforking (hence consistent) extension of tp(a/A)

for each n < ω. So
⋃
i<ω p(x, bi) is consistent.
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We can now prove Theorem A.

Proof of Theorem A. Let χ = λ<κ(T ) + 2µ+|T |. Let A be a set of car-
dinality λ. Suppose, for a contradiction, that {pi | i < χ+} is a family of
pairwise inconsistent partial types over A, with |pi| ≤ µ. By replacing pi
with an extension of size µ + |T | if necessary, we may assume that each pi
is in S(Ci) for some Ci ⊆ A with |Ci| ≤ µ. By simplicity, for each pi there
exists Bi ⊆ Ci ⊆ A of cardinality less than κ(T ) such that pi does not fork
over Bi. Since there are at most λ<κ(T ) such subsets of A, by the pigeonhole
principle we may assume that there exists B of cardinality less than κ(T )
such that each pi does not fork over B. Furthermore, since |S(B)| ≤ 2|T |, we
may assume that there is p ∈ S(B) such that pi is a nonforking extension of
p for each i < µ. By the chain condition for forking, there exist i < j such
that pi ∪ pj is a nonforking extension of p. Hence, pi ∪ pj is consistent, a
contradiction.

The next fact follows immediately from the proof of Lemma 2.3 of [Ca],
or from the proof of Theorem III 7.7, Theorem III 4.1, and Exercise III 4.14
of [Sh a].

Fact 2.7. Let T be simple. If µ < κ(T ), λµ > 2µ, and λ<µ = λ, then
NT(2µ, λ) ≥ λµ.

We can now prove Theorem B.

Proof of Theorem B. (1)⇒(2) follows from Theorem A.
We prove (2)⇒(1): Let µ = κ and λ = iκ(|T |). Then λ<µ = λ and

λµ > λ. So, NT(µ, λ) ≤ λ < λµ. Hence, T is simple by Theorem 2.8 of [Ca].
Suppose, for a contradiction, that κ < κ(T ). Since λ<κ = λ and λκ > 2κ,

we have NT(2κ, λ) ≥ λκ, by Fact 2.7. Hence, by the assumption of the
theorem,

λκ ≤ NT(2κ, λ) ≤ λ<κ + 22
κ+|T | ≤ λ.

This contradicts König’s Lemma.

The next proposition is a converse to Proposition 2.2. Notice that the
assumption that κ(T ) = µ1 to derive the conclusion on the first stability
cardinal is necessary.

Proposition 2.8. Let κ1, µ1 be cardinals. Suppose that NT(µ, λ) ≤
λ<κ1 + µ1 for each µ, λ. Then T is stable and κ(T ) ≤ κ1. If κ1 = κ(T )
then the first stability cardinal is at most µ1 .

P r o o f. Let λ = 2κ1+µ1 and µ = λ. For each A of cardinality λ, we have
|S(A)| ≤ NT(λ, λ) ≤ λ<κ1 + 2µ1 = λ. Hence, T is stable.

The proof that κ(T ) ≤ κ1 is as Theorem B, (2)⇒(1). Now suppose that
NT(µ, λ) ≤ λ<κ(T )+µ1. Let λ=µ=µ0, the first stability cardinal. Let A be
of cardinality µ0. Then λ<κ(T ) = λ and µ0 = |S(A)| ≤ NT(µ0, µ0) ≤ µ1.
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We can now prove Theorem C. Equality also holds for supersimple, not
necessarily countable, theories (as observed in [Ca] using algebraic types).

Proof of Theorem C. (1) Check that λ<κ(T ) + µ0 has, in each case, the
values computed in Propositions 4.2 and 4.3 of [Ca].

(2) Let µ, λ be infinite. If T is supersimple, then κ(T ) = ℵ0, so NT(µ, λ)
≥ λ<κ(T ), via the algebraic types. If T is not supersimple, then Theorem 3.2
of [Ca] implies that NT(µ, λ) ≥ λℵ0 . Since κ(T ) = ℵ1 as T is countable,
we have NT(µ, λ) ≥ λ<κ(T ). Hence, since T has the independence property,
NT(µ, λ) ≥ λ<κ(T ) + 2µ. Equality follows from Theorem A.

REFERENCES

[Ca] E. Casanovas, The number of types in simple theories, Ann. Pure Appl. Logic
98 (1999), 69–86.

[GIL] R. Grossberg, J. Iov ino, and O. Lessmann, A primer of simple theories,
preprint.

[Ke] H. J. Ke is l e r, Six classes of theories, J. Austral. Math. Soc. 21 (1976), 257–256.
[K] B. Kim, Forking in simple unstable theories, J. London Math. Soc. 57 (1998),

257–267.
[KP] B. Kim and A. Pi l lay, Simple theories, Ann. Pure Appl. Logic 88 (1997),

149–164.
[Sh a] S. She lah, Classification Theory and the Number of Nonisomorphic Models, rev.

ed., North-Holland, 1990.
[Sh] —, Simple unstable theories, Ann. Math. Logic 19 (1998), 177–203.

Department of Mathematics, Statistics, and Computer Science
University of Illinois
Chicago, IL 60607, U.S.A.
E-mail: lessmann@uic.edu

Received 6 May 1999; (3811)
revised 7 August 1999


