FUNDAMENTAL SOLUTIONS FOR TRANSLATION AND ROTATION INVARIANT DIFFERENTIAL OPERATORS ON THE HEISENBERG GROUP

BY

PRISCILLA GORELLI (TORINO)

Abstract. Let \(H_1 \) be the three-dimensional Heisenberg group. Consider the left-invariant differential operators of the form \(D = P(-iT, -L) \), where \(P \) is a polynomial in two variables with complex coefficients, \(L \) is the sublaplacian on \(H_1 \) and \(T \) is the derivative with respect to the central direction. We find a fundamental solution of \(D \), whose definition is related to the way the plane curve defined by \(P(x, y) = 0 \) intersects the Heisenberg fan \(F = A \cup B, A = \{(x, y) \in \mathbb{R}^2 : y = (2m + 1)|x|, m \in \mathbb{N}\}, B = \{(x, y) \in \mathbb{R}^2 : x = 0, y > 0\} \). We can write an explicit expression of such a fundamental solution when the curve \(P(x, y) = 0 \) intersects \(F \) at finitely many points, all belonging to \(A \) and, if one of them is the origin, the monomial \(y^k \) has a nonzero coefficient, where \(k \) is the order of zero at the origin. As a consequence, such operators are globally solvable on \(H_1 \).

1. Introduction. In this paper we study problems of solvability of left invariant differential operators on the three-dimensional Heisenberg group \(H_1 \).

Let \(\Omega \) be an open set in a Lie group \(G \). A left-invariant differential operator \(P \) on \(G \) is locally solvable at \(x_0 \in \Omega \) if there exists a neighborhood \(U \) of \(x_0 \) in \(\Omega \) such that for all \(f \in C^\infty(U) \) there exists a distribution \(u \) on \(U \) that satisfies \(Pu = f \) on \(U \).

\(P \) is semiglobally solvable in \(\Omega \) if for all \(f \in \mathcal{D}(\Omega) \) and for all open sets \(U \) relatively compact in \(\Omega \) there exists \(u \in C^\infty \) such that \(Pu = f \) on \(U \).

Finally, \(P \) is globally solvable in \(\Omega \) if \(PC^\infty(\Omega) = C^\infty(\Omega) \). Global solvability is stronger than semiglobal solvability, and the latter implies local solvability.

We shall consider those differential operators that are expressed as polynomials with complex coefficients in \(L \) and \(T \), \(L \) being the sublaplacian and \(T \) the derivative with respect to the central direction. \(L \) and \(T \) commute and generate the algebra of differential operators on \(H_1 \) which are invariant with respect to both left translations and rotations.

Such a problem has already been solved for operators represented by polynomials of degree one. In [9] and [6] it is shown that the operator \(-L + \)

2000 Mathematics Subject Classification: 43A80, 22E30, 35A08.
iaT + c, α, c ∈ C, is locally solvable unless c = 0 and α = 2m + 1, for some integer m. As we shall see, it is natural to formulate the following conjecture: the operator $D = P(-iT, -L)$, where P is a polynomial with complex coefficients, is locally solvable on the Heisenberg group H_1 if and only if $P(λ, ξ)$ is not divisible by $ξ - (2m + 1)λ$, for some $m ∈ Z$.

In this work, we show that the above conjecture is correct with certain restrictions on P. In the solvable case we in fact construct a fundamental solution. If G is a Lie group, a distribution $E ∈ D^\prime(G)$ is a fundamental solution of an invariant operator P if $PE = δ_0$, $δ_0$ being the Dirac delta at the identity. The existence of a fundamental solution implies semiglobal solvability. Moreover, if G is P-convex, then the semiglobal solvability of P implies its global solvability. The Heisenberg group is P-convex with respect to all nonzero invariant differential operators (see [4]).

2. Preliminaries. The $(2n + 1)$-dimensional Heisenberg group H_n is the Lie group, diffeomorphic to \mathbb{R}^{2n+1}, whose multiplication law is defined as

\[(x, y, t)(x', y', t') = (x + x', y + y', t + t' + 2(x' \cdot y - x \cdot y')),\]

where $x, y, x', y' ∈ \mathbb{R}^n$, $t ∈ \mathbb{R}$ and $x \cdot y$ is the usual inner product on \mathbb{R}^n.

A base for its Lie algebra h_n consists of the left invariant vector fields

\[X_j = \frac{∂}{∂x_j} + 2y_j \frac{∂}{∂t}, \quad Y_j = \frac{∂}{∂y_j} - 2x_j \frac{∂}{∂t}, \quad T = \frac{∂}{∂t},\]

where $j = 1, \ldots, n$. The commutation relations are $[X_j, T] = [Y_j, T] = 0$, $[X_j, Y_k] = -4δ_{j,k}T$, for all $j, k = 1, \ldots, n$.

The sublaplacian is the left invariant operator on H_n defined by

\[L = \frac{1}{4} \sum_{j=1}^n (X_j^2 + Y_j^2).\]

If $n = 1$, then $L = \frac{1}{4}(X^2 + Y^2)$. It is a homogeneous operator of degree two with respect to the dilations $δ_r$ on H_1, induced by the automorphisms of h_1 defined by

\[δ_r X = rX, \quad δ_r Y = rY, \quad δ_r T = r^2 T.\]

Indeed,

\[δ_r L = \frac{1}{4}(δ_r X^2 + δ_r Y^2) = r^2 L.\]

Note that also $T = ∂/∂t$ is homogeneous of degree two.

Consider the spherical functions

\[φ_{λ,m}(x, y, t) = e^{-iλt}l_m(2|λ|(x^2 + y^2)),\]
where \(t_m(x) = e^{-x^2/2}L_m(x) \) and \(L_m(x) = L_m^{(0)}(x) \) is the \(m \)th Laguerre polynomial of index \(\alpha = 0 \), defined by

\[
L_m^{(\alpha)}(x) = \sum_{k=0}^{m} \frac{(m + \alpha)(-x)^k}{m - k}.
\]

The \(\varphi_{\lambda,m} \) are joint bounded radial eigenfunctions of \(L \) and \(T \), and

(2) \(T \varphi_{\lambda,m} = -i\lambda \varphi_{\lambda,m} \),

(3) \(L \varphi_{\lambda,m} = -|\lambda|(2m + 1)\varphi_{\lambda,m} \).

Let \(\Delta \) be the Gelfand spectrum of the Banach algebra \(L^1_{\text{rad}}(H_1) \) of integrable radial functions on \(H_1 \). Then

\[
\Delta = \{ \varphi_{\lambda,m} : \lambda \neq 0, m \in \mathbb{N} \} \cup \{ \varphi_{0,\xi} : \xi \geq 0 \}
\]

where

\[
\varphi_{0,\xi}(x, y, t) = J_0(2\sqrt{\xi(x^2 + y^2)})
\]

and

\[
J_0(t) = \frac{1}{2\pi} \int_0^{2\pi} e^{it \sin \theta} d\theta
\]

is the Bessel function of order 0.

It is shown in [2] that the Gelfand topology on \(\Delta \) coincides with the topology on

\[
F = \{ (\lambda, |\lambda|(2m + 1)) \in \mathbb{R}^2 : \lambda \neq 0, m \in \mathbb{N} \} \cup \{ (0, \xi) \in \mathbb{R}^2 : \xi \geq 0 \}
\]

induced from the Euclidean topology of \(\mathbb{R}^2 \).

The set \(F \) is usually called the Heisenberg fan.

We now state two technical lemmas involving Laguerre functions, which will be useful later on.

Lemma 2.1. The Laguerre functions \(t_m^{(\alpha)}(x) = e^{-x^2/2}L_m^{(\alpha)}(x) \) satisfy the following estimates:

(4) \[|t_m^{(\alpha)}(x)| \leq 1, \]
Proof. Estimate (4) follows from the properties of Laguerre polynomials (see, for instance, Section 10.12 in [5]), while (5) is an immediate consequence of the following property:

\[
\frac{d^j}{dx^j} f_m^{(\alpha)}(x) = \sum_{h=0}^{j} c_h m(m-1) \cdots (m-h+1) f_{m-h}^{(\alpha+h)}(x),
\]

which can be proved by induction from the identity

\[
\frac{d}{dx} f_m^{(\alpha)}(x) = -\frac{1}{2} f_m^{(\alpha)}(x) + \frac{m}{\alpha + 1} f_{m-1}^{(\alpha+1)}(x)
\]

(see [5], formula (15) of Section 10.12).

Lemma 2.2. For all \(\lambda \neq 0 \),

\[
\left| \frac{\partial^j}{\partial \lambda^j} \varphi_{-\lambda,m}(x, y, t) \right| \leq C_j \left[|t| + (m + 1)(x^2 + y^2) \right]^j.
\]

Proof. By the estimates of Lemma 2.1 we have

\[
\left| \frac{\partial^j}{\partial \lambda^j} \varphi_{-\lambda,m}(x, y, t) \right| = \left| \frac{\partial^j}{\partial \lambda^j} (e^{i\lambda t} f_m^{(0)}(2|\lambda|(x^2 + y^2))) \right|
\]

\[
\leq \sum_{h=0}^{j} \binom{j}{h} \left| \frac{\partial^{j-h}}{\partial \lambda^{j-h}} e^{i\lambda t} \right| \left| \frac{\partial^h}{\partial \eta^h} f_m^{(0)}(2|\lambda|(x^2 + y^2)) \right|_{\eta=2|\lambda|(x^2+y^2)}
\]

\[
\leq \sum_{h=0}^{j} \binom{j}{h} |t|^{j-h} C_h (m + 1)^h (2(x^2 + y^2))^h
\]

\[
\leq C_j \sum_{h=0}^{j} \binom{j}{h} |t|^{j-h} [(m + 1)(x^2 + y^2)]^h
\]

\[
= C_j \left[|t| + (m + 1)(x^2 + y^2) \right]^j.
\]

3. Solvability of polynomials in \(L \) and \(T \). We will give some techniques that enable us to find a fundamental solution of operators of the form

\[
D = P(-iT, -L),
\]

where \(P \) is a polynomial in two variables with complex coefficients, \(L \) is the sublaplacian, \(T \) is the derivative with respect to \(t \).
Proposition 3.1. Let D_1 and D_2 be operators of the form (8). Then
$D = D_1D_2$ is locally solvable if and only if D_1 and D_2 are locally solvable.

Proof. Suppose D is locally solvable; then there exist a neighborhood U and a distribution $u \in \mathcal{D}(U)$ such that for all $f \in C^\infty(U)$ one has $Du = f$ in U. Since D_1 and D_2 commute, we have

$$D_1(D_2u) = f = D_2(D_1u)$$
on U, that is, D_1 and D_2 are locally solvable. Let us see that the converse is also true.

If D_1 is locally solvable, then there exists an open set U_1 such that for all $f \in C^\infty(U_1)$ (in particular $f \in \mathcal{S}(U_1)$) there exists $u \in \mathcal{D}'(U_1)$ which is a solution of $D_1u = f$ in U_1. Since D_2 is locally solvable, there exist a neighborhood U_2 and a distribution $v \in \mathcal{D}'(U_2)$ such that $D_2v = u$ in U_2. Therefore D is locally solvable, for $Dv = D_1D_2v = D_1u = f$ in $U_1 \cap U_2$.

Corollary 3.2. (a) If $P(\lambda, \xi)$ is identically zero on some oblique ray of the fan, then D is not locally solvable.

(b) If $P(\lambda, \xi)$ is identically zero on the vertical ray of the fan, i.e. $D = T^h D_1$, then D is locally solvable if and only if D_1 is locally solvable.

Proof. (a) By hypothesis $P(\lambda, \xi)$ is divisible by $\xi - (2m + 1)\lambda$, for some $m \in \mathbb{Z}$. Then $D = D_1D_2$, where $D_1 = -L + i(2m + 1)T$. Such an operator is not locally solvable (see [6]). By Proposition 3.1, D is not locally solvable.

(b) T^h is known to be locally solvable. Indeed, solving the problem $T^h u = u$, where $u \in \mathcal{D}'(U)$, is equivalent to finding an hth primitive of u in the variable t. Such a primitive always exists (see Theorem IV, Ch. II, Sec. 5 in [8]). The statement follows from Proposition 3.1.

We will therefore restrict our investigation to those operators such that $P(\lambda, \xi)$ does not vanish identically on any ray of the fan.

Theorem 3.3. If P is a homogeneous polynomial, then $D = P(-iT, -L)$ is solvable if and only if $P(\lambda, \xi)$ is not divisible by $\xi - (2m + 1)\lambda$, for some $m \in \mathbb{Z}$. Moreover, in this case D is globally solvable.

Proof. It is well known that if P is a homogeneous polynomial in two variables, then it factors as a product of terms of degree one. Since the operator $-L + i(2m + 1)T$, corresponding to the polynomial $\xi - (2m + 1)\lambda$, is not locally solvable for all $m \in \mathbb{Z}$, the assertion follows from Proposition 3.1.

The last statement is true because D is homogeneous with respect to the dilations δ_ϵ on H_1 defined before.

Let us describe the irreducible unitary representations of H_n. For every $\lambda \neq 0$, we have the Schrödinger representation π_λ, which is unique up to
equivalence and is defined in the following way. Given \(f \in L^2(\mathbb{R}^n) \),
\[
(\pi_x(x, y, t)f)(\xi) = e^{-i\lambda(t+2x \cdot y-4\xi \cdot y)}f(\xi - x).
\]
To the value \(\lambda = 0 \) there correspond the one-dimensional representations
\[
\pi_{\xi, \eta}(x, y, t) = e^{-i(\xi \cdot x + \eta \cdot y)},
\]
where \(\xi, \eta \in \mathbb{R}^n \).

Such representations are pairwise inequivalent and every irreducible unitary representation of \(H_n \) is equivalent to one of them.

The Fourier transform of a function \(f \in L^1(H_n) \) is the collection of all operators
\[
\pi(f) = \int_{H_n} f(x, y, t)\pi(x, y, t) \, dx \, dy \, dt
\]
where \(\pi \) ranges over the set of unitary irreducible representations of \(H_n \) described above. The inversion formula
\[
f(x, y, t) = \frac{1}{(2\pi)^{n+1}} \int_{\mathbb{R}} \text{tr}(\pi_{\lambda}(f)\pi_{\lambda}(x, y, t)^*)|\lambda|^n \, d\lambda
\]
holds in a dense subspace of \(L^1(H_n) \), in particular for Schwartz functions. If we choose an orthonormal basis of \(L^2(\mathbb{R}^n) \), we can compute the trace explicitly. Put \(n = 1 \) and fix the normalized Hermite basis \(\{h^\lambda_m\}_{m \in \mathbb{N}} \) of \(L^2(\mathbb{R}) \), where
\[
h^\lambda_m(\xi) = \frac{|\lambda|^{1/4}}{2^{(m-1)/2} \sqrt{m!} \pi^{1/4}} \phi_m(\sqrt{|\lambda|} \xi)
\]
with \(\phi_m(\xi) = D_m^0 e^{-2\xi^2} \) and \(D_\lambda = \frac{1}{2}(d/d\xi - 4\lambda \xi) \). In this basis, (9) can be rewritten as
\[
f(x, y, t) = \frac{1}{(2\pi)^{n+1}} \sum_m \int_{\mathbb{R}} \langle \pi_{\lambda}(f)h^\lambda_m, \pi_{\lambda}(x, y, t)h^\lambda_m \rangle |\lambda|^n \, d\lambda,
\]
where the inner product is taken in \(L^2(\mathbb{R}) \).

We have
\[
\varphi_{\lambda, m}(v) = \langle \pi_{\lambda}(v)h^\lambda_m, h^\lambda_m \rangle,
\]
where \(v = (x, y, t) \). If we put \(\tilde{g}(\lambda, m, n) = \langle \pi_{\lambda}(g)h^\lambda_n, h^\lambda_m \rangle \) for all \(g \in \mathcal{S}(H_1) \), then
\[
\tilde{g}(\lambda, m, m) = \int_{H_1} \varphi_{\lambda, m}(v)g(v) \, dv.
\]
Therefore, since \(\|\varphi_{\lambda, m}\|_\infty = 1 \) for all \(m \) and \(\lambda \),
\[
|\tilde{g}(\lambda, m, m)| \leq \|g\|_{L^1(H_1)}.
\]

Let \(f \) be a Schwartz function on \(H_1 \) and assume that \(Du = f \). By formally applying the Fourier transform to both sides, we get
\[
\pi_{\lambda}(Du)h^\lambda_m = \pi_{\lambda}(f)h^\lambda_m.
\]
If \(V \) is a left invariant vector field, we have
\[
\pi_\lambda(Vu) = -\pi_\lambda(u)d\pi_\lambda(V).
\] (13)

Take \(D \) as in (8). By (13) we get
\[
\pi_\lambda(Du) = \pi_\lambda(u)d\pi_\lambda(tD).
\] (14)

Moreover,
\[
d\pi_\lambda(T)h^\lambda_m = -i\lambda h^\lambda_m, \quad d\pi_\lambda(L)h^\lambda_m = -(2m+1)|\lambda|h^\lambda_m.
\]

Therefore
\[
d\pi_\lambda(tD)h_m^\lambda = d\pi_\lambda(P(iT,-L))h_m^\lambda = P(d\pi_\lambda(iT), d\pi_\lambda(-L))h_m^\lambda = P(\lambda, |\lambda|(2m+1))h_m^\lambda,
\]

and, by (14),
\[
\pi_\lambda(Du)h_m^\lambda = \pi_\lambda(u)P(\lambda, |\lambda|(2m+1))h_m^\lambda.
\] (15)

Formula (15) can be viewed as an analogue of the identity
\[
(p(-i\partial)u)^\lambda(\xi) = p(\xi)\hat{u}(\xi),
\]

holding on \(\mathbb{R}^n \) for a differential operator with constant coefficients. The polynomial \(p(\xi) \) appearing in (16) is called the symbol of the operator \(p(-i\partial) \).

For this reason we call \(P(\lambda, \xi) \) the symbol of \(D \).

From (12) and (15) it follows that
\[
\pi_\lambda(Du)h_m^\lambda = \pi_\lambda(u)P(\lambda, |\lambda|(2m+1))h_m^\lambda = \pi_\lambda(f)h_m^\lambda,
\]

therefore
\[
\pi_\lambda(u)h_m^\lambda = \frac{\pi_\lambda(f)h_m^\lambda}{P(\lambda, |\lambda|(2m+1))}.
\] (17)

From the inversion formula (10) and from (17) we get the following formal expression for \(u \):
\[
u(v) = \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} \frac{\langle \pi_\lambda(f)h_m^\lambda, \pi_\lambda(v)h_m^\lambda \rangle}{P(\lambda, |\lambda|(2m+1))} |\lambda| d\lambda
\]
\[
= \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} \int_{H_1} f(w) \frac{\langle \pi_\lambda(w)h_m^\lambda, \pi_\lambda(v)h_m^\lambda \rangle}{P(\lambda, |\lambda|(2m+1))} dw |\lambda| d\lambda
\]
\[
= \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} \int_{H_1} f(w) \frac{h_m^\lambda, \pi_\lambda(w^{-1}v)h_m^\lambda}{P(\lambda, |\lambda|(2m+1))} dw |\lambda| d\lambda
\]
\[
= \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} \int_{H_1} f(w) \phi_{-\lambda,m}(w^{-1}v) \frac{dw}{P(\lambda, |\lambda|(2m+1))} |\lambda| d\lambda
\]
\[
= \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} f * \phi_{-\lambda,m}(v) \frac{\lambda}{P(\lambda, |\lambda|(2m+1))} |\lambda| d\lambda.
\]
Therefore, if we can define
\[K(v) = \frac{1}{(2\pi)^2} \int \sum_{m=0}^{\infty} \frac{\varphi_{-\lambda,m}(v)}{P(\lambda,|\lambda|(2m+1))} |\lambda| \, d\lambda \]

as a distribution, it follows that \(u = f \ast K \), so that a fundamental solution of \(D \) is the tempered distribution defined by
\[\langle K, g \rangle = \frac{1}{(2\pi)^2} \int_{H_1} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\varphi_{-\lambda,m}(v)g(v)}{P(\lambda,|\lambda|(2m+1))} |\lambda| \, d\lambda \, dv \]
\[= \frac{1}{(2\pi)^2} \int_{\mathbb{R}} \sum_{m=0}^{\infty} \frac{\hat{g}(-\lambda,m,m)}{P(\lambda,|\lambda|(2m+1))} |\lambda| \, d\lambda, \]

for all \(g \in S(H_1) \). Note that only the radial coefficients \(\hat{g}(-\lambda,m,m) \) occur in this formula, so \(K \) is radial.

For a generic polynomial \(P \), (18) does not converge absolutely in general. The series may not converge, and the integral has singularities when the algebraic curve defined by \(P(\lambda,\xi) = 0 \) intersects the Heisenberg fan. Thus, we are going to face our problem by considering separately different cases, according to the mutual position of the algebraic curve \(P(\lambda,\xi) = 0 \) and the fan. For each case, we define a fundamental solution of \(D \), modifying (18) in a suitable way, in order to get a well defined tempered distribution.

As we have already said above in this section, we are reduced to considering algebraic curves \(P(\lambda,\xi) = 0 \) that intersect each ray of the fan in at most finitely many points.

4. First case: no intersections. The simplest situation occurs when \(P(\lambda,\xi) \) is never zero on \(F \). To solve this problem we use the following fact (see [7], Appendix A, Example 2.7).

Lemma 4.1. If \(P \in \mathbb{R}[x_1,\ldots,x_n] \) and \(P(x) > 0 \) for all \(x \in \mathbb{R}^n \), then there exist \(C > 0 \) and \(N \in \mathbb{N} \) such that
\[P(x) > C(1 + |x|^2)^{-N} \quad \forall x \in \mathbb{R}^n. \]

A consequence of this lemma is the following

Lemma 4.2. If \(P \in \mathbb{C}[x,y] \) and \(P(x,y) \neq 0 \) in the closed domain of the plane defined by \(y \geq |x|(2m+1) \), then in this region we have the estimate
\[|P(x,y)| > C(1 + x^2 + y^2)^{-N}, \]

for some \(C > 0 \) and \(N \in \mathbb{N} \).

Proof. By changing coordinates we can reduce to the case \(P(x,y) \neq 0 \) in the first quarter of the plane. Therefore assume that for all \(x \geq 0, y \geq 0 \) we have \(|P(x,y)| > 0 \).
If \(P(x, y) = P_1(x, y) + iP_2(x, y) \) with \(P_1(x, y), P_2(x, y) \in \mathbb{R}[x, y] \), then \(|P(x, y)| = \sqrt{P_1(x, y)^2 + P_2(x, y)^2} \) and \(Q(x, y) = P_1(x, y)^2 + P_2(x, y)^2 \in \mathbb{R}[x, y] \). Since \(Q \) is positive for all \(x \geq 0 \) and \(y \geq 0 \), the polynomial \(R(x, y) = Q(x^2, y^2) \) is positive for all \((x, y) \in \mathbb{R}^2 \).

By Lemma 4.1 there exist \(C_1 > 0 \) and \(N \in \mathbb{N} \) such that
\[
R(x, y) > C_1(1 + x^2 + y^2)^{-N}.
\]

For \(x \geq 0 \) and \(y \geq 0 \), \(Q(x, y) = R(\sqrt{x}, \sqrt{y}) \), therefore
\[
Q(x, y) > C_1(1 + x + y)^{-N} > C_2(1 + x^2 + y^2)^{-N/2}
\]
and so
\[
|P(x, y)| > C(1 + x^2 + y^2)^{-N/4}.
\]

Consider an operator \(D \) whose symbol \(P \) is such that \(P(\lambda, \xi) = 0 \) defines an algebraic curve that does not intersect \(F \), i.e. \(P(\lambda, |\lambda|(2m + 1)) \neq 0 \) for all \(m \in \mathbb{N}, \lambda \in \mathbb{R} \) and \(P(0, \xi) \neq 0 \) for all \(\xi > 0 \).

Theorem 4.3. Take \(D = P(-iT, -L) \) such that \(P(\lambda, \xi) \) is not zero on \(F \).

Define the distribution \(K \) by
\[
\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \frac{\hat{g}(-\lambda, m)}{P(\lambda, |\lambda|(2m + 1))} |\lambda| \, d\lambda, \quad g \in \mathcal{S}(H_1),
\]
where the integral on the right-hand side is absolutely convergent. Then \(K \) is a fundamental solution of \(D \).

Proof. The algebraic curve \(P(\lambda, \xi) = 0 \) in the \(\lambda, \xi \) plane has a finite number of connected components (see [3], Theorems 2.3.6 and 2.4.5). Since it does not intersect \(F \), there exists an integer \(k \in \mathbb{N} \) such that \(P(\lambda, \xi) \neq 0 \) in the closed region defined by \(\xi \geq (2k + 1)|\lambda| \).

By Lemma 4.2, for all \(m \geq k \) one has
\[
|P(\lambda, |\lambda|(2m + 1))| > C(1 + \lambda^2(2m + 1))^{-N},
\]
for some \(C > 0 \) and \(N \in \mathbb{N} \). Moreover, for fixed \(m < k \), we define
\[
\mu_m = \min_{\lambda \in \mathbb{R}} |P(\lambda, |\lambda|(2m + 1))| > 0.
\]

Let \(M \) be a positive constant such that \(M < \min\{\mu_m : m = 1, \ldots, k - 1\} \).

Hence \(|P(\lambda, |\lambda|(2m + 1))| > M \) for \(m < k \). Putting these two estimates together shows that there exist a positive constant \(C \) and a natural number \(N \) such that
\[
|P(\lambda, |\lambda|(2m + 1))| > C(1 + \lambda^2(2m + 1))^2 \quad \text{for every } m.
\]
Since the symbol of \(t^D \) is \(P(-\lambda, |\lambda|(2m + 1)) \), it follows from (15) that, for all \(g \in \mathcal{S}(H_1) \),
\[
\pi_{\lambda}(g) h^\lambda_m = \frac{\pi_{\lambda}(t^D g) h^\lambda_m}{P(-\lambda, |\lambda|(2m + 1))},
\]
whence
(20)
\[
\pi_{-\lambda}(g) h^\lambda_m = \frac{\pi_{-\lambda}(t^D g) h^\lambda_m}{P(\lambda, |\lambda|(2m + 1))}
\]
and, recalling (11),
(21)
\[
|\hat{g}(-\lambda, m, m)| = \frac{|(t^D g)^\lambda(-\lambda, m, m)|}{|P(\lambda, |\lambda|(2m + 1))|} \leq C \frac{\|t^D g\|_{L^1}}{|P(\lambda, |\lambda|(2m + 1))|}.
\]
Set \(A = I + L^2 \); then \(t^A = A \) and, by replacing \(D \) with \(A^{N+2} \) in (20),
we get
\[
\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \frac{\hat{g}(-\lambda, m, m) |\lambda|}{P(\lambda, |\lambda|(2m + 1))} \, d\lambda
\]
Moreover, by (19), we get
\[
|\langle K, g \rangle| \leq \frac{\|A^{N+2} g\|_{L^1}}{(2\pi)^2} \sum_{m=0}^{\infty} \frac{|\lambda| \cdot |P(\lambda, |\lambda|(2m + 1))|^{-1}}{(1 + \lambda^2(2m + 1)^2)^{N+2}} \, d\lambda
\]
\[
\leq C \|A^{N+2} g\|_{L^1} \sum_{m=0}^{\infty} \frac{|\lambda|(1 + \lambda^2(2m + 1)^2)^N}{(1 + \lambda^2(2m + 1)^2)^{N+2}} \, d\lambda
\]
\[
\leq C \|A^{N+2} g\|_{L^1} \sum_{m=0}^{\infty} \frac{1}{(2m + 1)^2} \int_0^{\infty} \frac{t}{(1 + t^2)^{N+2}} \, dt
\]
\[
\leq C' \|A^{N+2} g\|_{L^1} \leq C'' \|g\|_{(n)}
\]
where \(\| \cdot \|_{(n)} \) is a continuous Schwartz norm. Therefore \(K \) is a tempered distribution. Let us show that it is a fundamental solution. We verify that \(DK = \delta \), by testing both sides of the identity on a Schwartz function \(f \) and applying (20):
\[
\langle DK, f \rangle = \langle K, t^D f \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \frac{\langle t^D f, (t^D g)^\lambda(-\lambda, m, m) \rangle}{P(\lambda, |\lambda|(2m + 1))} \, d\lambda
\]
\[
= \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \frac{\langle \pi_{-\lambda}(t^D f) h^\lambda_m, h^\lambda_m \rangle}{P(\lambda, |\lambda|(2m + 1))} \, d\lambda
\]
Therefore a solution of the problem $Du = f$ is

$$u(x, y, t) = (f * K)(x, y, t).$$

5. Second case: a finite number of intersections, all away from the vertical ray. We now turn to the case in which the algebraic curve $P(\lambda, \xi) = 0$ intersects the Heisenberg fan in a finite number of points, all of them belonging to the oblique rays and different from the origin.

Let us begin, for simplicity, by assuming that $\{(\lambda, \xi) \in \mathbb{R}^2 : P(\lambda, \xi) = 0\}$ intersects the fan with multiplicity $h \geq 1$ in one single point, lying on the kth ray. We can assume that this point has the form $(\alpha, |\alpha|(2k + 1))$, with $\alpha > 0$. Therefore, there exists a polynomial $Q(\lambda)$ such that, for $\lambda \geq 0$,

$$P(\lambda, |\lambda|(2k + 1)) = (\lambda - \alpha)^h Q(\lambda) \quad \text{and} \quad Q(\lambda) \neq 0; \quad \text{for} \lambda < 0, \quad P(\lambda, |\lambda|(2m + 1)) \neq 0 \quad \text{for} \ m \neq k \text{ and } \lambda \in \mathbb{R}.

Given a C^∞ function $\varphi(x)$, define

$$R_{h, \alpha}(\varphi(x)) = \varphi(x) - \sum_{j=0}^{h-1} \frac{\varphi^{(j)}(\alpha)}{j!} (x - \alpha)^j.$$

If $g(x)$ is a rational function with a pole of order h at α and I is an interval containing α, then

$$\varphi \mapsto \int_I R_{h, \alpha}(\varphi) g(x) \, dx$$

is a well defined distribution, which is a modified version of Hadamard’s finite part (see [8], Ch. 2, Sec. 2, Example 2).

Note that

$$(22) \quad R_{h, \alpha}((x - \alpha)^h g(x)) = (x - \alpha)^h g(x).$$

THEOREM 5.1. Consider $D = P(-iT, -L)$ and suppose that P is as above. Then D has a fundamental solution $K \in \mathcal{S}'(H_1)$, defined as follows: for all $g \in \mathcal{S}(H_1)$,

$$\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \langle K_m, g \rangle$$
where

\[
(K_m, g) = \int_{\mathbb{R}} \frac{\hat{g}(-\lambda, m, m)\lambda}{P(\lambda, |\lambda|(2m+1))} d\lambda \quad \text{for} \ m \neq k,
\]

\[
(K_k, g) = \int_{\mathbb{R}\setminus[0,2\alpha]} \frac{\hat{g}(-\lambda, k, k)\lambda}{P(\lambda, |\lambda|(2k+1))} d\lambda + \int_{0}^{2\alpha} \frac{R_{h,\alpha}(\hat{g}(-\lambda, k, k))\lambda}{P(\lambda, |\lambda|(2k+1))} d\lambda.
\]

Proof. All of the integrals converge absolutely. For all \(m \neq k \) and for all \(\lambda \in \mathbb{R} \), \(P(\lambda, |\lambda|(2m+1)) \neq 0 \), so we can argue as in the proof of Theorem 4.3 to show that

\[
\left| \sum_m (K_m, g) \right| \leq C \|g\|_N, \quad \text{for some} \ N \gg 0.
\]

If \(m = k \), we have

\[
(K_k, g) = \int_{\mathbb{R}\setminus[0,2\alpha]} \frac{\hat{g}(-\lambda, k, k)\lambda}{P(\lambda, |\lambda|(2k+1))} d\lambda + \int_{0}^{2\alpha} \int_{H_1}^{H_2} \frac{d^h}{d\lambda^h} \varphi_{-\lambda, k}(v) \lambda |g(v)| h!Q(\lambda) d\lambda dv,
\]

where \(\xi \) is strictly between \(\alpha \) and \(\lambda \). The first term is absolutely convergent because again \(P(\lambda, |\lambda|(2k+1)) \neq 0 \) in \(\mathbb{R} \setminus [0,2\alpha] \). If we apply estimate (5) to the derivatives of the functions \(\varphi_{-\lambda, m}(v) \) we can show that also the second integral is absolutely convergent, so we deduce that \(K \) is a tempered distribution. Let us show that it is a fundamental solution of \(D \). Using (22) we have

\[
(K_k, tDf) = \int_{\mathbb{R}\setminus[0,2\alpha]} \hat{f}(-\lambda, k, k)\lambda d\lambda + \int_{0}^{2\alpha} \frac{R_{h,\alpha}(P(\lambda, |\lambda|(2k+1))\hat{f}(-\lambda, k, k))\lambda}{P(\lambda, |\lambda|(2k+1))} d\lambda = \int_{\mathbb{R}\setminus[0,2\alpha]} \hat{f}(-\lambda, k, k)\lambda d\lambda + \int_{0}^{2\alpha} \frac{P(\lambda, |\lambda|(2k+1))\hat{f}(-\lambda, k, k)|\lambda|}{P(\lambda, |\lambda|(2k+1))} d\lambda.
\]

Therefore

\[
(K, tDf) = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \int_{\mathbb{R}} \hat{f}(-\lambda, m, m)\lambda d\lambda = f(0,0,0).
\]
This result extends in an obvious way to those operators $D = P(-iT, -L)$ such that $P(\lambda, \xi) = 0$ intersects the fan with finite multiplicity in finitely many points, all of them belonging to the oblique rays and different from the origin.

Corollary 5.2. Let $D = P(-iT, -L)$ be such that $P(\lambda, |\lambda|(2m + 1)) = 0$ only at finitely many points, say $(\lambda_{j,h}, |\lambda_{j,h}||(2m_j + 1))$, $j = 1, \ldots, r$, $h = 1, \ldots, r_j$, each of them lying on the curve $\xi = |\lambda|(2m_j + 1)$ and having multiplicity $\mu_{j,h}$. Suppose also that $P(0, \xi) \neq 0$ for all $\xi \geq 0$. Let $I_{j,h}$ be intervals centered at $\lambda_{j,h}$ such that $I_{j,h} \cap I_{j,h'} = \emptyset$ if $h \neq h'$. Then D has a fundamental solution

$$\langle K, g \rangle = \frac{1}{(2\pi)^2} \left(\sum_{j=1}^{r} \langle K_{m_j}, g \rangle + \sum_{m \notin \{m_1, \ldots, m_r\}} \langle K_m, g \rangle \right), \quad g \in S(H_1),$$

where

$$\langle K_m, g \rangle = \int_{\mathbb{R}} \frac{\hat{g}(-\lambda, m, m)|\lambda|}{P(\lambda, |\lambda|(2m + 1))} d\lambda \quad \text{if} \quad m \notin \{m_1, \ldots, m_r\},$$

$$\langle K_{m_j}, g \rangle = \int_{\bigcup I_{j,h}} \frac{R_{\mu_{j,h}, \lambda_{j,h}}(\hat{g}(-\lambda, m_j, m_j)|\lambda|)}{P(\lambda, |\lambda|(2m_j + 1))} d\lambda$$

$$+ \int_{\mathbb{R} \setminus \bigcup I_{j,j}} \frac{\hat{g}(-\lambda, m_j, m_j)|\lambda|}{P(\lambda, |\lambda|(2m_j + 1))} d\lambda.$$
for all \(x, y \geq 0 \) with \(\sqrt{x^2 + y^2} \geq 1 \).

Proof. Define \(Q(x, y) = P(x + 1/\sqrt{2}, y) \). Then \(Q(x, y) \neq 0 \) for all \(x \geq 0, y \geq 0 \), therefore by Lemma 4.2 we have the estimate

\[
|Q(x, y)| > C_1(1 + x^2 + y^2)^{-N_1}
\]

for all \(x \geq 0, y \geq 0 \). Hence

\[
|P(x, y)| = |Q(x - 1/\sqrt{2}, y)| > C_2(1 + x^2 + y^2)^{-N_1}
\]

for all \(x \geq 1/\sqrt{2}, y \geq 0 \). In the same way we can show that there exist \(C_3 > 0 \) and \(N_2 \in \mathbb{N} \) such that, for all \(x \geq 0, y \geq 1/\sqrt{2},
\]

\[
|P(x, y)| > C_3(1 + x^2 + y^2)^{-N_2}.
\]

If we take \(C = \max(C_2, C_3) \) and \(N = \min(N_1, N_2) \), we get the estimate (24) for all \(x, y \geq 0 \) with \(\sqrt{x^2 + y^2} \geq 1 \).

We begin with the case where the origin is the only zero.

Theorem 6.2. Suppose that

\[
P(\lambda, \xi) = c_\xi \xi^k + \sum_{|\alpha| = k, \alpha \neq \xi} c_\alpha \xi^\alpha \lambda^{\alpha_2} + \sum_{|\alpha| > k} c_\alpha \xi^\alpha \lambda^{\alpha_2}, \quad c_\alpha \in \mathbb{C}, \quad c_\xi \neq 0,
\]

and that \(P(\lambda, |\lambda|(2m + 1)) \neq 0 \) for all \(\lambda \neq 0, m \in \mathbb{N} \). Define the distribution \(K \), for all \(g \in \mathcal{S}(H_1) \), by

\[
\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \left\{ \int_{|\lambda| \geq \delta/(2m+1)} \frac{\tilde{g}(-\lambda, m, m)|\lambda|}{P(\lambda, |\lambda|(2m+1))} d\lambda + \int_{|\lambda| < \delta/(2m+1)} \frac{R_{k+N_m-1,0}(\tilde{g}(-\lambda, m, m)|\lambda|}{P(\lambda, |\lambda|(2m+1))} d\lambda \right\}
\]

where \(N_m \in \mathbb{N} \) is zero except for finitely many \(m \in \mathbb{N} \) and \(\delta \) is a suitable positive constant. Then \(K \) is a fundamental solution of \(D = P(-iT, -L) \).

Proof. Let \(\sigma \) be a positive constant. On the line \(\xi = \lambda/\sigma, P(\lambda, \xi) \) takes the value

\[
P_\sigma(\xi) = P(\sigma \xi, \xi) = \xi^k \left(c_\xi + \sum_{|\alpha| = k, \alpha \neq \xi} c_\alpha \sigma^{\alpha_2} \right) + \sum_{|\alpha| > k} c_\alpha \sigma^{\alpha_2} \xi^{|\alpha|}.
\]

Note that \(c_\xi + \sum_{|\alpha| = k, \alpha \neq \xi} c_\alpha \sigma^{\alpha_2} \) tends to \(c_\xi \) as \(\sigma \to 0 \). Therefore, if \(\sigma \) is small enough, the quantity \(|c_\xi + \sum_{|\alpha| = k, \alpha \neq \xi} c_\alpha \sigma^{\alpha_2}| \) is not zero and can be bounded from below by a positive constant. Thus, there exists \(\sigma_0 \) such that for all \(\sigma \leq \sigma_0 \), \(|c_\xi + \sum_{|\alpha| = k, \alpha \neq \xi} c_\alpha \sigma^{\alpha_2}| \geq C_1 > 0 \).

Since

\[
\sum_{|\alpha| > k} c_\alpha \sigma^{\alpha_2} \xi^{|\alpha|} = o(\xi^k) \quad \text{as} \quad \xi \to 0,
\]

(24) holds for all \(x, y \geq 0 \) with \(\sqrt{x^2 + y^2} \geq 1 \).
if \(\xi \) is small enough, then \(\sum_{|\alpha|>k} c_\alpha \sigma^{\alpha_2} \xi^{\alpha} \) is negligible with respect to \(\xi^k \). Therefore there exists \(\delta_0 > 0 \) such that if \(\xi \leq \delta_0 \) and \(\sigma \leq \sigma_0 \), then

\[
|P_\sigma(\xi)| \geq \left| C_1 \xi^k - \sum_{|\alpha|>k} c_\alpha \sigma^{\alpha_2} \xi^{\alpha}\right| \geq C_2 |\xi|^k.
\]

Thus, in the triangle

\[
\mathcal{E} = \{(\lambda, \xi) \in \mathbb{R}^2 : |\lambda|/\sigma_0 \leq \xi \leq \delta_0 \}
\]

we have \(|P(\lambda, \xi)| \geq C |\xi|^k \).

Hence,

\[
|P(\lambda, \lambda/((2m + 1))] | \geq C (2m + 1)^k \lambda^k
\]

for all \(m \geq 1/(2\sigma_0) - 1/2 \) and all \(\lambda \) such that \(|\lambda| \leq \delta_0 \sigma_0 \).

For finitely many \(m < 1/(2\sigma_0) - 1/2 \), it may happen that the sum \(c_\alpha + \sum_{|\alpha|=k, \alpha \neq \pi} c_\alpha / (2m + 1)^{\alpha_2} \) is zero. Therefore, for all \(m < 1/(2\sigma_0) - 1/2 \), there exist \(N_m \in \mathbb{N} \) and \(\delta_1 > 0 \) such that, if \(|\lambda| < \delta_1 \), then

\[
|P(\lambda, \lambda/((2m + 1))] | > M \lambda^{k+N_m}.
\]

Put \(\delta = \min(\sigma_0, \delta_0, \delta_1) \) and let us show that \(K \) in (25) is a tempered distribution. Note that

\[
\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} (I_1^m + I_2^m),
\]

where

\[
I_1^m = \int_{|\lambda| \geq \delta/(2m+1)} \frac{\tilde{g}(\lambda, m, m)|\lambda|}{P(\lambda, \lambda/((2m + 1))] } d\lambda
\]

\[
I_2^m = \sum_{|\lambda| < \delta/(2m+1)} \left[\frac{d^{k+N_m-1}}{d \lambda^{k+N_m-1}} \tilde{g}(\lambda, m, m) \right]_{\lambda = \lambda_m} \lambda^{k+N_m-1} |\lambda| \frac{\lambda^{k+N_m-1} |\lambda|}{(k+N_m-1)! P(\lambda, \lambda/((2m + 1))] } d\lambda
\]

and \(\lambda_m \) in \(I_2^m \) is a value between 0 and \(\lambda \), for all \(m \).

Take \(m < 1/(2\sigma_0) - 1/2 \). Then \(I_1^m \) is absolutely convergent because \(P(\lambda, \lambda/((2m + 1))] \neq 0 \) for all \(\lambda \) such that \(|\lambda| \geq \delta/(2m+1) \). By estimate (27) we get

\[
\left| \frac{d^{k+N_m-1}}{d \lambda^{k+N_m-1}} \phi_{-\lambda, m}(v) \right|_{\lambda = \lambda_m} \leq C \left| \phi_{-\lambda, m} \right|_{\infty} \leq C,
\]

where \(\phi_{-\lambda, m}(v) = \tilde{g}(\lambda, m, m) \frac{\lambda^{k+N_m-1} |\lambda|}{(k+N_m-1)! P(\lambda, \lambda/((2m + 1))] } \frac{d^{k+N_m-1}}{d \lambda^{k+N_m-1}} \phi_{-\lambda, m}(v) \).
Therefore the integrals occurring in \(K \), corresponding to \(m < 1/(2\sigma_0) - 1/2 \), are absolutely convergent.

Consider now the infinitely many terms in \(K \) labeled by \(m \geq 1/(2\sigma_0) - 1/2 \). Recall that \(N_m = 0 \) for such \(m \). By applying (7) to the derivatives of \(\varphi_{-\lambda,m}(v) \), and (26) to the polynomial \(P \), we get

\[
\left| \int_{|\lambda| \leq \delta/(2m+1)} \frac{d^{k-1}}{d\lambda^{k-1}} \varphi_{-\lambda,m}(v) \right|_{|\lambda| = \lambda_m} \frac{\lambda^k}{(k-1)!(P(\lambda,|\lambda|(2m+1))} \leq C \| g \|_1.
\]

It follows that, for all \(m \geq 1/(2\sigma_0) - 1/2 \),

\[
|I_m^2| \leq \frac{C_2}{(m+1)^2} \int_{H_1} \left((|t| + (x^2 + y^2))^{k-1} |g(x,y,t)| \right) dx dy dt
\]

\[
= \frac{C_2}{(m+1)^2} \|((|t| + (x^2 + y^2))^{k-1} g) \|_1 \leq \frac{C_3}{(m+1)^2} \| g \|_{(N)},
\]

for some \(N \gg 0 \).

By hypothesis, estimate (24) holds for \(P \). Let \(h = N \) be the exponent appearing in (24) and \(A = -L(I + L^2)^{h+1} \). Then, by (21), we have

\[
\left| \int_{|\lambda| \leq \delta/(2m+1)} \frac{\tilde{g}(-\lambda,m,m)}{P(\lambda,|\lambda|(2m+1))} \right| d\lambda
\]

\[
\leq \frac{C_1}{2m+1} \| \tilde{g} \|_1 \| A \|_1
\]

\[
\leq \frac{C_1}{(2m+1)^2} \int_{|t| \geq \delta} \frac{dt}{1+t^2} \leq \frac{C_2}{(2m+1)^2} \| \tilde{g} \|_1.
\]

Therefore \(K \in S'(H_1) \). Let us show that it is a fundamental solution of \(D \):
\[\langle K, iDf \rangle = \langle K, P(-iT, -L)f \rangle \]

\[
= \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \left\{ \begin{array}{c}
\langle \hat{f}(-\lambda, m, m) | \lambda \rangle d\lambda \\
|\lambda| \geq \delta/(2m + 1)
\end{array} \right.

+ \left\{ \begin{array}{c}
\frac{R_{k+N_m-1,0} (iDf)^\wedge (-\lambda, m, m) | \lambda \rangle}{P(\lambda, |\lambda|(2m + 1))} d\lambda \\
|\lambda| < \delta/(2m + 1)
\end{array} \right.
\]

\[
= \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \left\{ \begin{array}{c}
\langle \hat{f}(-\lambda, m, m) | \lambda \rangle d\lambda \\
|\lambda| \geq \delta/(2m + 1)
\end{array} \right.

+ \left\{ \begin{array}{c}
\frac{R_{k+N_m-1,0} (P(\lambda, |\lambda|(2m + 1)) \hat{f}(-\lambda, m, m) | \lambda \rangle}{P(\lambda, |\lambda|(2m + 1))} d\lambda \\
|\lambda| < \delta/(2m + 1)
\end{array} \right.
\]

\[
= \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \left\{ \begin{array}{c}
\hat{f}(-\lambda, m, m) | \lambda \rangle d\lambda = f(0, 0, 0) \\
|\lambda| \geq \delta/(2m + 1)
\end{array} \right.

+ \left\{ \begin{array}{c}
\frac{R_{k+N_m-1,0} (P(\lambda, |\lambda|(2m + 1)) \hat{f}(-\lambda, m, m) | \lambda \rangle}{P(\lambda, |\lambda|(2m + 1))} d\lambda \\
|\lambda| < \delta/(2m + 1)
\end{array} \right.
\]

since

\[
\frac{R_{k+N_m-1,0} (P(\lambda, |\lambda|(2m + 1)) \hat{f}(-\lambda, m, m))}{P(\lambda, |\lambda|(2m + 1))} = P(\lambda, |\lambda|(2m + 1)) \hat{f}(-\lambda, m, m). \]

Putting together the results obtained up to now, we can generalize Theorem 6.2, allowing \(P(\lambda, \xi) \) to have zeros on \(F \) also outside the origin.

Theorem 6.3. Suppose \(P(\lambda, \xi) \) has the form (23) and let \(P(\lambda, \xi) \) vanish on \(F \) only at the origin and at finitely many points, \((\lambda_j, |\lambda_j|(2m_j + 1)), j = 1, \ldots, r, \) with multiplicity \(\mu_j \). Choosing a sufficiently small positive constant \(\delta \), let \(I_j \) be intervals centered at \(\lambda_j \) such that

\[
I_j \cap \left(-\frac{\delta}{2m_j + 1}, \frac{\delta}{2m_j + 1} \right) = \emptyset
\]

and \(I_j \cap I_{j'} = \emptyset \) if \(m_j = m_{j'} \). Put also

\[
B_m = \mathbb{R} \setminus \left[\left(-\frac{\delta}{2m_j + 1}, \frac{\delta}{2m_j + 1} \right) \cup \bigcup_{m=m_j} I_j \right].
\]

Define the distribution \(K \), for all \(g \in S(H_1) \), by

\[
\langle K, g \rangle = \frac{1}{(2\pi)^2} \sum_{m=0}^{\infty} \left\{ \begin{array}{c}
\int_{B_m} \hat{g}(-\lambda, m, m) |\lambda\rangle d\lambda \\
|\lambda| \geq \delta/(2m + 1)
\end{array} \right.

+ \left\{ \begin{array}{c}
\frac{R_{k+N_m-1,0} (\hat{g}(-\lambda, m, m) | \lambda \rangle)}{P(\lambda, |\lambda|(2m + 1))} d\lambda \\
|\lambda| < \delta/(2m + 1)
\end{array} \right.
\]
\[+ \frac{1}{(2\pi)^2} \sum_{j=1}^{r} \frac{R_{\mu_j,\lambda}(\hat{g}(-\lambda, m_j, m_j)) \lambda! d\lambda}{P(\lambda, |\lambda|(2m_j + 1))}, \]

where \(N_m = 0 \) except for finitely many \(m \in \mathbb{N} \). Then \(K \) is a fundamental solution of \(D \).

REFERENCES