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THOMAS B R Ü S T L E (BIELEFELD)
AND LUTZ H I L L E (HAMBURG)

Abstract. Let Λ be a directed finite-dimensional algebra over a field k, and let B
be an upper triangular bimodule over Λ. Then we show that the category of B-matrices
matB admits a projective generator P whose endomorphism algebra EndP is quasi-
hereditary. IfA denotes the opposite algebra of EndP , then the functor Hom(P,−) induces
an equivalence between matB and the category F(∆) of ∆-filtered A-modules. Moreover,
any quasi-hereditary algebra whose category of ∆-filtered modules is equivalent to matB
is Morita equivalent to A.

1. Introduction. The aim of this note is to interpret matrices over upper
triangular bimodules as ∆-filtered modules over certain quasi-hereditary
algebras. We therefore fix a finite-dimensional algebra Λ over a field k, and
consider a finite-dimensional Λ-Λ-bimodule B.

The category matB of matrices over B can be defined as follows: Let
1 = e1 + . . . + et be a decomposition of the unit element of Λ into pair-
wise orthogonal primitive idempotents. Then the bimodule B decomposes
as k-vector space into a direct sum B =

⊕
i,j eiBej . A matrix over B

is a pair (d,M) where d = (d1, . . . , dt) ∈ Nt is a dimension vector and
M = (Mij)i,j∈{1,...,t} is a (square) block matrix whose blocks Mij are ma-
trices of size dj × di with entries in eiBej .

A morphism in matB from (d,M) to (d′,M ′) is a block matrix H =
(Hij)i,j∈{1,...,t} whose blocks Hij are matrices of size d′j × di with entries in
eiΛej such that HM = M ′H.

In our main result, we require that the algebra Λ is directed and the bi-
module B is upper triangular over the directed algebra Λ, i.e. there is an or-
dering of the idempotents e1, . . . , et such that ei(radΛ)ej=0 and eiBej = 0
whenever i≥j. Here we denote by radΛ the Jacobson radical of Λ.
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Theorem 1.1. Let B be an upper triangular bimodule over a directed
algebra Λ. Then the category of B-matrices matB admits a projective gen-
erator P whose endomorphism algebra EndP is quasi-hereditary. If A de-
notes the opposite algebra of EndP , then the functor Hom(P,−) induces an
equivalence between matB and the category F(∆) of ∆-filtered A-modules.
Moreover , any quasi-hereditary algebra whose category of ∆-filtered modules
is equivalent to matB is Morita equivalent to A.

In the particular case when the category matB consists of subspaces
of a directed vector space category, this theorem is proven in [Ba]. Our
motivation, however, was to obtain a general result that applies to all upper
triangular bimodules, for instance those bimodules stemming from the action
of a parabolic group R on unipotent normal subgroups of R: Let Λ be the
path algebra of the directed Dynkin quiver of type At and let the bimodule
B be the radical of Λ. For a fixed dimension vector d = (d1, . . . , dt), denote
by R(d) the opposite group of the group of invertible block matrices H =
(Hij)i,j∈{1,...,t} whose blocks Hij are matrices of size dj × di with entries
in eiΛej . Then the group R(d) is a parabolic group, the space of matrices
over B with dimension d is the Lie algebra of the unipotent radical of the
parabolic R(d), and the action is the adjoint action of the conjugation on
the Lie algebra (this has been observed in [D] already). More generally, if

R(d)
(l)
u denotes the lth member of the descending central series of R(d), we

obtain the orbits of R on the Lie algebra r(d)
(l)
u of R(d)

(l)
u as isomorphism

classes of matrices over the bimodule B = (radΛ)l+1 with Λ as before. One
can generalize this even more to arbitrary unipotent subgroups of R(d);
see [BH2].

In a series of papers [HR1], [HR2] and [BH1], recently all instances of

parabolic subgroups R in GLn(k) acting with a finite number of orbits on r
(l)
u

were classified. One main step in the proof of these results relates (by an

ad hoc construction) the orbits of the action of R on r
(l)
u to a classification

problem of ∆-filtered modules over a certain quasi-hereditary algebra A,
where A depends only on the number of blocks of R/Ru and on l.

In the present note, we give a general approach and thus explain the
occurrence of quasi-hereditary algebras in [HR1], [HR2] and [BH1]. More-
over, this approach allows results concerning ∆-filtered modules over quasi-
hereditary algebras (such as the existence of almost split sequences, proper-
ties of the Euler form, degeneration of modules) to be applied to the various
categories matB stemming from subspace categories of directed vector space
categories, orbits of parabolic groups R on some unipotent normal subgroup
U and other upper triangular situations.

Given an upper triangular bimodule B, we describe how to construct a
projective generator P of the category matB. There is, however, no hope to



MATRICES OVER UPPER TRIANGULAR BIMODULES 297

get the quiver and relations of the endomorphism algebra A of P directly
from B in general. But it is possible to obtain such a description of A for
the problem outlined above: a parabolic subgroup R acting on a unipotent
normal subgroup U . This example is considered in detail in [BH2]. In fact, in
these instances, the abstract equivalence in Theorem 1.1 preserves not only
the orbits, but much more structure. For results related to the geometry of
the orbits, we also refer to [BHRZ].

Acknowledgements. Both authors are grateful to H. v. Höhne and
D. Vossieck for several helpful discussions concerning the subject of the
paper.

2. Matrices over bimodules and standardization

2.1. Basic notation. We denote by k a fixed field. Our algebras are always
finite-dimensional k-algebras with unit, but in general non-commutative.
Modules are supposed to be finitely generated left modules. In particular,
mod k is the category of finite-dimensional k-vector spaces and modΛ is the
category of finitely generated left modules over an algebra Λ. All categories
are k-categories and an equivalence preserves the underlying k-structure.

For more details on quasi-hereditary algebras, we refer to [DR], and our
basic reference for representations of quivers is [R]. We also mention the
textbook [GR] for an introduction to representation theory, in particular to
matrix problems. For more information on representation theory of posets
and vector space categories, we also refer to [S].

2.2. Bimodules. It is well known that modules over an algebra Λ corre-
spond to k-linear functors modΛ→ mod k, likewise for bimodules. For the
proof of our main theorem, it turns out to be more convenient to introduce
bimodules as bifunctors over arbitrary additive categories. Thus, let Γ be a
finite-dimensional k-algebra and X1, . . . , Xt be a finite number of pairwise
non-isomorphic indecomposable Γ -modules. We denote by add{Xi} the ad-
ditive hull of the objects X1, . . . , Xt in modΓ .

Definition. A bimodule B over add{Xi} is a k-bilinear functor

(add{Xi})op × add{Xi} → mod k.

Remarks. 1. Let Λ be the opposite algebra of EndΓ (
⊕t

i=1Xi). If the
algebra Γ is representation finite and {Xi} is a set of representatives of the
isomorphism classes of indecomposable Γ -modules, then Λ is the Auslander
algebra of Γ . More generally, for any vector d = (d1, . . . , dt) of non-negative
integers we denote the opposite algebra of EndΓ (

⊕t
i=1X

di
i ) by Λ(d). Now,

having a k-bilinear functor (add{Xi})op × add{Xi} → mod k is equivalent
to having a bimodule B over Λ.
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2. The bifunctors HomΓ (−,−),ExtiΓ (−,−) and radΓ (−,−) provide nat-
ural examples of bimodules over add{Xi}. Here radΓ (X,Y ) denotes the k-
vector space of radical morphisms from X to Y (cf. [GR, §3.2] or [R, §2.2]).
With these examples in mind, we use for any bimodule B over add{Xi}
the following notation: If φ : X ′ → X and ψ : Y → Y ′ are morphisms
in add{Xi} and m is an element of B(X,Y ), then we denote the element
B(φ, ψ)(m) of B(X ′, Y ′) by φmψ.

Definition. Let B be a bimodule over add{Xi}. A matrix over B is
a pair (X,m), where X ∈ add{Xi} and m ∈ B(X,X). The matrices over
B form an exact category matB (see Lemma 2.1) whose morphism set
from (X,m) to (X ′,m′) consists of all morphisms φ : X → X ′ in add{Xi}
satisfying φm = m′φ.

Note that the equality φm = m′φ is defined in the vector space B(X,X ′).
The notation mφ for B(X,φ)(m) suggests viewing this equation as a com-
mutative diagram:

X
m→ X

φ ↓ ↓φ
X ′

m′

→ X ′

keeping in mind that φ is a morphism, whereas m and m′ are elements of
B(X,X) and B(X ′, X ′), respectively.

2.3. Exact structures. We fix a bimodule B over add{Xi} and denote by
E the class of pairs (i, d) of composable morphisms in matB

0 → (X ′,m′)
i→ (X,m)

d→ (X ′′,m′′) → 0

such that the induced sequence of Γ -modules

0 → X ′
i→ X

d→ X ′′ → 0

is split exact in add{Xi}.
Lemma 2.1 ([T, §2]). The pair (matB, E) is an exact category in the

sense of [Q].

Note that (matB, E) is not an abelian category in general. There is,
however, an exact embedding into an abelian category:

Proposition 2.2 ([Q], [GR, §9.1]). If (C, E) is a skeletally small exact
category , then there is an equivalence G : C → D onto a full subcategory D
of an abelian category such that D is closed under extensions and that E is
formed by the composable pairs (i, d) inducing exact sequences

0 → GX
Gi→ GY

Gd→ GZ → 0.

We refer to [K, App. A] for a proof.



MATRICES OVER UPPER TRIANGULAR BIMODULES 299

The previous proposition allows us to use most of the concepts known
from categories of modules, thus we can form extension groups in matB with
respect to the exact structure defined by E etc. We note that Ext2(−,−)
vanishes for all objects in matB (see e.g. [T]). Thus, we just write Ext for
the first extension group in the exact category (matB, E).

2.4. Triangular bimodules. We now impose a triangularity condition on
the bimodule B in order to obtain the existence of a projective generator of
the category matB.

Definition. The bimodule B over add{Xi} is triangular if B(Xi, Xj)
= 0 whenever i ≥ j.

Note that this definition depends on the chosen numeration of the Xi’s.
When B is a triangular bimodule, we identify the Γ -module Xi with the
B-matrix (Xi, 0). Let F(X) denote the full subcategory of all B-matrices
which have a filtration by elements in {X1, . . . , Xt}.
Lemma 2.3. Let B be a triangular bimodule over add{Xi}. Then

(i) matB = F(X);
(ii) Ext(Xi, Xj) = 0 for i ≥ j;

(iii) matB has enough projectives.

P r o o f. (i) We only have to show matB ⊂ F(X). Therefore, let (X,m)
be a B-matrix with X 6= 0. Let i ∈ {1, . . . , t} be the smallest index such
that Xi is a direct summand of X. Then (X,m) is isomorphic to a B-matrix(

X ′ ⊕Xi,

[
m′ ∗
0 0

])
,

where m′ ∈ B(X ′, X ′) and ∗ ∈ B(Xi, X
′). Therefore we obtain a short exact

sequence

0 → (X ′,m′)
i→ (X,m)

d→ (Xi, 0) → 0.

The desired filtration of (X,m) is constructed by induction on the number
of direct summands of X. Consequently, matB ⊂ F(X).

(ii) Recall that Ext(Xi, Xj) is formed by short exact sequences

0 → (Xj , 0)
i→ (X,m)

d→ (Xi, 0) → 0.

As discussed in part (i), the B-matrix (X,m) is isomorphic to(
Xj ⊕Xi,

[
0 ∗
0 0

])
,

where ∗ ∈ B(Xi, Xj).
(iii) Recall that an object P is projective if Ext(P,X) = 0 for all objects

X. Since we have an additive exact category with simple objects Xi =
(Xi, 0), this is equivalent to showing Ext(P,Xi) = 0 for all simple objects
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Xi. We construct an object Pi inductively in the following way: X0
i := Xi

and X l
i is the universal extension of X l−1

i by simple objects:

0→
⊕
r

Ext(X l−1
i , Xr)

∗ ⊗Xr → X l
i → X l−1

i → 0.

If we apply Hom(−, Xj) to this sequence, then we obtain a long exact se-
quence

0→ Hom(X l−1
i , Xj)→ Hom(X l

i , Xj)→
⊕
r

Hom(Xr, Xj)⊗ Ext(X l−1
i , Xr)

→ Ext(X l−1
i , Xj)→ Ext(X l

i , Xj)

→
⊕
r

Ext(Xr, Xj)⊗ Ext(X l−1
i , Xr) → 0.

By construction of the universal extension, the connecting homomorphism is
surjective, thus Ext(X l

i , Xj) '
⊕

r Ext(Xr, Xj)⊗Ext(X l−1
i , Xr). Applying

induction we obtain Ext(X l
i , Xj) = 0 whenever i ≥ l + j. Thus the process

of extending X l
i must stop and X l

i = X l0
i for some index l0 and all l ≥ l0.

In fact, l0 ≤ t. We denote the object X l0
i by P ′i . It is a projective object

by construction, but not indecomposable in general. By Pi we denote the
unique indecomposable direct summand which contains Xi in its filtration.
Thus Pi is indecomposable and projective.

It remains to show that we have enough projectives. Let (X, f) be a
matrix. Then (X, 0) ' (

⊕
Xai
i , 0) for certain natural numbers ai. There

exists a map
⊕
P aii → (X, f) sending the top of Pi to (Xi, 0); this map

yields a surjection.

We note that the last statement was already proven in [T]. However,
since we use a different language in this note, we prove this statement again
for the convenience of the reader.

Since we have enough projective objects in matB when the bimodule
B is triangular, we can construct a finite-dimensional algebra A so that
matB is a full subcategory of the category modA of left finitely generated
A modules. The category matB consists of those modules which have a
filtration by the images of (Xi, 0) for the various i.

Lemma 2.4. Let A be the opposite algebra of the endomorphism algebra
of a projective generator of matB. Then matB is a full subcategory of
modA.

P r o o f. This is a standard result. We fix a projective generator P . Then
the functor X 7→ Hom(P,X) defines a full exact embedding of matB into
mod End(P )op.
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In this way, we obtain a particular module category in which we can
embed our exact category, not just an abstract existence result as in Propo-
sition 2.2. It is natural to ask what is the relation between the algebra
Λ = (EndΓ (

⊕t
i=1Xi))

op and the algebra A constructed above. In many
examples it turns out that Λ is a subalgebra of A, but in general it is only
a subquotient:

Proposition 2.5. There exists a subalgebra Λ of A such that Λ is a
quotient of Λ.

P r o o f. We first construct the algebra Λ. Let P →
⊕t

i=1Xi be a
surjection of the projective generator P onto the direct sum of simple objects
in matB, and let U be the kernel. Thus we have an exact sequence

0→ U → P →
t⊕
i=1

Xi → 0.

We define Λ to be the opposite algebra of the algebra of all endomor-
phisms f of P satisfying f(U) ⊂ U . Recall that Λ is the opposite algebra of
End(

⊕t
i=1Xi). Since f ∈ Λ maps U into itself, it induces an endomorphism

of
⊕t

i=1Xi. In this way, we obtain an algebra homomorphism Λ→ Λ. We
claim that this algebra homomorphism is surjective: let g be an element of
End(

⊕t
i=1Xi). Then g induces a map g′ ∈ Hom(P,

⊕t
i=1Xi) which lifts to

a map in End(P ) since P is projective and P →
⊕t

i=1Xi is surjective. This
shows the claim.

2.5. Upper triangular bimodules and quasi-hereditary algebras

Definition. The bimodule B over add{Xi} is upper triangular if the
algebra Λ is directed (i.e. radΛ(Xi, Xj)=0 whenever i ≥ j) and if B(Xi, Xj)
= 0 whenever i≥j.
Remark. Lemma 2.3 can be reformulated as follows: if the bimodule B

is upper triangular, then X1, . . . , Xt is standardizable in the sense of [DR,
§3] and matB = F(X). Thus each upper triangular bimodule B defines a
quasi-hereditary algebra A = A(B), unique up to Morita equivalence. The
aim of this part is to make this correspondence more precise (Theorem 2.7).
We need the following result.

Theorem 2.6 ([DR, §3]). Let X1, . . . , Xt be a standardizable set of ob-
jects of an abelian category C. Then there exists a quasi-hereditary algebra
A, unique up to Morita equivalence, such that the subcategory F(X) of C
and the category of all ∆-filtered A-modules are equivalent.

If we combine Proposition 2.2 and Theorem 2.6, then we immediately
obtain our main result, which is a restatement of Theorem 1.1. We denote
by ∆(i) the images of Xi under the embedding of Proposition 2.2. Moreover,
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F(∆) denotes the category of ∆-filtered A-modules, that is, the category of
those modules which have a filtration by the various ∆(i).

Theorem 2.7. Let B be an upper triangular bimodule over add{Xi} and
A be the opposite algebra of the endomorphism algebra of a projective gen-
erator P of matB. Then the algebra A is quasi-hereditary and the functor
Hom(P,−) induces an equivalence between matB and F(∆). Moreover , any
quasi-hereditary algebra whose category of ∆-filtered modules is equivalent
(as an exact category) to matB is Morita equivalent to A.

P r o o f. The proof of the existence and uniqueness up to Morita equiv-
alence of the algebra A follows from Proposition 2.2 and Theorem 2.6: We
embed the category matB in an abelian category D, as stated in Proposi-
tion 2.2. Then we apply the theorem above. Assume we have two different
embeddings into categories D and D′ as in Proposition 2.2. Then the cor-
responding images are equivalent exact categories. By construction (see the
proof of Theorem 2.4 in [DR]), we obtain Morita equivalent quasi-hereditary
algebras A and A′. The particular form of A follows by construction.

Remark. Thus we have a functor Hom(P,−) which identifies matB
with F(∆) ⊂ modA. This functor maps the simple object Xi to the simple
object ∆(i) of F(∆) and maps the indecomposable projective object P (i)
to the corresponding projective A-module.

We note that it is natural to work with projΛ instead of addXi. Then
Λ is a quotient of a subalgebra of A by Proposition 2.5. In several examples
(see [BH2]), we obtain Λ as a subalgebra of A, and, moreover, the category
of ∆-filtered modules coincides with those modules which are projective
over Λ. However, we do not have a characterization of those bimodules, or
algebras A, with this property.
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