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ACTIONS OF PARABOLIC SUBGROUPS IN GLn
ON UNIPOTENT NORMAL SUBGROUPS AND

QUASI-HEREDITARY ALGEBRAS

BY
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Abstract. Let R be a parabolic subgroup in GLn. It acts on its unipotent radical Ru

and on any unipotent normal subgroup U via conjugation. Let Λ be the path algebra kAt

of a directed Dynkin quiver of type A with t vertices and B a subbimodule of the radical of
Λ viewed as a Λ-bimodule. Each parabolic subgroup R is the group of automorphisms of an
algebra Λ(d), which is Morita equivalent to Λ. The action of R on U can be described using
matrices over the bimodule B. The advantage of this description is that each bimodule B
gives rise to an infinite number of those actions simultaneously: for each d in Nt we obtain
a parabolic group R(d), which is the group of invertible elements in Λ(d), together with a
unipotent normal subgroup U(d) in R(d).

All those bimodules B are upper triangular with respect to the natural order of Λ.
Then, according to [BH2], Theorem 1.1, there exists a quasi-hereditary algebra A such
that the orbits of R(d) on U(d) are in bijection to the isomorphism classes of ∆-filtered
A-modules of dimension vector d. We compute the quiver and relations of the quasi-
hereditary algebra A corresponding to the action of the parabolic group R(d) on U(d).
Moreover, we show that the Lie algebra of R(d) can be identified with the algebra Λ(d),
and the Lie algebra of U(d) is isomorphic to a bimodule B(d) over Λ(d).

1. Introduction. Let k be a fixed ground field. All instances of parabolic
subgroups R in GLn(k) acting with a finite number of orbits on its unipotent

radical Ru were classified in [HR], Theorem 1.1. More generally, let R
(l)
u be

the lth member of the descending central series; we can also consider the

action of R on the Lie algebra r
(l)
u of R

(l)
u . Also, all instances of pairs (R, l),

where R acts with a finite number of orbits on r
(l)
u , were classified in [BH1],

Theorem 1.2. Moreover, we introduced the notion of a tame and of a wild
action and classified also those instances. One main step in the proof of the

results above relates the orbits of the action of R on r
(l)
u to a classifica-

tion problem of modules over a certain quasi-hereditary algebra A, where A
depends only on the number of blocks of R/Ru and on l.

The aim of this paper is to obtain the analogous result for the action of
R on any unipotent normal subgroups U (Theorems 4.1 and 5.1).
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Recall that a Borel subgroup in GLt is the stabilizer of a proper maximal
flag 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vt−1 ⊂ Vt = V in a t-dimensional vector space V .
We choose a fixed decomposition Vi = Vi−1 ⊕Wi for each i = 1, . . . , t. Let
d = (d1, . . . , dt) be a dimension vector, that is, di is an integer with di ≥ 0
for i = 1, . . . , t. Let Mi be a di-dimensional vector space. We denote by V (d)
the vector space

⊕t
i=1Wi ⊗Mi and by R(d) the stabilizer of its flag

0 ⊂ V1(d) := W1 ⊗M1 ⊂ . . .

⊂ Vt−1(d) :=

t−1⊕
i=1

Wi ⊗Mi ⊂ V (d) =

t⊕
i=1

Wi ⊗Mi.

Conversely, given a parabolic subgroup R in GLn(k), there exists a unique
sincere dimension vector d, that is, di ≥ 1, with R isomorphic to R(d).

Further, let I be the set of roots of a unipotent normal subgroup U in B.
We identify I with a subset in {(i, j) | 1 ≤ i < j ≤ t}. Note that U stabilizes
the flag of V and its Lie algebra is

n = {f ∈ End(V ) | f(Vj) ⊂ Vi−1 whenever (i, j) 6∈ I}.

Then we define U(d) = UI(d) to be the unipotent normal subgroup in R(d),
whose Lie algebra is

n(d) = {f ∈ End(V (d)) | f(Vj(d)) ⊂ Vi−1(d) whenever (i, j) 6∈ I}.

Given a parabolic subgroup R in GLn and a unipotent normal subgroup U
of R, there exist a set I as above and a sincere dimension vector d with R
isomorphic to R(d) and U isomorphic to UI(d). Moreover, we can choose
these isomorphisms equivariant with respect to the action via conjugation.

In Section 4 we define a quasi-hereditary algebra A := A(I) which
depends only on the root ideal I. We denote the category of ∆-filtered
A-modules by F(∆). The ∆-dimension vector d of an object X in F(∆)
is defined as follows: di is the multiplicity of ∆(i) in a ∆-filtration of X.
Further, we fix I for the rest of the paper, and whenever we consider the
category F(∆), we refer to the subcategory of ∆-filtered modules over the
quasi-hereditary algebra A := A(I). Also, the groups R(d) and U(d) are
the groups defined by I as above. Our principal result of this paper is The-
orem 1.1. It follows from Lemma 3.1 and Theorem 4.1; the details of the
proof are given in Section 6. Note that the elements in U(d) form an al-
gebraic variety. Also, there exists an algebraic variety which parametrizes
∆-filtered A-modules of a fixed dimension vector (see Section 6 for a precise
definition). Thus we can speak about degenerations and families of orbits in
U(d) and about degenerations and families of objects in F(∆) respectively.

Theorem 1.1. There exists a natural bijection between the orbits ofR(d)
on U(d) and the set of isomorphism classes of objects in the category of ∆-
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filtered A-modules F(∆) of ∆-dimension vector d. This bijection is induced
by a morphism of algebraic varieties. In particular , it preserves degenera-
tions and families.

We mention certain applications of this result.

Let I be a fixed root ideal as above and assume A := A(I) is ∆-finite,
that is, there exist only finitely many isomorphism classes of indecomposable
∆-filtered A-modules. This implies that R(d) acts with a finite number of
orbits on U(d) for any d. By recent results in [BHRZ] a classification of
the indecomposable objects in F(∆) allows us to compute the orbits of the
action and the Auslander–Reiten quiver of F(∆) determines all the Hasse
diagrams (or equivalently, the Bruhat–Chevalley order of the action of R(d)
on U(d)) for the various d in one strike.

Assume for a moment that I is the set of all elements {(i, j) | 1 ≤ i < j
≤ t} and let A be the corresponding quasi-hereditary algebra. By results in
[BHRR] Richardson’s dense orbit theorem [Ri] is equivalent to the existence
of a unique module in F(∆) without self-extensions for each d. Note that in
general R(d) does not act with a dense orbit on U(d); for examples we refer
to the families in [BH1], Section 4. In fact, it is an open problem to classify
all instances when R(d) acts with a dense orbit on U(d).

The paper is organized as follows. In Section 2 we consider actions of lin-
ear algebraic groups R(d) defined by a bimodule B over a finite-dimensional
basic algebra Λ and a dimension vector d. We also prove certain basic re-
sults concerning those actions. In Section 3 we recall some basic facts on
matrices over bimodules and quasi-hereditary algebras. We also recall the
main result of [BH2] (Theorem 1.1) which relates the orbits of the action of
R(d) on B(d) to ∆-filtered modules over a certain quasi-hereditary algebra
A associated with B. The crucial problem is to compute the algebras A for
a certain given class of bimodules B.

The remaining parts of this paper determine A for two classes of ac-
tions, respectively bimodules: the action of R(d) on U(d) and the action of
R(d+)×R(d−) on an abelian normal unipotent subgroup U(J) of R(d+, d−).
Here J is considered as a subset of {(i, j) | 1 ≤ i ≤ t+, 1 ≤ j ≤ t−} (see Sec-
tion 5 for a precise definition). Then in Section 4 we define a quasi-hereditary
algebra depending on I and state the main result concerning the first action
(Theorem 4.1). In Section 5 we define a quasi-hereditary algebra depend-
ing on J and obtain an analogous result for the second action (Theorem
5.1). Finally, in the last section we prove the results using categories of
flags.

We note that this technique does not generalize to arbitrary upper trian-
gular bimodules. It uses special properties of the path algebra of a directed
Dynkin quiver of type A.
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Basic notation. We denote by k a fixed field. Our algebras are always
finite-dimensional k-algebras with unit, but in general non-commutative.
Modules are supposed to be finitely generated left modules, in particular,
mod k is the category of finite-dimensional k-vector spaces and modΛ is the
category of finitely generated left modules over an algebra Λ. Bimodules are
also finite-dimensional. We identify Λ-bimodules with left Λenv-modules (see
also Section 2). All groups are linear algebraic groups defined over k, where
we only consider the k-rational points. If we speak about algebraic varieties
and morphisms we allow also ground fields which are not algebraically closed.
Also, all categories are k-categories and an equivalence preserves the under-
lying k-structure. The set I is always a root ideal in the positive roots of
GLt. We identify I with a subset in {(i, j) | 1 ≤ i < j ≤ t}. The set J is in
addition contained in the set of positive roots of a maximal abelian unipotent
normal subgroup H of the Borel subgroup of GLt. We restrict the action of
B to B/H and identify J with a subset of {(i, j) | 1 ≤ i ≤ t+, 1 ≤ j ≤ t−},
where t = t+ + t−.

For basic properties of quasi-hereditary algebras, we refer to [DR]. Our
basic reference for representations of quivers and finite-dimensional algebras
is [R]. For an introduction to linear algebraic groups we mention [S] and basic
facts on roots can be found in [B].

Acknowledgements. Part of this work was done during a stay of the
second author at UNAM in Mexico. He wants to take the opportunity to
thank the representation theory group, in particular J. A. de la Peña and
D. Vossieck, for the stimulating atmosphere, and the DAAD for financial
support.

2. Bimodules and actions of linear algebraic groups. In this sec-
tion, with any bimodule B over a basic algebra Λ and any dimension vector
d for Λ we associate a linear action of an algebraic group R(d) on a vector
space B(d). For examples we refer to the next section. Note that Λ is ba-
sic precisely if Λ/radΛ is a product of division algebras over k, where radΛ
denotes the radical of Λ.

Let Λ be a finite-dimensional basic algebra and B a finite-dimensional
Λ-bimodule. We denote by {PΛ(i)} a set of representatives of the isomor-
phism classes of indecomposable projective Λ-modules, where 1 ≤ i ≤ t.
Moreover, let {ei} for i = 1, . . . , t be a complete set of pairwise orthogonal
idempotents of Λ so that PΛ(i) is isomorphic to Λei. For any dimension
vector d = (d1, . . . , dt), that is, di a non-negative integer for i = 1, . . . , t,
we denote by Λ(d) the opposite algebra of End(

⊕t
i=1 PΛ(i)di). It is well

known that Λ(d) is Morita equivalent to Λ for any sincere dimension vec-
tor d, that is, di is positive for i = 1, . . . , t, and Λ(1, . . . , 1) is isomorphic
to Λ. Further, we denote by Λenv(d) the algebra Λ(d)⊗Λ(d)op, where Λ(d)op
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denotes the opposite algebra of Λ(d). It is well known that Λ(d)-bimodules
can be considered as Λenv(d)-modules and vice versa. In particular, a com-
plete set of representatives of the simple Λenv-modules can be obtained as
tensor products of simple Λ-modules with simple Λop-modules and we obtain
its minimal projective covers PΛenv(i, j), for 1 ≤ i, j ≤ t. These modules
PΛenv(i, j) form a complete set of representatives of the isomorphism classes
of indecomposable projective Λenv-modules. We can define a bimodule B(d)
over Λ(d) via

B(d) := HomΛenv

(⊕
i,j

P (i, j)didj , B
)
,

where we use the identification of Λ-bimodules with Λenv-modules. In this
way, for a given bimodule B over Λ and any dimension vector d we obtain a
bimodule B(d) over the Morita-equivalent algebra Λ(d). Let Mi be a vector
space of dimension di as in the introduction and denote by Bi,j the vector
space eiBej . Then

Λ(d)i,j 'M∗i ⊗ Λi,j ⊗Mj and B(d)i,j 'M∗i ⊗Bi,j ⊗Mj .

Using the natural pairing of a vector space with its dual, we get the formulas
for the multiplication in Λ(d) :=

⊕
i,j Λ(d)i,j and the bimodule structure of

B(d) :=
⊕

i,j B(d)i,j . Here λ is an element of Λ, b is an element of B, m is
an element of M , and µ is an element of M∗:

µ⊗ λ⊗m · µ′ ⊗ λ′ ⊗m′ = µ′(m)µ⊗ λλ′ ⊗m′

and

µ⊗ λ⊗m · µ′ ⊗ b′ ⊗m′ · µ′′ ⊗ λ′′ ⊗m′′ = µ′(m)µ′′(m′)µ⊗ λb′λ′′ ⊗m′′.

Now we fix Λ and denote by R(d) the subgroup of units in Λ(d). This
group acts on B(d) via conjugation. Note that B(d) has the structure of a
vector space and this action is a linear action of R(d) on this vector space
B(d). Our first result states some properties of the group R(d).

Proposition 2.1. The group R(d) is a linear algebraic group, it is open
and dense in Λ(d). The Lie algebra of R(d) is isomorphic to Λ(d) with Lie
bracket defined by [x, y] := xy − yx. The Lie algebra of the unipotent radical
R(d)u of R(d) is isomorphic to the Jacobson radical of Λ(d). For a sincere
dimension vector d the algebraic group R(d) is reductive precisely when Λ
is semisimple, that is, Λ = Λ(1, . . . , 1) is a product of division algebras
and R(1, . . . , 1) is the product of the multiplicative groups of these division
algebras.

P r o o f. First note that Λ(d) acts on itself via the left regular represen-
tation. In this way we obtain an embedding of Λ(d) into the matrix ring
End(Λ(d)). This embedding is an algebra homomorphism and it identifies
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Λ(d) with a Zariski closed subvariety of End(Λ(d)), in fact with a linear sub-
space. Further, one checks directly that R(d) is just the intersection of the
image of Λ(d) with GL(Λ(d)). Consequently, R(d) is a linear algebraic group,
it is open and dense in Λ(d). The density follows since R(d) is non-empty and
open in the irreducible variety Λ(d). Because R(d) is open and dense in the
vector space Λ(d), its Lie algebra is isomorphic to Λ(d). Since it is a closed
algebraic subgroup of GL(Λ(d)), the Lie bracket of the Lie algebra of R(d)
is the restriction of the Lie bracket in End(Λ(d)). The latter is known to be
[x, y] = xy − yx. Because the embedding Λ(d) ⊂ End(Λ(d)) is an algebra
homomorphism we obtain the Lie bracket in Λ(d) by the same formula.

Next we determine the unipotent radical of R(d). Note that an element
1 + x for x ∈ radΛ is unipotent. Conversely, let y ∈ R(d) ⊂ Λ(d) be
unipotent, that is, y − 1 is nilpotent. Consider the image y of 1 − y in
Λ(d)/radΛ(d) and assume y 6= 0. Then any power yl is also non-zero and
consequently (1 − y)l is non-zero, which contradicts the assumption. Con-
sequently, 1 − y ∈ radΛ(d). The group 1 + radΛ(d) is normal in R(d) and
maximal unipotent. The Lie algebra of 1 + radΛ(d) is radΛ(d). Thus, the
Lie algebra of the unipotent radical of R(d) is isomorphic to radΛ(d).

Recall that R(d) is reductive precisely when R(d)u is trivial. By the ar-
guments before, this happens if radΛ(d) = 0. For a sincere dimension vector
d this is by Morita theory equivalent to radΛ = 0. Moreover, radΛ(d) = 0
if and only if Λ(d) is semisimple.

Example. Before we define in the next section matrices over bimodules
over arbitrary finite-dimensional algebras we restrict our attention for a mo-
ment to particular semisimple algebras. So assume Λ '

⊕t
k. A bimodule

over Λ is just a bigraded vector space B =
⊕t

i,j=1Bi,j . Let ei for i = 1, . . . , t
be a standard basis of Λ which is compatible with the chosen identification
of Λ with

⊕t
k. Then B is a bimodule via eibi′,j′ej = δi,i′δj,j′bi,j for any

bi,j ∈ Bi,j . Here δ denotes the Kronecker symbol. We assign to the bimodule
B a quiver Q as follows. The set of vertices Q0 is {1, . . . , t} and we have di,j
arrows from i to j precisely if dimBi,j = di,j . Note that we can recover B
from Q by the formula above. Let A be the path algebra kQ of the quiver Q.
It is well known that isomorphism classes of A-modules of dimension vector
d can be parameterized by the representation space, which is isomorphic to
B(d). The group R(d) is isomorphic to

∏t
i=1 GLdi , which acts via conjuga-

tion on B(d). The isomorphism classes of A-modules of dimension vector d
are in one-to-one correspondence with the orbits of this action.

Note that A is finite-dimensional if and only if B is directed, that is, the
quiver Q is directed. Then A is quasi-hereditary with any order, in particular
with the natural one given by Q, that is, F(∆) and mod-A coincide. This
is a very particular example for which Theorem 3.2 holds.
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Finally, note that we can define a weighted quiver for any bimodule over
a product of division algebras over k.

3. Matrices over upper triangular bimodules and quasi-heredi-
tary algebras. The aim of [BH2] is to generalize the example above to the
following situation. Let Λ be any directed algebra. That is, the quiver of
radΛ viewed as Λ/radΛ-bimodule is directed. Let B be an upper triangular
bimodule over Λ, that is, the quiver of B viewed as a Λenv/radΛenv-bimodule
has arrows i → j only for i < j. First we have to define the analogous
category for A-mod. We define two such categories which are equivalent.
The first one is the category of matrices over B. Note that the category of
matrices can be defined in more general situations, e.g. we do not need an
upper triangular bimodule and Λ need not be directed.

For a dimension vector d we already fixed vector spaces Mi of dimen-
sion di. For a second dimension vector c we now also fix vector spaces Ni of
dimension ci. Then we define vector spaces Λ(d, c) and B(d, c) as follows:

Λ(d, c)i,j := M∗i ⊗ Λi,j ⊗Nj and B(d, c)i,j := M∗i ⊗Bi,j ⊗Nj .

Definition. A matrix over B is a pair (d, b) consisting of a dimen-
sion vector d and an element b in B(d). A morphism f : (d, b) → (c, a) is
an element f in Λ(d, c) which satisfies fb = af in B(d, c). We denote the
category of all matrices over B by matB. It is an additive category which
has a natural exact structure (see [BH2], Section 2.3).

First note that the definition is slightly different from the one given in
[BH2], Section 2.2, but equivalent: the difference here is that we have fixed
certain representatives PΛ(i) and PΛenv(i, j), and identify the pair (d, b) with
the pair (

⊕
PΛ(i) ⊗ Mi, b), where b can be considered as an element in

B(
⊕
PΛ(i)⊗Mi,

⊕
PΛ(i)⊗Mi).

Lemma 3.1. Two matrices (d, b) and (c, a) are isomorphic in matB pre-
cisely if d = c and there exists an element f in R(d) ⊂ GL(Λ(d)) such that
a = fbf−1, that is, b and a are in the same R(d)-orbit in B(d).

P r o o f. First note that the existence of such an f implies that f and
g := f−1 are morphisms with fg = 1 and gf = 1. Thus f is an isomorphism
in matB. Conversely, let (d, b) and (c, a) be isomorphic objects in matB.
Then there exist f and g with fb = af and fg = 1 and gf = 1. In particular,
d = c and f−1 = g. Thus we obtain a = fbf−1.

Next we need some basic facts on quasi-hereditary algebras. Let A be a
finite-dimensional basic algebra and (Q0,≤) a total order on the vertices of
the quiver of A. Let PA(i) for i ∈ Q0 be a complete set of representatives
of the indecomposable projective A-modules. We define modules ∆(i) :=
PA(i)/ηi, where ηi is the image of

⊕
j<i Hom(PA(j), PA(i))⊗PA(j) in PA(i).
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We denote by F(∆) the category of those A-modules which admit a filtration
with factors isomorphic to some ∆(j) for j = 1, . . . , t. The algebra A is called
quasi-hereditary with the given order if all modules PA(i) for i = 1, . . . , t are
in F(∆) and the modules ∆(i) have a trivial endomorphism ring.

The theorem below (see [BH2], Theorem 1.1) identifies the category
matB with the category F(∆) for a certain quasi-hereditary algebra A.
The algebra A can be constructed explicitly for any bimodule B, but this
construction is quite complicated and only some very particular examples are
explicitly known (see e.g. [BH1]). Moreover, it is in general not clear that
the equivalence between matB and F(∆) preserves the geometric structure
as claimed in our situation in Theorem 1.1.

Theorem 3.2 ([BH2]). Let B be an upper triangular bimodule. Then
there exists a quasi-hereditary algebra A so that the category matB of B-
matrices and the category F(∆) of ∆-filtered A-modules are equivalent.
Moreover , the algebra A is unique up to Morita equivalence.

4. Actions of parabolic subgroups via conjugation and matrix
problems. Recall that a standard parabolic subgroup in GLn has an up-
per triangular block structure. We denote the size of the blocks by d =
(d1, . . . , dt) for di ≥ 1 and all i = 1, . . . , t. Thus for d = (1, . . . , 1), the
corresponding standard parabolic subgroup R(d) is isomorphic to the auto-
morphism group of the algebra Λ = kAt, where At is the directed Dynkin
quiver. For a general d, the group R(d) is isomorphic to the automorphism
group of the Morita equivalent upper triangular block matrix algebra

Λ(d) =

∗ ∗ ∗ ∗
d1

0 ∗ ∗ ∗
d2

0 0 ∗ ∗
d3

@
@

0 0 0 0 dt

d1 d2 d3 dt

Now we consider the action of R(d) on a unipotent normal subgroup
U via conjugation. The group U also has a block structure: the entries
on the diagonal are always unit matrices, and the set of blocks contain-
ing non-zero entries is contained in the upper part and is closed under left
and upper shift. Hence, U is determined by a sincere dimension vector
d and a subset I ⊂ {(i, j) | i < j; i, j = 1, . . . , t}, where for all (i, j) ∈
I we have (i− 1, j), (i, j+ 1) ∈ I. The group U will also be denoted by UI(d)
if necessary. Note that this notation coincides with the definition of Section
1 and also with the notation in Section 2 for the particular algebra above.
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We associate with I a set Igen consisting of all blocks (i, j) ∈ I which
are minimal with respect to the shift to the left and to the bottom: that is,
(i, j) ∈ Igen precisely when neither (i + 1, j) nor (i, j − 1) is in J . This set
Igen is the minimal set of generators as a root ideal. Moreover, we define
a set I ′ ⊂ I consisting of (i, t) ∈ I for i maximal with (i, t) in I and all
(i, j) satisfying (i+ 1, j + 1) ∈ I but (i+ 1, j) 6∈ I. We also define the index
j′ satisfying (1, j′) 6∈ J but (1, j′ + 1) ∈ J . We illustrate these sets in the
following figure; the elements in I are denoted by “∗”:

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

I = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 5),

(2, 6), (2, 7), (3, 5), (3, 6), (3, 7), (4, 6), (4, 7)},
Igen = {(1, 2), (3, 5), (4, 6)},
I ′ = {(1, 4), (3, 5), (4, 7)}, j′ = 1.

For the unipotent subgroup U = P
(l)
u considered in [BH1], for instance,

the set I is generated by

Igen = {(i, i+ l + 1) | i = 1, . . . , t− l − 1} = I ′.

Note that Igen = I ′ precisely if U is isomorphic to P
(l)
u .

Let Λ be the basic algebra Λ(1, . . . , 1) as defined above. We define a
bimodule B(I) over Λ as follows. A k-basis of B(I) consists of elements b(i,j)
for (i, j) ∈ I. Choose a multiplicative basis of Λ consisting of elements λ(i,j)
for 1 ≤ i ≤ j ≤ t. We define a bimodule structure on the vector space B(I)
via λ(i,j)b(i′,j′)λ(i′′,j′′) = δj,i′δj′,i′′b(i,j′′). Thus B(I) is the natural bimodule
defined by ordinary matrix multiplication of the matrix of upper triangular
matrices on the set of block-matrices with entries in the (i, j)-block for (i, j)
in I. Note that B(I) is generated as a bimodule over Λ by the elements b(i,j)
for (i, j) ∈ Igen. Moreover, the Lie algebra of UI(d) is isomorphic to B(d).
Thus the action of R on U coincides with the action defined in Section 2 for
the particular algebra Λ and the bimodule B as above.

Next we define a quasi-hereditary algebra A = A(I). This algebra does
not depend on the entries in the dimension vector d, it only depends on
I. First we define the quiver Q(I) of A(I): it has vertices Q0 = {1, . . . , t},
and arrows αi : i → i + 1 for i = 1, . . . , t − 1, and β(j,i) : j → i whenever
(i, j) ∈ I ′. Next we define relations αrβ = βαs whenever possible and a zero
relation αrβ starting at j′ and including the first possible arrow β. Then
we define the algebra A to be the path algebra of the quiver Q(I) modulo
the ideal generated by these relations. Again we illustrate the construction
in a figure containing the quiver and the relations for the problem in the
previous figure:
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α1 α2 α3 α4 α5 α6−→ −→ −→ −→ −→ −→• • • • • • •←−−−−−−−−− ←−−−−−−−−−
β(4,1) β(7,4)←−−−−−−

β(5,3)

α1α2α3β(4,1) = 0,

α4β(5,3) = β(4,1)α1α2α3,

α5α6β(7,4) = β(5,3)α3.

Thus, for a given subset I, we have defined a bimodule B = B(I) over Λ and
a quasi-hereditary algebra A = A(I). The next result states that this quasi-
hereditary algebra A is exactly the quasi-hereditary algebra of Theorem 3.2
associated with the bimodule B. We note that A has a unique structure of a
quasi-hereditary algebra, so that the standard modules ∆(i) are exactly the
projective Λ-modules PΛ(i) via the natural embedding Λ ⊂ A. Consequently,
an A-module X is in F(∆) precisely when all linear maps X(α) are injective.

Theorem 4.1. The category of modules with ∆-filtration over A(I) is
equivalent to the category of matrices over B(I). This equivalence is induced
by sending a matrix (

⊕
i P (i)⊗Mi, f) to the following representation: αi is

the obvious inclusion
⊕i

j=1Mj →
⊕i+1

j=1Mj and β(j,i) is the restriction of f

to
⊕j

l=1Ml.

The proof uses the category of flags, which we introduce in Section 6.

5. Actions of parabolic subgroups via multiplication. In this sec-
tion we consider the simultaneous action of two parabolic groups R(d+) and
R(d−) on an invariant vector space V contained in the tensor product of
the two natural representations W+ and W− of R(d+) and R(d−) respec-
tively. In other words, we consider the simultaneous action of a parabolic
group R(d+) via left multiplication and of a parabolic group R(d−) via right
multiplication on the vector space of those block matrices M(J) which have
non-zero entries only in the (i, j)-blocks for (i, j) in J , where J is considered
as a subset of {1, . . . , t+}×{1, . . . , t−}. As in the previous section, J must be
closed under shift to the top and to the right, that is, whenever (i, j) ∈ J ,
then (i − 1, j) and (i, j + 1) are also in J . Again we want to construct a
bimodule B = B(J) over Λ(d+) from the left and Λ(d−) from the right such
that the orbits of the action are in natural one-to-one correspondence with
the isomorphism classes of matrices over B and the action of the group is of
the form as introduced in Section 3.

Note that the orbits of this action of R(d+) × R(d−) on V = V (J)
coincide with the orbits of the action of the parabolic group R(d+, d−), that
is, just take the dimension vector (d+, d−) = (d+1 , . . . , d

+
t+ , d

−
1 , . . . , d

−
t−) on a

normal subgroup U(I) of U({(i, j) | i = 1, . . . , t+, j = t+ + 1, . . . , t+ + t−})
for (i, j + t+) ∈ I precisely when (i, j) ∈ J , where we use for a moment the
notation of the previous section. If we require, in addition, that the stabilizer
of a point x ∈ V of the action is exactly the automorphism group of the
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endomorphism algebra of the corresponding matrix, then we get different
bimodules for the two different actions considered above (see Theorems 4.1
and 5.1), but the isomorphism classes of matrices coincide. Thus in the rest
of this section we consider the action of R(d+) × R(d−) on V (J), the other
problem has already been considered before.

We first fix some notation. Let d+ =(d+1 , . . . , d
+
t+) and d−=(d−1 , . . . , d

−
t−)

be two dimension vectors of length t+ and t−, respectively, and let J be a
subset in {1, . . . , t+} × {1, . . . , t−} which is closed under the right and upper
shift. Similarly to the previous section we define subsets Jgen and J ′ of J ,
and an element j′ in J . Note that we can use the same definition as in the
previous section if we identify J with a subset I of {(i, j) | i = 1, . . . , t+, j =
t+ + 1, . . . , t+ + t−}.
Example. Let t+ = 3, t− = 2 and J = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2)}.

Then J ′ = {(3, 2), (2, 1)}, and j′ = 0.

The group R(d+)×R(d−) is the group of invertible elements in Λ(d+)⊕
Λ(d−), where we use the definition from the beginning of the previous sec-
tion. We define a bimodule B = B(J) as follows: a basis of B consists
of elements b(i,j) for (i, j) ∈ J . The Λ(d+) ⊕ Λ(d−)-bimodule structure is
defined via left multiplication of Λ((1, . . . , 1)+) and right multiplication of
Λ((1, . . . , 1)−): λ+(i,j)b(i′,j′)λ

−
(i′′,j′′) = δ(i′,j)δ(i′′,j′)b(i,j′′), where δ denotes the

Kronecker delta. Note that we have a natural inclusion of Λ(d+) ⊕ Λ(d−)
into Λ(d+, d−). Under this inclusion the bimodule B(J) just coincides with
B(I) (here we again use the identification of J and I as explained above).

We define a quiver Q(J) as follows:

Q0 = {(+, 1), . . . , (+, t+), (−, 1), . . . (−, t−)} and

Q1 = {(a, i)
α(a,i)−→ (a, i+ 1) | a = +,−} ∪ {(+, i)

β(i,j)−→ (−, j) | (i, j) ∈ J ′}.

Moreover, we consider the relations αrβ = βαs, whenever possible, and a
zero relation αrβ starting at j′ and including the first possible arrow β. We
define the algebra A(J) to be the path algebra of this quiver subject to the
relations defined above.

Note that A(J) is quasi-hereditary with respect to several orders, yet
we only consider the order defined by (a, i) ≤ (b, j) precisely when a = −
and b = +, or a = b and i ≤ j. This is equivalent to the property that
the category of ∆-filtered modules coincides with the category of all those
modules X with X(α(a,i)) injective.

Theorem 5.1. The category of matrices over B(J) is equivalent to the
category of modules with ∆-filtration over the quasi-hereditary algebra A(J).
This equivalence is induced by sending a matrix (

⊕
i P (+, i) ⊗ M(+,i) ⊕⊕

j P (−, j) ⊗M(−,j), f) to the following representation: α(a,i) is the inclu-
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sion into the first summand :
⊕i

l=1M(a,l) →
⊕i+1

l=1M(a,l) for a = +,−, and

β(i,j) for (i, j) ∈ J ′ is the restriction of f to
⊕i

l=1M(+,l).

The proof is analogous to that of Theorem 4.1 in the following section
and uses the category of separated flags associated with J .

6. Categories of flags and the proof of the main results. In this
section we introduce the category of flags FL(I) associated with a set I, and
the category of separated flags FLs(J) associated with a set J , where I and
J are as introduced in Sections 4 and 5. Using this technique we first prove
Theorem 4.1; the proof of Theorem 5.1 is quite analogous and we omit the
details.

Let V be a finite-dimensional vector space together with a flag {0} =
V0 ⊂ V1 ⊂ . . . ⊂ Vt = V of length t and an endomorphism f : V → V
satisfying f(Vj) ⊂ Vi whenever (i, j) ∈ I ′ and f(Vj′) = 0. The objects in the
category FL(I) are those pairs (V, f). A morphism φ : (V, f) → (V ′, f ′) is
a linear map φ : V → V ′ which preserves the flag, that is, φ(Vi) ⊂ V ′i , and
commutes with the given endomorphisms, that is, f ′φ = φf . We note that
for Igen = {(i, i + l + 1) | i = 1, . . . , t − l − 1}, this category was already
considered in [BH1] and for l = 0 in [HR].

Lemma 6.1. The map assigning to a flag (V, f) the representation (Vi, αi,
β(i,j)), where α is the injection Vi ⊂ Vi+1 and β(i,j) is the restriction of f ,
induces an equivalence between the category FL(I) and the category F(∆)
of ∆-filtered A(I)-modules.

P r o o f. Note that an A(I)-module has a ∆-filtration precisely when all
maps α(i,j) are injective. Then the proof is elementary and left to the reader
(it is proven for special cases in [BH1] and [HR] and the proof of this lemma
does not need any additional argument).

In the next step, we prove that the category of matrices matB(I) is
also equivalent to FL(I). Recall that an object (d, b) in matB(I) may be
considered as a projective Λ-module

⊕
PΛ(i) ⊗ Mi together with an ele-

ment b, where dimMi = di. We can identify the module
⊕
PΛ(i)⊗Mi with

a representation of the directed quiver At with injective maps, also denoted
by αi. That is, we can identify

⊕
PΛ(i) ⊗ Mi with the flag {0} = V0 ⊂

V1 = M1 ⊂ . . . ⊂ Vt = V =
⊕t

l=1Ml. The element b consists of a set of
homomorphisms bi,j : Mi → Mj for i, j = 1, . . . , t satisfying the condition
bi,j = 0 whenever B(i,j) = 0, that is, (i, j) 6∈ I. Thus we obtain for each
matrix (

⊕
PΛ(i)⊗Mi, b) a flag (V, f), where we identify b with f . This map

obviously defines a functor from matB(I) to FL(I).

Lemma 6.2. The category matB(I) is equivalent to the category of flags
FL(I).
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P r o o f. The assignment above defines a flag for each matrix. Conversely,
for each flag we can choose a corresponding matrix, so the functor is dense. It
is straightforward to check that the conditions f(Vj) ⊂ Vi whenever (i, j) ∈ I
and f(Vj′) = 0 on the endomorphism f in the flag are satisfied precisely when
the conditions b(i,j) = 0 whenever (i, j) 6∈ I on the matrix b are satisfied.
Moreover, the functor is fully faithful.

Proof of Theorem 4.1. From the two lemmata above, we obtain the
equivalence of the categories matB and F(∆) in modA(I). Since A(I) is
quasi-hereditary and the matrix (PΛ(i), 0) corresponds to ∆(i) under the
equivalences in the two lemmata, we obtain our result by Theorem 3.2.

Proof of Main Theorem 1.1. We start with the proof of the first claim. By
Lemma 3.1 the orbits of the action of R(d) on UI(d) are in natural bijection
with the isomorphism classes of matrices (PΛ(i) ⊗Mi, b) over B(I), where
dimMi = di. By Theorem 4.1 the isomorphism classes of matrices over
B(I) correspond to the isomorphism classes of ∆-filtered modules, where
the dimension vector is obviously preserved as stated in the claim.

To prove the second part of the theorem we need some notation. De-
note by R(∆)(d) the representation space of all ∆-filtered A-modules of
∆-dimension vector d. The set R(∆)(d) is an algebraic variety and the
functors in Lemmata 6.1 and 6.2 define a morphism of algebraic varieties
φ : UI(d) ' B(I)(d) → R(∆)(d). The morphism φ is equivariant and ad-
mits a local inverse. We can identify R(∆)(d) with the space of all flags in
FL(I) of dimension vector d with fixed vector spaces Vi. We choose a basis
of these vector spaces Vi which is compatible with the inclusions. Then there
exists a unique element g in G(d)/P (d), where G(d) =

∏
GLdi and P (d)

is a subgroup of G(d) such that gV is the standard flag. Choose locally a
section π : G(d)/P (d) → G(d). Then (V, f) 7→ (π(g)V, π(g)fπ(g−1)) defines
locally a section of φ. Consequently, degenerations and families of orbits in
R(∆)(d) and UI(d) coincide.

For the proof of Theorem 5.1 we need a modification of the category of
flags: we consider the category of separated flags FLs(J), corresponding to
a set J , introduced at the beginning of Section 6. The objects are triples
(V,W, f) consisting of two flags {0} = V0 ⊂ V1 ⊂ . . . ⊂ Vt+ = V and
{0} = W0 ⊂ W1 ⊂ . . . ⊂ Wt− = W , and a linear map f : V → W satisfying
the conditions f(Vj) ⊂ Wi for (i, j) ∈ J ′ and f(Vj′) = 0. A morphism φ
between two objects (V,W, f) → (V ′,W ′, f ′) consists of two linear maps
φ1 : V → V ′ and φ2 : W → W ′ which preserve the flags and commute with
the given linear maps, that is, φ2f = f ′φ1.

Given a separated flag (V,W, f), it is straightforward to define a repre-
sentation of the algebra A(J) defined in Section 4: the vector space in (+, i)
is Vi and the vector space in (−, i) is Wi. The maps α are the inclusions of
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the flag, and the maps β are the restrictions of the map f . As before, it is
easy to check the following lemma.

Lemma 6.3. The natural map defined above induces an equivalence be-
tween the category FLs(J) and the category of ∆-filtered A(J)-modules.

Also the second lemma proven for the category of flags generalizes with
appropriate modifications to the category of separated flags.

Lemma 6.4. The category matB(J) is equivalent to the category FLs(J).

Proof of Theorem 5.1. The proof is analogous to that of Theorem 4.1:
the categories matB(J) and F(∆) are equivalent, A(J) is quasi-hereditary,
and the uniqueness result of Theorem 3.2 completes the proof.
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Fakultät für Mathematik
Universität Bielefeld
P.O. Box 100 131
D-33501 Bielefeld, Germany
E-mail: bruestle@mathematik.uni-bielefeld.de

Mathematisches Seminar
Universität Hamburg

Bundesstr. 55
D-20146 Hamburg, Germany

E-mail: hille@math.uni-hamburg.de

Received 2 August 1999; (3810)
revised 22 November 1999


