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Abstract. Let R be a complete discrete valuation ring with quotient field K, L/K be
a Galois extension with Galois group G and S be the integral closure of R in L. If a is a
factor set of G with values in the group of units of S, then (L/K, a) (resp. Λ = (S/R, a))
denotes the crossed product K-algebra (resp. crossed product R-order in A). In this paper
hermitian and quadratic forms on Λ-lattices are studied and the existence of at most
two irreducible non-singular quadratic Λ-lattices is proved (Theorem 3.5). Further the
orthogonal decomposition of an arbitrary non-singular quadratic Λ-lattice is given.

1. Introduction. Let R be a complete discrete valuation ring with
quotient field K and finite residue class field k, L be a finite Galois extension
of K of degree n with valuation ring S, and G be the Galois group of L/K.
We denote by A = (L/K, a) the crossed product algebra of G over L with
factor set a : G × G → S·, where S· is the group of units of S. We assume
that the factor set α is normalized. The K-algebra A is central simple with
L-basis uσ, σ ∈ G, and multiplication given by the relations

uσl = σ(l)uσ, uσuτ = a(σ, τ)uστ , l ∈ L, σ, τ ∈ G
([Re], §29). Moreover we denote by Λ the ring (S/R, a) =

⊕
σ∈G Suσ, which

is an R-order in A.
In this paper we study the hermitian and non-singular quadratic forms

on Λ-lattices. In [Ri] C. Riehm considered hermitian forms over a hereditary
order in a central simple K-algebra. We remark that the crossed product
order Λ is a hereditary order if and only if the extension L/K is tamely
ramified ([C-R], §28). In the main result of this paper (Theorem 3.5) we
prove the existence of at most two (up to isometry) irreducible non-singular
quadratic Λ-lattices.

In the second section we prove the validity of the reduction theorem
([Q-S-S], Theorem 2.2) for the categories latt(Λ) of left Λ-lattices and
latt(Λ)/II for a suitable ideal II of latt(Λ).
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In the third section, besides Theorem 3.5 mentioned above, we state the
Krull–Schmidt–Azumaya theorem for the category of non-singular quadratic
Λ-lattices. Also the orthogonal decomposition of an arbitrary non-singular
quadratic Λ-lattice is given.

We refer to [C-R] and [Re] for the theory of orders and lattices over
orders, to [Kn] and [Sch] for the theory of quadratic and hermitian forms
and to [Re] for the classical crossed products.

2. Reduction theorem for the category latt(Λ). We keep the
notation of the first section and let V be an irreducible left A-module. By
the Wedderburn–Artin theory the K-algebra D = EndA(V ) is a division
ring which is Brauer equivalent to A. Moreover, V carries a natural right
D-vector space structure and

A ∼= EndD(V ) ∼= Mr(D).

Let m be the index of D, so (D : K) = m2. An involution on A is an
anti-automorphism of degree 2. An involution on A is said to be of the
first kind if its restriction to K is the identity. We assume that the crossed
product A admits an involution of the first kind. Then by ([A], X Theorem
19) the index m is equal to 1 or 2. From ([H-Th], Theorem 3.1) there exists
an involution − on A such that Λ = Λ and the restriction −|L is the identity
on L.

Let X∗ = HomR(X,R) for a left Λ-lattice X. Then X∗∗ ∼= X as left
R-lattices ([C-R], §10), and thus we get the following proposition.

Proposition 2.1. The pair (latt(Λ),∗ ) is an additive Krull–Schmidt cat-
egory with duality.

The extension L/K is separable, thus the reduced trace trS/R induces
a symmetric associative non-degenerate R-bilinear form on S and so the
image is given by trS/R(S) = Rϑ for some non-zero ϑ ∈ R. For every
element x =

∑
σ∈G sσ(x)uσ, sσ(x) ∈ S, of Λ, let

φ(x) =
1

ϑ
trS/R(s1(x)),

where 1 is the unit element of G. The map Φ : Λ→ Λ∗ given by Φ(x)(λ) =
φ(λx), where x, λ ∈ Λ, is a (Λ-Λ)-bimodule isomorphism. In particular, Λ is
a symmetric R-order ([Th-W], Theorem 1). Moreover Φ is a hermitian form,
since

Φ(x)(λ) = Φ(λ)(x)

for x, λ ∈ Λ, because φ(xλ) = φ(λx) (see the proof of [Th-W], Theorem 1).
Thus we get the following proposition.
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Proposition 2.2. The pair (Λ,Φ) is a non-singular hermitian lattice.

Let ∆ be the unique maximal order in D, π0 (resp. π) a prime element
of R (resp. S) and πD a prime element of ∆ such that πmD = π0 ([Re], §14),
where m is the index of A. If M is an irreducible left Λ-lattice and right
∆-module, then End∆(πiM), 0 ≤ i ≤ e/m − 1, are the maximal R-orders
in A containing Λ and their intersection Γ is a hereditary R-order in A
containing Λ of type e/m and with invariants (f, f, . . . , f), where e (resp.
f) is the ramification index (resp. degree) of π0R in the extension L/K
([Ch-Th], Theorem 2.2). Set

I = πkΓ,

where k = d− (e− 1) and d is the different of L/K. Then I is the maximal
two-sided Γ -ideal contained in Λ ([Th-W]).

Following Kelly [Kel], by the Jacobson radical RadΛ of the category
latt(Λ) we mean the intersection of all maximal two-sided ideals of latt(Λ).
Since latt(Λ) is a Krull–Schmidt category, RadΛ is generated by all non-
invertible morphisms between indecomposable objects in latt(Λ), that is,
RadΛ(X,Y ) consists of all non-isomorphisms f : X → Y for any pair X,Y of
indecomposables in latt(Λ) ([A-R-S] and [Sim]). In particular RadΛ(X,X)
is the Jacobson radical of the endomorphism ring End(X,X).

We consider the two-sided ideal II ⊆ latt(Λ) consisting of all homomor-
phisms f : X → IY, where X and Y are in latt(Λ).

Proposition 2.3. The ideal II is contained in the radical ideal
RadΛ(X,Y ) of the category latt(Λ) for all X,Y ∈ latt(Λ).

P r o o f. It is sufficient to prove that

(2.1) II ⊂ R(X,X)

for all X ∈ latt(Λ) ([Kn], II 4.1.1). If X is an indecomposable left Λ-
lattice, then (2.1) holds, since then EndΛ(X) is a local ring ([C-R], Propo-
sition 6.10) and so RadΛ(X,X) is its unique maximal ideal. The Krull–
Schmidt–Azumaya theorem holds in latt(Λ) ([C-R], Theorem 6.12); so if
X =

⊕s
i=1Xi is the decomposition of X ∈ latt(Λ) into indecomposable

Λ-lattices, then

(2.2) HomΛ(X,πkΓX) ∼=
s⊕

i,j=1

HomΛ(Mi, π
kΓMj)

and

(2.3) RadΛ(X,X) =

s⊕
i,j=1

RadΛ(Xi, Xj).
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We remark that radXi = (radΛ)Xi, 1 ≤ i ≤ s, and RadΛ(Xi, Xj), 0 ≤
i, j ≤ s, does not contain invertible elements, hence

HomΛ(Xi, π
kΓXj) ⊂ HomΛ(Xi, radXj) ⊂ RadΛ(Xi, Xj),

0 ≤ i, j ≤ s. The above relation together with (2.2) and (2.3) completes the
proof of the proposition.

Lemma 2.4. Let X ∈ latt(Λ) and I = πkΓ , where Γ ⊇ Λ is as above.
Then there exists a functorial isomorphism HomΛ(I,X) = IX of Λ-mo-
dules.

P r o o f. From ([Th], Proposition 8) we can write I =
∑e
i=1 Λωi for

ωi ∈ I. Moreover the elements of IX are finite sums
∑e
i=1 aixi for ai ∈ I,

xi ∈ X. The map

ϑ : IX → HomΛ(I,X)

sending ωim to fi such that fi(ωi) = x for x ∈ X and extended Λ-linearly
is an R-isomorphism. In fact, it is easy to see that ϑ is surjective. Let
f ∈ HomΛ(I,X) and x =

∑e
i=1 λiωi be an element of I for λi ∈ Λ, 1 ≤ i ≤ e.

Then f(x) =
∑e
i=1 λif(ωi). We put fi(ωi) = xi and ϑ(ωixi) = gi with

gi(ωi) = xi, 1 ≤ i ≤ e. If y =
∑e
i=1 ωixi,then ϑ(y)(x) = f(x) for all x ∈ X,

hence ϑ is surjective. The formulas

(λf)(a) = f(x) for all λ ∈ Λ, f ∈ HomΛ(I,X), a ∈ I,

and

λx = xλ for x ∈ X, λi ∈ Λ
give a left Λ-structure on HomΛ(I,X) and a right Λ-structure on X respec-
tively. Thus, if λ ∈ Λ and x = ωixi ∈ IX, then

ϑ(λx)(ωi) = fλx(ωi) = xiλ,

hence ϑ is Λ-linear. Finally, ϑ is a natural isomorphism, since the diagram

IX HomΛ(I,X)

IY HomΛ(I, Y )

ϑX //

φ|IX
��

φ∗

��
ϑY ////

where X,Y ∈ latt(Λ) and φ ∈ HomΛ(X,Y ), is commutative. Therefore we
may identify HomΛ(I,X) with IX.

Proposition 2.5. The ideal II of latt(Λ) is ∗-invariant , i.e.

II(X∗, Y ∗) = II(X,Y )∗ = {f∗ : f ∈ I(X,Y )}.
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P r o o f. From Lemma 2.4 and the adjointness theorem ([C-R], Theorem
3.19) it follows that

II(X,Y ) = HomΛ(X,HomΛ(I, Y ))

= HomΛ(I ⊗Λ X,Y ) = HomΛ(IX, Y ).

Now the assertion follows because πΓ = Γπ ([Th], Proposition 3), Γ = Γ
([H-Th], Proposition 3.2) and so I=I, where − means the involution on A.

We consider the category latt(Λ)/II with objects the objects of latt(Λ)
and morphisms the Λ/I-homomorphisms X/IX → Y/IY for X,Y ∈ latt(Λ)
and I = πkΓ . We define the following residue class functor:

FΛ : latt(Λ)→ latt(Λ)/II
given by FΛ(X) = X for X ∈ latt(Λ) and FΛ(f) : X/IX → Y/IY with
FΛ(f)(x+ IX) = f(x) + IY for x ∈ X.

Moreover, we can define a duality in latt(Λ)/II as follows:

X∗ = HomR/I0(X/IX,R/I0),

where I0 = π0R .
The following lemma is obvious and useful to state the reduction theo-

rem.

Lemma 2.6. The residue class functor FΛ is duality preserving.

We recall the definition of a quadratic module ([Kn], II 2.4). Let ε = ±1
and Ω be a family of groups (XM )M∈latt(Λ) such that XM is a subgroup of
Hom(M,M∗) and

{f − εf∗ | f ∈ Hom(M,M∗)} ⊂ XM ⊂ {f ∈ Hom(M,M∗) | f + εf∗ = 0}
and

f∗XNf ⊂ XM for all f ∈ Hom(M,N).

The pair (ε,Ω) is a form parameter in (latt(Λ),∗ ). An (ε,Ω)-quadratic
module is the pair (M, [g]), where M ∈ latt(Λ) and [g] = g + XM . For
M1,M2 ∈ latt(Λ), a morphism σ : (M1, [g1]) → (M2, [g2]) is an element of
HomΛ(M1,M2) such that [σ∗g2σ] = [g1]. For every [g], g ∈ Hom(M,M∗),
the even hermitian form h = g+εg∗ is well defined. If g+εg∗ is non-singular
then [g] is called non-singular . In case [g] is non-singular, the pair (M, [g])
is called a non-singular quadratic module.

We define, in a canonical way, a form parameter (ε,Ω′) in the category
(latt(Λ)/II ,∗ ), where

Ω′X =
ΩX

ΩX ∩ II(X,X∗)
.

Let D(ε,Ω)(latt(Λ)) and D(ε,Ω′)(latt(Λ)/II) be the categories of non-singular
quadratic modules over latt(Λ) and latt(Λ)/II respectively. Since EndΛ(X)
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is II(X,X)-complete for all X ∈ latt(Λ), we are now ready to state the
reduction theorem ([Q-S-S], Theorem 2.2) for the categories D(ε,Ω)(latt(Λ))
and D(ε,Ω′)(latt(Λ)/II).

Theorem 2.7 (Reduction Theorem). The reduction functor

(2.4) F̃Λ : D(ε,Ω)(latt(Λ))→ D(ε,Ω′)(latt(Λ)/II)

defined by F̃Λ(X, [g]) = (X, [FΛ(g)]) has the following properties:

(i) Every non-singular quadratic module over latt(Λ)/II is the image of a

non-singular quadratic module over latt(Λ), or equivalently , F̃Λ is surjective
on objects and on orthogonal sums.

(ii) The functor F̃Λ is surjective on isometries.

Similarly, we define the residue class functor

FΓ : latt(Γ )→ latt(Γ )/II
by setting FΓ (X) = X, and FΓ (f) : X/IX → Y/IY, FΓ (f)(x + IX) =
f(x) + IY , for X,Y ∈ latt(Γ ) and f ∈ HomΓ (X,Y ). Then the reduction
functor

(2.5) F̃Γ : D(ε,Ω)(latt(Γ ))→ D(ε,Ω′)(latt(Γ )/II)
is defined by

F̃Γ (X, [g]) = (X, [FΓ (g)]) for X ∈ latt(Γ )

where (ε,Ω) (resp. (ε,Ω′)) is a form parameter in (latt(Γ ),∗ ) (resp.
latt(Γ )/II). Moreover we can state the reduction theorem for the cate-

gories latt(Γ ) and latt(Γ )/II and the functor F̃Γ in a manner analogous
to Theorem 2.7.

3. The orthogonal decomposition in D(ε,Ω)(latt(Λ)). We keep the
notation of the previous sections. Λ = (S/R, a) denotes the crossed product
order in A throughout this section. We remark first that the Krull–Schmidt–
Azumaya theorem holds in D(ε,Ω)(latt(Λ)), as it holds in latt(Λ) ([Q-S-S],
Theorems 3.2 and 3.3). Let M =

⊕s
i=1Ni be the decomposition of M ∈

latt(Λ) into the idecomposables Ni ∈ latt(Λ), 1 ≤ i ≤ s. We recall that
for a fixed family Σ of indecomposable lattices in latt(Λ), M is of type Σ
if each Ni is isomorphic to some element in Σ. In particular, we say that
{N1, . . . , Ns}, where Ni 6∼= Nj for i 6= j, is the type of M .

By H(ε,Ω)(X) we denote a hyperbolic quadratic (ε,Ω)-module, for any
X ∈ latt(Λ). In particular we have H(ε,Ω)(X) = (X ⊕ X∗, [g]), where g ∈
HomΛ(X ⊕ X∗, X ⊕ X∗) is given by the matrix

(
0 0
0 1

)
, and the hermitian

form h = g + εg∗ is non-singular on X ⊕X∗.
Thus we get the following theorem:
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Theorem 3.1. (i) Every non-singular quadratic module (M, [g]) in the
category D(ε,Ω)(latt(Λ)) has an orthogonal decomposition

(M, [g]) ∼=
s

⊥
i=1

(Mi, [gi])

where Mi is of type {Ni, N∗i } and Ni, 1 ≤ i ≤ s, are indecomposable left
Λ-lattices such that Ni ⊕N∗i 6∼= Nj ⊕N∗j for i 6= j, 1 ≤ i, j ≤ s.

(ii) If N is an indecomposable left Λ-lattice with N 6∼= N∗, then ev-
ery non-singular quadratic module (M, [g]) of type {N,N∗} is the hyper-
bolic quadratic (ε,Ω)-module H(ε,Ω)(N (r)), where N (r) is r copies of N , for
some r.

P r o o f. (i) Isometries in the category D(ε,Ω)(latt(Λ)/II) lift to isom-
etries in the category D(ε,Ω)(latt(Λ)) by Theorem 2.7. Now the result follows
from the fact that EndΛ(X) is II(X,X)-complete for X ∈ latt(Λ) and by
induction on S, analogously to ([Kn], II 6.3.1).

(ii) The proof is analogous to ([Kn], II 6.4.1).

Because of the above theorem we are interested in determining those
orthogonal summands (N, [g]) of a quadratic module (M, [f ]) of the category
D(ε,Ω)(latt(Λ)) for which N ∼= N∗. For this aim we use the following functor
which is due to Green and Reiner [G-R] and Ringel and Roggenkamp [R-R]:

For theR-orders Λ ⊂ Γ in theK-algebra A = (L/K, a) and the two-sided
Γ -ideal I in Λ we get the diagram

Λ Γ

Λ/I Γ/I

�
o //

�� ��
�
o //

Given a left Λ-lattice X, consider ΓX computed inside KX. Thus ΓX is
a Γ -lattice. We remark that the algebras Λ/I and Γ/I are artinian, X/IX
is a finitely generated left Λ/I-module and ΓX/IΓX is a finitely generated
projective left Γ/I-module, since Γ is a hereditary R-order ([Re], 10.7).

Moreover the inclusionX ⊂ ΓX induces an inclusionX/IX
σ→ ΓX/IX such

that (Γ/I)(Imσ) = ΓX/IX. This construction induces a functor F from

the category latt(Λ) to the category C with objects the pairs Y
σ→ Z, where

Y is a finitely generated left Λ/I-module, Z is a finitely generated projective
left Γ/I-module and σ is a Λ/I-monomorphism such that (Γ/I)σ(Y ) = Z.
Morphisms in C are commutative diagrams

Y Z

Y ′ Z ′

σ //

f

��
φ

��
σ′ //
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where f is a Λ/I-homomorphism and φ is a Γ/I-homomorphism. The func-
tor F is given by

(3.1) F : latt(Λ)→ C, X → X/IX
σ→ ΓX/IX.

Theorem 3.2. The functor F is a representation equivalence of cate-
gories.

P r o o f. E. L. Green and I. Reiner ([G-R], Section 2) and C. M. Ringel
and K. W. Roggenkamp ([R-R], Theorem A) proved that F is a representa-
tion equivalence.

Lemma 3.3. The functor F is duality preserving.

P r o o f. For X in latt(Λ), Γ ⊗R X ∼= ΓX as left Γ -lattices, since X is a
projective R-module. Therefore we get the natural isomorphism

φX : F (X∗) = Γ ⊗R X∗ ∼= F (X)∗

([Re], Theorem 2.3.8), and this proves the lemma.

Let now (ε,Ω) be a form parameter in latt(Λ). With the functor F (3.1)
we can associate a form parameter (ε, F (Ω)) in C. Therefore we can define
the reduction functor

(3.2) F̃ : D(ε,Ω)(latt(Λ))→ D(ε,F (Ω))(C)

where F̃ (X, [g]) = (F (X), [F (g)]).
We now come back to the involution of the first kind on A = (L/K, a),

mentioned in Section 2, such that Λ = Λ. From ([H-Th], Proposition 3.2)
Γ = Γ and from ([Ch-Th], Theorem 2.2) πiM, 0 ≤ i ≤ e/m − 1, are the
non-isomorphic indecomposable Γ -lattices, where M is a left Λ- and right
∆-lattice full in an irreducible left A-module V such that A ∼= EndD(V ).
Moreover we recall that m is equal to 1 or 2, because of the involution on A.

Let now (ε,Ω) be a form parameter in latt(Γ ), g ∈ HomΓ (V, V ∗), and
let h = g + εg∗ be the corresponding even hermitian form, for ε = ±1.
We remark that the hermitian module (V, h) is uniquely determined by the
quadratic (ε,Ω)-module (V, [g]). The map h is an A-homomorphism because
of the involution on A. Thus a map ϕ : Z → Z is defined by the relation

h(πiM) = HomΓ (πϕ(i)M,Γ ), 0 ≤ i ≤ e/m− 1,

where the HomΓ (πϕ(i)M,Γ ) are also the non-isomorphic indecomposable
left Γ -lattices for 0 ≤ i ≤ e/m− 1. In addition ϕ satisfies the relation

ϕ(i) = ϕ(0)− i
([Ri], §2). We remark that (πiM, [gi]), for i ∈ {0, . . . , e/m − 1} and gi the
restriction of g on πiM , is a non-singular quadratic indecomposable module
over latt(Γ ) if and only if

h(πiM) ∼= HomΓ (πiM,Γ )
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hence if and only if

2i ≡ ϕ(0) mod (e/m).

This equivalence has exactly one solution if e/m is odd, two solutions if both
e/m and ϕ(0) are even and no solutions if e/m is even and ϕ(0) is odd. Thus
we have proved the following proposition, using the same notation.

Proposition 3.4. Let Λ be the crossed product order (S/R, a) in the
crossed product algebra A = (L/K, a) ∼= EndD(V ) and h = g+εg∗ be a non-
singular hermitian form on V . Then if e/m is odd there exists exactly one
(up to isometry) indecomposable non-singular quadratic module in latt(Γ );
if both e/m and ϕ(0) are even then there exist exactly two such modules;
and if e/m is even and ϕ(0) is odd there is no such module in latt(Γ ).

Theorem 3.5. Let Λ be the crossed product order (S/R, a) in the crossed
product algebra A = (L/K, a) ∼= EndD(V ) and h = g+εg∗ be a non-singular
hermitian form on V . Then if e/m is odd there exists exactly one (up to
isometry) irreducible non-singular quadratic module in latt(Λ); if both e/m
and ϕ(0) are even then there exist exactly two such modules in latt(Λ); and
there is no such module in latt(Λ) if e/m is even and ϕ(0) is odd.

P r o o f. Let h = g + εg∗ be a non-singular hermitian form on V and
(ε,Ω) be a form parameter in latt(Γ ). Let also (N, [gN ]) be an indecompos-
able non-singular quadratic module in latt(Γ ) corresponding to h according
to Proposition 3.4, where gN is the restriction of g to N . Then N is Γ -
isomorphic to πiM for some i ∈ {0, . . . , e/m − 1}. If (N, [FΓ (gN )]) is the

image of (N, [gN ]) via the functor F̃Γ , then there exists a unique, up to
isometry, non-singular quadratic (ε,Ω′)-module (N, [g′]) in latt(Λ)/II such

that F̃ (N, [g′]) = (N, [FΓ (gN )]), where F (Ω′) = FΓ (Ω). The functor F̃Λ is
onto, so from Theorem 2.7 there exists at least one non-singular quadratic
(ε,Ω1)-module (N, [g1]) in latt(Λ) such that F̃Λ(N, [g1]) = (N, [g′]), where
FΛ(Ω1) = Ω′. Furthermore from Theorem 2.7 it follows that g1 is an isomor-
phism, and so we get the existence of an irreducible non-singular quadratic
(ε,Ω1)-module in latt(Λ), and moreover (N, [g1]) is unique.

All irreducible left Λ-lattices are described in ([Ch-Th], Theorem 3.1).
We shall follow this description to get the irreducible left Λ-lattices in case
m = 1 or 2. Suppose that m = 2. If N is an irreducible left Λ-lattice, then
there is an L-basis υ1, υ2 of V such that

(3.3) N = πj{Sυ1 + πa2Sυ2}
for 0 ≤ j ≤ ea/2−1, 0 ≤ a2 ≤ (12σ), where a is a natural number depending
on N and (12σ) is the valuation of the coefficient of υ2 in the expression of
uσυ1 as a linear combination of υ1, υ2 with coefficients from S, where σ ∈ G.
We remark that then M = Sυ1 + Sυ2 is a left Λ- and right ∆-lattice. In
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case m = 1, πiS, 0 ≤ i ≤ e/m − 1, are the non-isomorphic irreducible left
Λ-lattices.

Proposition 3.6. Let N be an irreducible left Λ-lattice, as in the formula
(3.3), with a2 > 0. Then N 6∼= N∗.

P r o o f. If g : N ∼= N∗, then h = g0 + εg∗0 is a non-singular hermitian
form on V = K⊗RN , where g0 is the extension of g on V . Further (N, [g]) is
a non-singular quadratic module in latt(Λ) for some form parameter (ε,Ω)
in latt(Λ). Therefore

F̃ F̃Λ(N, [g]) = (ΓN, [g̃]),

where F̃ is the functor (3.2). However, ΓN is isomorphic to πiM for some
i ∈ {0, . . . , e/m− 1}, where M = Sυ1 +Sυ2. Thus, because of Theorem 2.7

and 3.2 and the functor F̃ , we get an isometry

(N, [g]) ∼= (πiM, [g0|πiM ])

for some i ∈ {0, . . . , e/m− 1}, which is impossible whenever a2 > 0.

Corollary 3.7. Every non-singular quadratic module (X, [g]) over
latt(Λ) of type {N,N∗}, where N is as in (3.3) with a2 > 0, is a hyper-
bolic module of the form H(ε,Ω)(N) for a form parameter (ε,Ω) in latt(Λ).
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