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ON TUBES FOR BLOCKS OF WILD TYPE

BY

KARIN E R D M A N N (OXFORD)

Abstract. We show that any block of a group algebra of some finite group which is
of wild representation type has many families of stable tubes.

The Auslander–Reiten quiver is an important homological invariant of a
finite-dimensional algebra. We are interested in the Auslander–Reiten quiver
of a block B of a group algebra kG whereG is a finite group, and k is any field
of characteristic p > 0; especially when the block B has wild representation
type. By [6] (and [10]), any component of the stable Auslander–Reiten quiver
of B is either of the form ZA∞ or a tube.

Here we are concerned with the existence of tubes; one can deduce from
[3] that any block of infinite type has at least one tube. In the present paper
we show that the stable Auslander–Reiten quiver of a block of wild type has
a large number of tubes. We exhibit a family of tubes parametrized as
Tλ, where λ ∈ ks for s = p − 1 if p > 2, and s ≥ 2 if p = 2, consisting of
absolutely indecomposable modules. We note that for blocks of tame type,
there are only 1-parameter tube families.

This is in contrast with other classes of finite-dimensional algebras. For
example, let A be a connected algebra which is hereditary of infinite type.
Then the stable Auslander–Reiten quiver of A has tubes if and only if A is
tame. Further results may be found in [12].

For general results on algebras, we refer to [2]; for general properties of
group representations, see [7].

1. Preliminaries. Assume that G is a finite group and k is a field of
characteristic p. We work with kG-modules. Recall that kG is a symmet-
ric algebra and therefore the Auslander–Reiten translation τ is isomorphic
to Ω2. We denote the Auslander–Reiten sequence 0→ τ(X)→ Y → X → 0
by A(X), and the quasi-length of a module is the number of the row of the
component to which it belongs if this has tree class A∞.
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Let H be a subgroup of G. If M is a kH-module then we denote the
induced module M ⊗kH kG by MG, and if W is a kG-module then the
restriction of W to kH is written as W↓H . Recall that a G-module W is
H-projective (G arbitrary, H any subgroup) if there is some kH-module X
such that W is a direct summand of XG. We also recall that a kG-module
M is absolutely indecomposable if for all finite extension fields F of k, the
FG-module M ⊗k F is indecomposable.

The following is now well known; see [11], Cor. 9.4, p. 155.

1.1. Lemma. Let W be an indecomposable non-projective kG-module,
and let W have Auslander–Reiten sequence

A(W ) : 0→ τ(W )→ X →W → 0.

If H is a subgroup of G then A(W )↓H splits if and only if W is not H-
projective.

1.2. IfW is indecomposable then a vertex of W is defined to be a minimal
subgroup H such that W is H-projective. It is well known that vertices of
W are unique up to conjugation and that they are p-subgroups.

If B is a block of kG recall that a defect group of the block is a subgroup
D of G which is minimal such that all modules in B are D-projective. Then
D is unique up to conjugation and it is a p-group.

The block is of wild representation type if and only if a defect group D
is not cyclic or dihedral, semidihedral, or quaternion [5]. We shall use the
fact that then D has a subgroup which is either elementary abelian of order
p2 (if p > 2), or non-cyclic abelian of order 8 (if p = 2).

1.3. Assume that H = 〈x, y〉, elementary abelian of order p2. We will
construct a kp−1-family of periodic modules of dimension p and τ -period
one.

Take a p-dimensional vector space; we define a representation on this
space by specifying two commuting matrices X,Y of size p × p such that
Xp = 0 and Y p = 0 (where X,Y represent x − 1, y − 1 respectively). For
X we take the indecomposable Jordan block with eigenvalue 0. Then for Y
we can take any polynomial in X with zero constant term. Take Y to be a
polynomial in X of degree ≤ p − 1 with constant term zero. We label this
as Mλ where λ = (λ1, . . . , λp−1) ∈ kp−1 if Y =

∑
λiX

i. Then Mλ
∼= Mµ if

and only if λ = µ. By considering the restriction to 〈x〉 it is clear that any
such module is absolutely indecomposable.

We claim that τ(Mλ) ∼= Mλ. This can be seen by general theory of
varieties (the support variety of the module is a line; and for group alge-
bras of abelian groups, all periodic modules have Ω-period at most two).
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Alternatively, it is easy to prove it directly. Let ζ ∈ kH be the element

ζ = Y −
p−1∑
i=0

λiX
i

(with λ0 = 1). One checks that ζ generates the annihilator of Mλ, i.e. we
can identify Ω(Mλ) with ζkH. Moreover, ζp−1kH ∼= Mλ and ζp−1 generates
the annihilator of ζkH. So Ω2(Mλ) ∼= Mλ.

1.4. Now assume that p = 2 and H = 〈x, y, z〉 is elementary abelian of
order 8. We will similarly construct a family of absolutely indecomposable
modules with τ(M) ∼= M of dimension 4.

We start off by ensuring that the action of 〈x, y〉 is free (then M is
absolutely indecomposable and will have τ -period 1, similarly to 1.3). So
let X,Y be the matrices

X =

(
J 0
0 J

)
, Y =

(
0 I
0 0

)
.

where J =
(
0 1
0 0

)
and I is the 2×2 identity matrix. Then to get a representa-

tion of H we need a matrix Z with square zero which commutes with X and
Y . Take Z = λ1X+λ2Y +λ3XY for λi ∈ k, and denote the module by Mλ

where λ = (λ1, λ2, λ3). As in 1.3 the isomorphism type is parametrized by
λ ∈ k3. The module has Ω-period one and lies in a 1-tube and is absolutely
indecomposable.

1.5. Now assume that p = 2 and H is a group isomorphic to C2×C4, say
H = 〈x, y〉 with x of order 2 and y of order 4. We will construct a similar
family of modules with τ -period one. Take a space of dimension four. We
let y act freely, so we take for Y (representing y − 1) the indecomposable
Jordan block of size 4 with eigenvalue 0. Then we let X act as λ1Y

2+λ2Y
3,

and X represents x−1. This is a representation and the isomorphism types
are parametrized by (λ1, λ2) ∈ k2. The module has Ω-period one and lies
therefore in a 1-tube, and it is absolutely indecomposable.

2. The p-group case. Assume that G is a p-group. Then the group
algebra kG is indecomposable, hence is a block. We assume that it is of
wild representation type, so G is not cyclic or dihedral, semidihedral, or
generalized quaternion (since G is a defect group). In this situation the
trivial module, the only simple module, is not periodic; this is well known
for example from group cohomology. Hence all tubes are stable.

The advantage of working in this situation is that Green’s Theorem is
available. Namely, if H is a subgroup of G and M is an absolutely indecom-
posable kH-module then the induced module MG is absolutely indecompos-
able (see [7], Ch. VII). Note that if some indecomposable module in a tube
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is absolutely indecomposable then so are all modules in this tube. Therefore
we can assume in this section that the field is algebraically closed.

Recall that kG is free as a module over kH, which implies that inducing
commutes with Ω and then also with τ .

2.1. For the rest of Section 2 we assume that H C G, that is, H is a
normal subgroup of G and H 6= G. If M is any kH-module and g ∈ G \H
then the conjugate Mg := M ⊗ g ⊂MG is an H-module. Let I(M) be the
stabilizer of M , that is, I(M) = {g ∈ G : Mg ∼= M}. Then we have

MG↓H = (M1 ⊕ . . .⊕Ms)
a

where the Mi are the pairwise non-isomorphic conjugates, and where sa =
[G : H] and s = [G : I(M)]. (For any module X we denote by Xa the direct
sum of a copies of X). We say that M is G-invariant if I(M) = G. The
group also acts by conjugation on the Auslander–Reiten components of H,
which induces a graph automorphism. Clearly, if M belongs to a tube then
I(M) is also the stabilizer of the component.

2.2. Lemma ([4], (1.7)). Let k be algebraically closed , let H be a normal
subgroup of a p-group G and assume that M is an indecomposable non-
projective H-module which is G-invariant. Then

A(MG)↓H ∼= A(M)⊕ E

where E is split. In particular , A(MG) 6= A(M)G.

Let M be an indecomposable kH-module such that I(M) = H, the other
extreme. Then we have A(MG) = A(M)G, by [4], (2.1); and then the same
holds for all modules in the component of M .

2.3. We shall frequently use the following properties of some indecom-
posable G-module X.

(1) If X↓H is not a direct sum of [G : H] conjugates of some module
then X is not H-projective. For otherwise there is some indecomposable
H-module Y such that X = Y G and then the restriction of X to H is a
summand of Y G↓H which is a sum of [G : H] conjugates.

By similar arguments one has:

(2) Suppose X↓H = ⊕M where M is indecomposable. If X is H-
projective then X ∼= MG.

Assume Θ is a component of H whose stable part consists of modules of
τ -period one. If H is cyclic, let Us ∈ Θ have dimension s, for 1 ≤ s ≤ |H|.
Then U|H| is projective. Otherwise Θ is a stable 1-tube. Let Ut have quasi-
length t, for t ≥ 1 (cf. [9]). (Note that if H is quaternion then the only
unstable component is a 2-tube.)
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Let M = Us be non-projective. Then MG is indecomposable, with
τ(MG) ∼= MG. Since G is not cyclic the component T of MG is a 1-tube.
So let Et be the module in the component of MG which has quasi-length t.
If MG = Er then the AR-sequence of MG is of the form

(∗) 0→MG → Er+1 ⊕ Er−1 →MG → 0

(with Er−1 = 0 if r = 1).

2.4. Proposition. Assume H C G and Θ is a component of H whose
stable part consists of absolutely indecomposable modules with τ -period one.
If M ∈ Θ then MG lies in a 1-tube. Moreover , one of the following holds:

(a) The component of MG contains all modules (Us)
G with Us ∈ Θ, and

ql(Us)
G = rs where 1 < r ≡ 0 (mod p). The component Θ is a tube, and H

is not cyclic.
(b) For any M in Θ, MG has quasi-length which properly divides the

index [G : H]. No two modules MG for M in Θ lie in the same component.
No further module in any of these components is H-projective.

P r o o f. We may assume that k is algebraically closed. Let M=Us and
MG=Er, with the above notation. By 2.2 and (∗) we have (Er−1⊕Er+1)↓H
∼= U ⊕Md and d = 2[G : H]− 2 = 2pm − 2. We set

Er−1↓H = U ′ ⊕Ma, Er+1↓H = U ′′ ⊕Md−a

with U ′ ⊕ U ′′ ∼= U (where U ′ could be zero), and 0 ≤ a ≤ d.
For each t define c(t) ≥ 0 to be the integer such that Et↓H ∼= W ⊕M c(t)

and that W does not have a summand isomorphic to M .
(i) By 2.3, Er+1 cannot be H-projective and hence A(Er+1)↓H splits.

We deduce that

(Er+2 ⊕ Er)↓H = (U ′′)2 ⊕M2(d−a)

and since Er↓H = Mpm we have

Er+2↓H = (U ′′)2 ⊕M2(d−a)−pm ,

that is, c(r + 2) = 2(d − a) − pm. If c(r + 2) 6= 0 then Er+2 cannot be
H-projective and by the same argument we get Er+3↓H = (U ′′)3⊕M c(r+3)

where c(r + 3) = 3(d− a)− 2pm, and so on, and inductively if Er+s is not
H-projective for s = 1, . . . , t− 1 then

Er+t↓H = (U ′′)t ⊕M c(r+t) with c(r + t) = t(d− a)− (t− 1)pm.

(ii) Similarly, if Er−s is not H-projective for s = 1, . . . , t− 1 then

Er−t↓H = (U ′)t ⊕M c(r−t), c(r − t) = ta− (t− 1)pm.

Case 1. Assume first that Er−1 = 0, that is, r = 1. Then a = 0 and
in (i) we have c(1 + t) = t(pm − 2) + pm > 0 for all t ≥ 1 and Et is not
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H-projective for all t > 1, hence the component of MG does not contain
any other module from Θ, proving part of (b).

Case 2. Assume U ′ 6= 0. Then Er−1 is not H-projective, and we use
(ii) to study decreasing quasi-length; the process in (ii) must stop. So let
t be the first integer such that Er−t is H-projective. Then Er−t = (U ′)G,
so U ′ is indecomposable, and hence t = [G : H] = pm and c(r − t) = 0.
We get a = pm − 1. By dimensions U ′ = Us−1; note also that Er−t+1↓H =
(U ′)p

m−1 ⊕M .
So if we repeat the argument with U ′ instead of M we find, for k =

1, 2, . . . as long as r − kp > 0, that Er−kp = (Us−k)G. Consider the case

k = s− 1; then Er−(s−1)p−1↓ = Up
m−1

1 and hence we get E1↓H = U1.
Now if we study increasing quasi-length then since d − a = a here, we

get c(r + pm) = 0 and then it follows that Er+pm = (U ′′)G and so on. We
see that the component contains (Ub)

G for all b. Note also that in this case
Θ must be infinite, so H must be non-cyclic.

Case 3. Let Er−1 6= 0 but U ′ = 0. Then we deduce from (i), since
c(r − t) = 0 for t = r, that

ra = (r − 1)pm

and r = pb > 1, a = pm−b(pb − 1).
If b = m then we get Er+t ∼= UG; in particular, U must be indecompos-

able, so U = U2 and M = U1. We are in Case 2 with U instead of M . We
deduce that the component contains all (Us)

G for Us ∈ Θ.
On the other hand, suppose b < m; then c(r + t) > 0 for t = 1, 2, . . .

and MG is the only H-projective module in the component. So M satisfies
part (b) of the statement, the quasi-length of MG is pb ≥ 1 and is a proper
divisor of [G : H].

So we have proved that either the component of MG contains all modules
induced from Θ or just one; and if just one then it follows that for two
different modules in Θ, their inductions to G lie in different components.
This completes the proof of 2.4.

2.5. Consider dG : kG-mod→ N defined by

dG(X) = dim HomkG(k,X).

Then dG induces an additive function on any 1-tube of G. If M is a kH-
module then by Frobenius reciprocity we have dG(MG) = dH(M) and the
following shows that any two of the modules constructed in 1.3 to 1.5 induce
to different components of G, with all MG of quasi-length one since for these
we have dH(M) = 1.

Lemma. Let Θ be as in 2.4. If Θ contains a module X such that dH(X)
is not divisible by p then 2.4(b) holds for Θ and ql(MG) = 1 for all M ∈ Θ.
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P r o o f. We have dG(Er)=rdG(E1) if Er has quasi-length r. Let XG =
Er. Then rdG(E1) = dG(XG) = dH(X) 6≡ 0 (mod p) and (a) in 2.4 is
excluded; actually we must have (b) with r = 1.

The following will be used later to deal with arbitrary blocks.

2.6. Proposition. Let ∆ be a component of G which contains MG with
M an indecomposable H-module which is G-stable, of τ -period one, and such
that no other module in ∆ is H-projective. Assume that ql(MG) = 1, that
dH(M) is not divisible by p and that M has vertex H. Then all other modules
in ∆ have vertex G.

P r o o f. We may assume k is algebraically closed. Suppose the statement
fails; let Es in ∆ for s > 1 be minimal with a smaller vertex. Then there is
a maximal subgroup P of G (normal, of index p) such that Es = XG where
X is an indecomposable P -module.

Assume first that X is G-stable. We apply 2.4 with P,X. Since s > 1
and the index [G : P ] is p we must have case 2.4(a). Hence s = p, and then
E1↓P = X, from the proof of 2.4. But E1 = MG, so we get X = MG↓P ∼=
(M↓H∩P )P .

Suppose we have H ≤ P . Then MG↓P = MP = X and

dP (MP ) = dP (X) = dG(XG) = sdG(E1) ≡ 0 (mod p);

but dP (MP ) = dH(M) and we have a contradiction to the hypothesis. So
we can only have H 6⊆ P and P ∩H is a proper subgroup of H.

From the proof of 2.4, if U is the middle term of the Auslander–Reiten
sequence of M then M is a direct summand of (Es)↓H . But Es = XG and
hence Es↓H = XG↓H = (X↓P∩H)H . It follows that M = (M ′↓P∩H)H and
M has vertex strictly contained in H, a contradiction.

So X is not G-stable. By 2.2, the component is induced from P , and in
particular, MG is P -projective. So H ≤ P and A(MG) = A(M0)G where
M0 = MP . Then M0 is not G-stable. On the other hand, for g ∈ G we have
Mg

0
∼= (Mg)P ∼= MP = M0, a contradiction.

2.7. Corollary. Let D be a p-group with kD of wild type. Then there
is a family (Tλ)λ∈Λ of 1-tubes where for all λ, any M in Tλ of quasi-length
> 1 has vertex D, and where

(i) Λ = ks with s = max(p− 1, 2) if the centre Z(D) of D is not cyclic
or a Klein 4-group,

(ii) |Λ| = |Z(D)| − 1 if Z(D) is cyclic,

(iii) Λ = k if Z(D) is a Klein 4-group.

P r o o f. Note first that any H ⊂ Z(D) is normal in G and any H-module
is automatically D-stable.
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If Z(D) is not cyclic then Z(D) contains H as in 1.3–1.5, and by 1.3–1.5
and 2.4, 2.6 we get (i) or (iii). (If in 1.3 or 1.4 some of the modules are
induced, then replace H by the vertex.)

Now suppose Z(D) is cyclic, and takeH = Z(D); this has one component
with |H|−1 indecomposable non-projective modules, and by 2.4 and 2.6 we
get (ii).

3. The general block. Now let G be arbitrary, and let B be a block
of kG which is of wild type. Let D be a defect group of B; this is a p-group
and kD is of wild type. We now show that the 1-tubes constructed for kD
in 2.7 give rise to finitely many tubes of B.

3.1. Theorem. Let Tλ be a family of 1-tubes of kD such that any
M ∈ Tλ of quasi-length > 1 has vertex D. Then for each λ there are finitely
many tubes Tλ,i of B such that almost all modules of Tλ,i are induced from
Tλ. Moreover , for λ 6= µ the tubes Tλ,i and Tµ,j are distinct.

P r o o f. This is a standard reduction.

Assume first that D is normal in G. Let C = DCG(D); this is then a
normal subgroup of G. It is well known (see for example [1], (2.9)) that there
is a block b of C with defect group D having the following properties. If e
is the block idempotent of b and T = {g ∈ G : eg = e} then e is also a block
idempotent of T . Moreover, the block ekT of T is Morita-equivalent to B
(see for example [5], V.2.12), and vertices are preserved.

So without loss of generality, G = T , that is, B = ekG. Note that if
M is a b-module then MG is a B-module since M = Me and therefore
MT e = MeT = MT , as e is central in kT .

By [6], (4.2), we know that the block b is Morita-equivalent to kD and
the equivalence described there is vertex-preserving. So the results in §2 give
an appropriate family of tubes for b.

It remains to induce the modules in this tube from b to kT . It is im-
portant that the index of C in T is not divisible by p (cf. [1]). So vertices
are preserved; and for any indecomposable non-projective kC-module M
if MT =

⊕
iWi with indecomposable summands Wi then the Wi are not

projective (consider the restriction to C), and by [8] we deduce

A(M)T ∼=
⊕
i

A(Wi).

Now, τ(MT ) ∼= τ(M)T , so if τ(M) ∼= M then τ induces a permutation of
the Wi, and each orbit gives rise to one tube of B. Call the tube containing
the module in the jth orbit Tλ,j .

Now let G be arbitrary and let N = NG(D). For any tube T in which
all modules of quasi-length > 1 have vertex D, we denote by T ′ the infinite
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connected translation subquiver which is obtained by deleting the modules
of quasi-length one. Then by [10] the Green correspondence induces a graph
isomorphism between T ′ for a tube T in the family for N and some infinite
part of a tube for G. Since only one τ -orbit is left out this induces a 1-1
correspondence between such tubes of N and a tube family of G. Moreover,
it is well known that there is a unique block b of N such that M ∈ b if and
only if gM ∈ B, and b has defect group D and is therefore also of wild type.
By the first part the statement holds for b and by this correspondence it
follows for B as well.

3.2. Let R = k[T1, . . . , Ts] be the polynomial ring in s variables. For
λ ∈ ks let Sλ be the corresponding simple R-module.

Theorem. Let B be a block of wild type with defect group D such that
Z(D) is not cyclic or a Klein 4-group. Let s = max(p− 1, 2). Then there is
an R-kD-bimodule W which is finitely generated and free as an R-module
such that

(i) Sλ ⊗RW lies in a 1-tube Tλ, and
(ii) there is a family of 1-tubes Tλ,1 of B such that for every M in Tλ of

quasi-length > 1, the induced module MG has a summand in Tλ,1 and for
λ 6= µ the tubes Tλ,1 and Tµ,1 are distinct.

P r o o f. By the hypothesis, Z(D) contains a subgroup H as in 1.3–1.5.
The modules defined there are of the form Sλ ⊗RM where M is an R-kH-
bimodule. Take W = M ⊗kH kD. Since H is central in D, M is D-invariant
and Sλ ⊗R M = Mλ is absolutely indecomposable. Apply 2.4; this shows
that the component of Sλ ⊗R W = (Mλ)D contains only one H-projective
module. So for λ 6= µ the modules Sλ ⊗R W and Sµ ⊗R W lie in different
tubes. Take for Tλ the component of Sλ ⊗R W . Then apply 3.1, and take
Tλ,1 as in 3.1.
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[12] I. Re i ten and A. Skowro ń sk i, Sincere stable tubes, preprint (Bielefeld 99-011).

Mathematical Institute
24-29 St. Giles
Oxford OX1 3LB, UK
E-mail: erdmann@maths.ox.ac.uk

Received 27 May 1999;
revised 14 June 1999


