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Abstract. We give a clear and systematic exposition of one-parameter families of
brake orbits in dynamical systems on product vector bundles (where the fiber has the
same dimension as the base manifold). A generalized definition of a brake orbit is given,
and the relationship between brake orbits and periodic orbits is discussed. The brake
equation, which implicitly encodes information about the brake orbits of a dynamical
system, is defined. Using the brake equation, a one-parameter family of brake orbits is
defined as well as two notions of nondegeneracy by which a given brake orbit embeds
into a one-parameter family of brake orbits. The duality between the two notions of
nondegeneracy for a brake orbit in a one-parameter family is described. Finally, four ways
in which a given periodic brake orbit generates a one-parameter family of periodic brake
orbits are detailed.

1. Introduction. First coined by Ruiz in 1977 (see [22] and [26]), the
term “brake orbit” describes a particular kind of nonequilibrium solution
of a dynamical system. In the context of a vector field on a vector bundle
(where the dimension of the fiber is the same as that of the base manifold),
a brake orbit is a nonequilibrium solution of the vector field whose fiber part
vanishes at least twice. Brake orbits have found application in Hamiltonian
dynamical systems (that satisfy a certain reversibility condition) as a tool
productive in proving the existence of periodic orbits of prescribed energy.
For example, see [1], [4], [6], [9], [11], [15], [18], [19], [20], [22], [23], [15], [13],
[14], and [26]. However, not every brake orbit is a special kind of periodic
orbit.

The rigorous development and exposition of a theory of one-parameter
families of brake orbits in distinction to the well-known theory of one-
parameter families of periodic orbits is therefore appropriate. Indeed, “...the
final goal of dynamics embraces the characterization of all types of move-
ments and of their interrelation” (italics added, p. 682 of [5]). That which
is presented here is a refinement of the theory of one-parameter families of
brake orbits as described in [3]. Although much of this theory is implicitly
known by researchers in the field (at least within the context of Hamil-
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tonian dynamical systems), it has not previously been stated clearly and
systematically in the literature.

2. Brake orbits and the brake equation. Consider the product vec-
tor bundle M = Q × Rn, where Q is a smooth manifold of dimension n.
By smooth we mean C∞. We let q denote a point in Q, and let p denote
a point in the fiber {q} × Rn. A point in M is denoted by z = (q, p). The
vector bundle M comes equipped with three maps. The canonical projection
π : M → Q is defined by π(q, p) = q. The canonical injection (or zero-
section map) σ : Q → M is defined by σ(q) = (q, 0). The fiber projection
π′ : M → Rn is defined by π′(q, p) = p.

Let X be a smooth vector field on M and let Ft be the flow it generates.
We assume that the flow is complete. The orbit of the flow Ft through an
initial condition z is the directed set γ(z) = {Ft(z) : t ∈ R}, where the
direction is determined by the evolution of Ft as the time t progresses from
−∞ to ∞. The zero-section of M is the embedded submanifold σ(Q). The
set of all zero-section equilibria of a vector field X on M is Ze(X) = {q ∈
Q : X(σ(q)) = 0}.

The notion of a brake describes the relationship between the zero-section
σ(Q) and the flow Ft. An orbit γ(z0) is said to brake at time t if

π′Ft(z0) = 0.

Geometrically, this says that the orbit γ(z) intersects σ(Q). With each or-
bit γ(z0) we associate two sets, the braking point set BP(z0) = {Ft(z0) :
π′Ft(z0) = 0, t ∈ R}, and the braking time set BT(z0) = {t ∈ R : π′Ft(z0)
= 0}. For a set S, we denote by |S| the cardinality of S.

Definition 2.1. An orbit γ(z0) of Ft is called a brake orbit if X(z0) 6= 0
and |BT(z0)| ≥ 2.

For a brake orbit γ(z0) there is, by a time translation, a point q0 in Q
such that γ(σ(q0)) = γ(z0). Because X(z0) 6= 0, the point q0 does not belong
to Ze(X). A nonzero time T0 in BT(σ(q0)) is called an interbraking time for
γ(σ(q0)). Because γ(σ(q0)) brakes at time T0, the braking point FT0σ(q0)
belongs to σ(Q). The pair (T0, q0) is a solution of the brake equation

π′Ftσ(q) = 0.

This implicit equation encodes information about the brake orbits of the
flow Ft. Certainly, a necessary condition for the existence of brake orbits is
that Ze(X) 6= Q.

Solutions of the brake equation are not in a one-to-one correspondence
with the brake orbits of the flow Ft. If (T0, q0) is a solution of the brake equa-
tion and T ∈ BT(σ(q0)) is not equal to T0, then the pairs (−T, πFTσ(q0))
and (T0 − T, πFTσ(q0)) are also solutions of the brake equation. We say
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that two solutions (t, q) and (t̃, q̃) of the brake equation are equivalent if and
only if γ(σ(q)) = γ(σ(q̃)). This is an equivalence relation on the solutions
of the brake equation. Consequently, there is a one-to-one correspondence
between the equivalence classes of solutions of the brake equation and the
brake orbits of Ft.

A given brake orbit may or may not be periodic. A brake orbit γ(σ(q0))
is called a periodic brake orbit if there is a t 6= 0 such that Ftσ(q0) = σ(q0). A
periodic brake orbit is a special kind of periodic orbit. Given a periodic brake
orbit γ(σ(q0)) (which is a nonequilibrium orbit by definition), the smallest
positive time T for which FTσ(q0) = σ(q0) is called the prime period. On
the other hand, there may or may not be a smallest positive interbraking
time for a brake orbit (periodic or otherwise). That is, given a brake orbit
γ(σ(q0)), the set of positive interbraking times BT+(σ(q0)) may be empty
or inf BT+(σ(q0)) may be zero.

Definition 2.2. A brake orbit γ(z0) is called finite if BP(z0) is finite.

Proposition 2.3. If γ(σ(q0)) is a finite brake orbit for which BT+(σ(q0))
is nonempty , then γ(σ(q0)) has a smallest positive interbraking time.

P r o o f. Suppose that there is not a smallest positive interbraking time
for γ(σ(q0)). Then, as BT+(σ(q0)) is nonempty, there is a positive sequence
tj → 0 for which π′Ftjσ(q0) = 0. So {tj} ⊂ BT(σ(q0)) and {Ftjσ(q0)} ⊂
BP(σ(q0)). As γ(σ(q0)) is a finite brake orbit, there is a σ(q1) ∈ BP(σ(q0))
and a subsequence tjk such that Ftjkσ(q1) = σ(q1). Hence γ(σ(q1)) is
a periodic brake orbit with periods tjk . Thus, each tjk must be an in-
teger multiple of the prime period of γ(σ(q1)). But this is impossible as
tjk → 0.

Proposition 2.4. If γ(σ(q0)) is a finite brake orbit and |BT(σ(q0))|
= ∞, then γ(σ(q0)) is a periodic brake orbit which has a smallest positive
interbraking time.

P r o o f. By the hypotheses, |BP(σ(q0))| < |BT(σ(q0))| = ∞. So there
are T1, T2 ∈ BT(σ(q0)) with T1 6= T2 for which FT1σ(q0) = FT2σ(q0). Thus,
FT2−T1

σ(q0) = σ(q0) and hence γ(σ(q0)) is a periodic brake orbit. As we
can take T2 > T1, it follows that T2 − T1 ∈ BT+(σ(q0)), and so by Proposi-
tion 2.2, γ(σ(q0)) has a smallest positive interbraking time.

The use of Proposition 2.4 to determine if a given brake orbit is a periodic
brake orbit is limited to the knowledge one has of the flow Ft. On the
other hand, there is a global condition on the vector field X which implies
that every brake orbit (finite or otherwise) is a periodic brake orbit. The
momentum reversing involution R : M →M is defined by R(q, p) = (q,−p).
We say that X is R-reversible if R∗X = −X where R∗X = TR ◦X ◦R−1.
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Proposition 2.5. Suppose that X is R-reversible. Then any brake orbit
γ(σ(q0)) of X is a periodic brake orbit. Moreover , if γ(σ(q0)) is a finite
brake orbit , then |BP(σ(q0))| = 2 and the prime period of γ(σ(q0)) is 2T0,
where T0 is the smallest positive interbraking time of γ(σ(q0)).

P r o o f. The R-reversibility of X is equivalent to R and Ft satisfying
RF−t = FtR (see [3]). Any point in σ(Q) is a fixed point of R, that is,
R(σ(q)) = σ(q). Let T0 be an interbraking time for a brake orbit γ(σ(q0)).
Then

F2T0σ(q0) = FT0RFT0σ(q0) = RF−T0FT0σ(q0) = σ(q0),

and hence γ(σ(q0)) is a periodic brake orbit. (This is a well-known fact
within the context of an R-reversible Hamiltonian system [10], [16].)

Now suppose that γ(σ(q0)) is a finite brake orbit. By the periodicity of
γ(σ(q0)), BT+(σ(q0)) is not empty. By Proposition 2.3, we can take T0 to
be the smallest positive interbraking time of γ(σ(q0)). By the calulcation of
the previous paragraph, 2T0 is a period of γ(σ(q0)).

We show that T0 is not the prime period. On the contrary, suppose it is.
Then FT0

σ(q0) = σ(q0). Applying F−T0/2 to both sides we get FT0/2σ(q0) =
F−T0/2σ(q0). Then

RFT0/2σ(q0) = RF−T0/2σ(q0) = FT0/2Rσ(q0) = FT0/2σ(q0).

This says that FT0/2σ(q0) ∈ σ(Q). Hence T0/2 is a positive interbraking
time that is smaller than T0.

Now we show that 2T0 is the prime period. On the contrary, suppose it
is not. Then by periodicity, 2T0/k, for an integer k ≥ 2, is the prime period.
We eliminated the case k = 2 above. So k ≥ 3. But then 2T0/k would be a
positive interbraking time smaller than T0.

Finally, we show that |BP(σ(q0))| = 2. Suppose that σ(q0) is the only
braking point of γ(σ(q0)). Then FT0

σ(q0) = σ(q0), and arguing as above,
we reach a contradiction. So |BP(σ(q0))| ≥ 2. Now suppose that there is
a third braking point FT1

σ(q0) besides σ(q0) and FT0
σ(q0). By periodicity

and the fact that T0 is the smallest positive interbraking time, we can take
T0 < T1 < 2T0. Then T2 = 2T0 − T1 satisfies 0 < T2 < T0. Also, as

FT2
FT1

σ(q0) = F2T0−T1+T1
σ(q0) = σ(q0),

T2 belongs to BT(FT1
σ(q0)). By the argument that implies 2T0 is a period

of γ(σ(q0)), we deduce that 2T2 is a period of γ(FT1
σ(q0)) = γ(σ(q0)). But

2T2 < 2T0, where 2T0 is the prime period of γ(σ(q0)), a contradiction. Hence
|BP(σ(q0))| ≤ 2.

Within the class of reversible Hamiltonian systems, the term “brake or-
bit”, as coined by Ruiz, corresponds to our notion of a brake orbit which is
finite (with exactly two braking points) and periodic. However, in the class



ONE-PARAMETER FAMILIES OF BRAKE ORBITS 205

of linear Hamiltonian systems, there are examples of periodic brake orbits
for which the number of braking points is larger than 2 but finite (see [11])
as well as examples of nonperiodic brake orbits for which the number of
braking points is exactly two (see [3]). In these examples, the corresponding
vector fields are not R-reversible.

By their nature, brake orbits can have a relationship with orbits homo-
clinic and heteroclinic to zero-section equilibria. Indeed, one may think of
an orbit homoclinic to a zero-section equilibrium or an orbit heteroclinic to
two zero-section equilibria as a “brake orbit with an infinite interbraking
time”. It is this idea that underlies some of the existence results for homo-
clinic and heteroclinic connections in Hamiltonian systems (see [21] and [2],
for example).

3. One-parameter families of brake orbits. With the brake equa-
tion, we define the notion of a one-parameter family of brake orbits for
a generic parameter. Let η be a real parameter belonging to an interval
(η−, η+). A function τ : (η−, η+) → R \ {0} is called an interbraking time
function if it is continuous. A function ϑ : (η−, η+) → Q \ Ze(X) is called
an initial brake function if it is a local homeomorphism.

Definition 3.1. A one-parameter family of brake orbits is a curve η 7→
(τ(η), ϑ(η)) for η in an interval (η−, η+) where τ is an interbraking time
function and ϑ is an initial brake function such that π′Fτ(η)σϑ(η) = 0 for
all η in (η−, η+).

If the interbraking time and initial brake functions of a one-parameter
family of brake orbits are smooth, we say that the one-parameter family of
brake orbits is smooth.

The parameter is not intrinsic to a one-parameter family of brake orbits:
we can always reparameterize the family. Let ν be a real parameter belonging
to the interval (ν−, ν+). Let h : (η−, η+)→ (ν−, ν+) be a homeomorphism.
Define τ = τh−1 and ϑ = ϑh−1. Then ν 7→ (τ(ν), ϑ(ν)), ν ∈ (ν−, ν+), is a
reparameterization of η 7→ (τ(η), ϑ(η)), η ∈ (η−, η+).

Rather than reparameterizing the whole of a one-parameter family of
brake orbits, we may reparameterize just a part. Let U be an open subin-
terval of (η−, η+). Restricting τ and ϑ to U we obtain a subfamily η 7→
(τ(η), ϑ(η)), η ∈ U . Let ν ∈ (ν−, ν+) and let h : U → (ν−, ν+) be a
homeomorphism. With τ = τh−1 and ϑ = ϑh−1, the one-parameter family
ν 7→ (τ(ν), ϑ(ν)), ν ∈ (ν−, ν+), is a reparameterization of a subfamily of
η 7→ (τ(η), ϑ(τ)).

The requirement that the initial brake function be a local homeomor-
phism is to allow for different solutions of the brake equation to correspond
to different brake orbits. For example, if (T0, q0) is a solution of the brake



206 L. F. BAKKER

equation, we want to avoid calling η 7→ (T0, q0) a one-parameter family of
brake orbits. The local homeomorphism property of the initial brake func-
tion does not, however, prevent it from self-intersections. A self-intersection
means that the one-parameter family of brake orbits visits the same brake
orbit twice, and allows for the possibility that it is “periodic” in the param-
eter.

Definition 3.2. A one-parameter family of brake orbits η 7→(τ(η), ϑ(η)),
η ∈ (η−, η+) is called cyclic if it has a reparameterization ν 7→ (τ(ν), ϑ(ν)),
ν ∈ R, that is periodic in ν.

4. Nondegeneracy with respect to an interbraking time. A
natural choice for the parameter in a one-parameter family of brake orbits
is an interbraking time. Given a brake orbit γ(σ(q0)) with an interbraking
time T0 6= 0, we can consider the problem of solving the brake equation
π′Ftσ(q) = 0 for a one-parameter family of brake orbits T 7→ (T, ϑ(T )),
where T belongs to an interval (T−, T+) containing T0 (but not zero) and
ϑ(T0) = q0. Let T denote the tangent functor.

Definition 4.1. A brake orbit γ(σ(q0)) with an interbraking time of T0
is called nondegenerate with respect to T0 if the linear map

K(T0) =
∂π′Ftσ(q)

∂q

∣∣∣∣
t=T0, q=q0

= Tπ′(FT0
σ(q0))TFT0

(σ(q0))Tσ(q0)

from Tq0Q to Rn is invertible; otherwise, the brake orbit γ(σ(q0)) is called
degenerate with respect to T0.

Define Y (z) = Tπ′(z)X(z).

Proposition 4.2. If γ(σ(q0)) is a brake orbit that is nondegenerate with
respect to T0, then Y (σ(q)) 6= 0 for some q ∈ Q.

P r o o f. Suppose that Y (σ(q)) = 0 for all q ∈ Q. Then σ(Q) is an
invariant set for Ft. Thus π′Ftσ(q) ≡ 0. This implies that K(T0) ≡ 0.
Therefore, any brake orbit is degenerate with respect to every one of its
interbraking times.

Definition 4.3. The vector field X is called transverse to σ(Q\Ze(X))
at σ(q) if Y (σ(q0)) 6= 0. It is called transverse to σ(Q \ Ze(X)) if it is
transverse to σ(Q \ Ze(X)) at σ(q) for all q ∈ Q \ Ze(X).

Theorem 4.4. Suppose that γ(σ(q0)) is a brake orbit with an interbrak-
ing time of T0 6= 0. If X is transverse to σ(Q \ Ze(X)) at FT0

σ(q0) and
γ(σ(q0)) is nondegenerate with respect to T0, then there is a unique and
smooth one-parameter family of brake orbits T 7→ (T, ϑ(T )), T ∈ (T−, T+),
such that T0 ∈ (T−, T+) and ϑ(T0) = q0, and for each T ∈ (T−, T+), ϑ is
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an immersion at T , the brake orbit γ(ϑ(T )) is nondegenerate with respect
to T , and X is transverse to σ(Q \ Ze(X)) at FTσϑ(T ).

Remark. The verification of the transversality of X on σ(Q \ Ze(X))
at FT0σ(q0) is problematic because the point FT0σ(q0) is not, in general,
explicitly known. In practice, the stronger condition that X is transverse
to σ(Q \ Ze(X)) is assumed. This stronger condition is satisfied, for exam-
ple, by the vector field of a mechanical, or kinetic plus (minus) potential,
Hamiltonian system on M .

P r o o f (of Theorem 4.4.) Suppose that γ(σ(q0)) is nondegenerate with
respect to T0. Then by the Implicit Function Theorem, there is an interval
(T−, T+) containing T0 and a unique and smooth function ϑ : (T−, T+)→ Q
such that ϑ(T0) = q0 and π′FTσϑ(T ) = 0 for all T in (T−, T+). Moreover,
we can take (T−, T+) so that it does not contain 0 and ϑ(T ) 6∈ Ze(X) for all
T ∈ (T−, T+). It follows from the proof of the Implicit Function Theorem
that

K(T ) =
∂π′Ftσ(q)

∂q

∣∣∣∣
t=T,q=ϑ(T )

is invertible for T ∈ (T−, T+). Hence, each brake orbit γ(σϑ(T )) in the
family is nondegenerate with respect to T .

We show that ϑ is an immersion. To get an equation that dϑ/dT at
T = T0 satisfies, we differentiate π′FTσ(ϑ(T )) = 0 with respect to T and
set T = T0. Thus, after some manipulation, we obtain

K(T0)
dϑ

dT

∣∣∣∣
T=T0

= −Y (FTσ(q0)).

By the hypotheses, K(T0) is invertible and Y (FT0σ(q0)) 6= 0. Thus, we can
take (T−, T+) so that dϑ/dT 6= 0 for all T in (T−, T+). So, T 7→ ϑ(T ) is
an immersion, and hence it is a local homeomorphism [12].

By the continuity of X and the fact that X is transverse to σ(Q\Ze(X))
at FT0

σ(q0), we can take (T−, T+) so that X is transverse to σ(Q \Ze(X))
at FTσϑ(T ) for all T in (T−, T+).

A one-parameter family of brake orbits T 7→ (T, ϑ(T )), T ∈ (T−, T+),
may be a subfamily of a cyclic one-parameter family of brake orbits, but
cannot be cyclic in and of itself. Suppose on the contrary that it is cyclic.
Then there is a reparameterization ν 7→ (h−1(ν), ϑ(h−1(ν)), ν ∈ R, which is
periodic in ν where h : (T−, T+)→ R is a homeomorphism. So there exists
a ν0 such that h−1(ν + ν0) = h−1(ν) for all ν ∈ R. Then h−1(ν0) = h−1(0),
which implies that h is not a homeomorphism, a contradiction.

For an R-reversible vector field X we can say more about brake orbits,
their nondegeneracy with respect to an interbraking time, and their inclusion
into one-parameter families of brake orbits.
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Proposition 4.5. If X is R-reversible, then X is transverse to
σ(Q \ Ze(X)).

P r o o f. Let q ∈ Q \ Ze(X). By the R-reversibility of X, TRX(σ(q)) =
−X(R(σ(q))) = −X(σ(q)). The discrete symmetry R satisfies πR = π.
Hence

TπX(σ(q)) = T(πR)X(σ(q)) = TπTRX(σ(q)) = −TπX(σ(q)).

This implies that TπX(σ(q)) = 0. As q 6∈ Ze(X), we have X(σ(q)) 6= 0,
and so it follows that Tπ′X(σ(q)) 6= 0.

Proposition 4.6. Suppose that γ(σ(q0)) is a brake orbit. If the vec-
tor field X is R-reversible, then T0 ∈ BT(σ(q0)) if and only if −T0 ∈
BT(σ(q0)), and moreover , γ(σ(q0)) is nondegenerate with respect to T0 if
and only if γ(σ(q0)) is nondegenerate with respect to −T0.

P r o o f. The R-reversibility of X implies that RFt = F−tR. As Rσ(q) =
σ(q) for all q ∈ σ(Q) and π′R = −π′, we have

π′Ftσ(q) = π′FtRσ(q) = π′RF−tσ(q) = −π′F−tσ(q).

It follows that π′FT0
σ(q0) = 0 if and only if π′F−T0

σ(q0) = 0. Differentiating
π′Ftσ(q) = −π′F−tσ(q) with respect to q and evaluating at t = T0, q = q0
we get K(T0) = −K(−T0). Hence, γ(σ(q0)) is nondegenerate with respect
to T0 if and only if γ(σ(q0)) is nondegenerate with respect to −T0.

Theorem 4.7. If X is R-reversible and γ(σ(q0)) is a brake orbit that
is nondegenerate with respect to T0, then there exists a unique and smooth
one-parameter family T 7→ (T, ϑ(T )), T ∈ (T−, T+), of periodic brake orbits
for which ϑ(T0) = q0.

P r o o f. By Proposition 4.5, X is tranverse to σ(Q\Ze(X)) at FT0σ(q0).
Thus by Theorem 4.4, there is a unique and smooth one-parameter family
T 7→ (T, ϑ(T )), T ∈ (T−, T+), of brake orbits for which ϑ(T0) = q0. By
Proposition 2.5, each of the brake orbits in the family is a periodic brake
orbit.

5. Nondegeneracy with respect to a first integral. Another natural
choice for the parameter in a one-parameter family of brake orbits is the
value of a first integral. Recall that a smooth function H : M → R is a
first integral of X if dH(X) = 0. We let E denote the value of H. Given
a first integral H and a brake orbit γ(σ(q0)) with a first integral value of
E0 = H(σ(q0)) and an interbraking time of T0 6= 0, we can consider the
problem of solving the equations

H(σ(q))− E = 0, π′Ftσ(q) = 0



ONE-PARAMETER FAMILIES OF BRAKE ORBITS 209

simultaneously for a one-parameter family of brake orbits E 7→ (τ(E), ϑ(E)),
where E belongs to an interval (E−, E+) containing E0, τ(E0) = T0, and
ϑ(E0) = q0.

Definition 5.1. Suppose that H is a first integral of X. A brake orbit
γ(σ(q0)) with a first integral value of E0 = H(σ(q0)) and an interbraking
time of T0 6= 0 is called nondegenerate with respect to E0 given T0 if the
linear map

L(E0, T0) =
∂((H(σ(q))− E)× π′Ftσ(q))

∂(t, q)

∣∣∣∣
t=T0, q=q0, E=E0

from R ×Tq0Q to R × Rn is invertible; otherwise the brake orbit γ(σ(q0))
is called degenerate with respect to E0 given T0.

There is a more workable expression for the linear map L(E0, T0). For
(w, v) ∈ R× Tq0Q,

L(E0, T0) : (w, v) 7→ d(Hσ)(q0)v × [Y (T0)w +K(T0)v],

where, by a slight abuse of notation, Y (T0) = Tπ′(FT0
σ(q0))X(FT0

σ(q0)).

Proposition 5.2. Suppose that H is a first integral for X. If γ(σ(q0))
is a brake orbit that is nondegenerate with respect to E0 = H(σ(q0)) given an
interbraking time T0, then q0 is a regular point of Hσ (that is, d(Hσ)(q0)
6= 0), and rankK(T0) ≥ n− 1.

P r o o f. If q0 is a critical point of Hσ, then L(E0, T0) is not surjective. If
the rank of K(T0) is smaller than n− 1, then span{Y (T0)}+ rangeK(T0) 6=
Rn and so L(E0, T0) is not surjective.

Theorem 5.3. Suppose that H is a first integral of X and suppose that
γ(σ(q0)) is a brake orbit with a first integral value of E0 = Hσ(q0) and an
interbraking time of T0. Then γ(σ(q0)) is nondegenerate with respect to E0

given T0 if and only if

(1) X is transverse to σ(Q \ Ze(X)) at FT0
σ(q0), that is, Y (T0) 6= 0,

(2) ker d(Hσ)(q0) ∩ kerK(T0) = {0}, and
(3) K(T0)(ker d(Hσ)(q0)) ∩ span{Y (T0)} = {0}.
P r o o f. Suppose that (1)–(3) hold. Set L(E0, T0)(w, v) = (0, 0). Then

v ∈ ker d(Hσ)(q0) and Y (T0)w + K(T0)v = 0. By (3), Y (T0)w = 0 and
K(T0)v = 0. By (1), w = 0, and by (2), v = 0. Therefore L(E0, T0) is
injective and hence invertible.

On the other hand, if X is not transverse to σ(Q \ Ze(X)) at FT0
σ(q0),

then (w, v) 7→ d(Hσ)(q0)v ×K(T0)v is not injective. Also, if there is 0 6= v
∈ ker d(Hσ)(q0) ∩ kerK(T0), then L(E0, T0)(0, v) = (0, 0), which means
that L(E0, T0) is not injective. Lastly, suppose that there is a 0 6= v
∈ K(T0)(ker d(Hσ)(q0)) ∩ span{Y (T0)}. We can take v = Y (T0). Let
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u ∈ ker d(Hσ)(q0) be such that v = K(T0)u. Then L(E0, T0)(−1, u) =
(d(Hσ(q0)u,−v +K(T0)u) = (0, 0) and hence L(E0, T0) is not injective.

The two notions of nondegeneracy for a brake orbit are independent of
each other. The invertibility of K(T0) does not imply the invertibility of
L(E0, T0) because condition (3) listed in Theorem 5.3 may fail to hold. On
the other hand, the invertibility of L(E0, T0) implies that the rank of K(T0)
is only at least n− 1, and so K(T0) may not be invertible.

Theorem 5.4. Suppose that H is a first integral for X. If γ(σ(q0))
is a brake orbit with an interbraking time of T0 and a first integral value
of E0 that is nondegenerate with respect to E0 given T0, then there is a
unique and smooth one-parameter family of brake orbits E 7→ (τ(E), ϑ(E)),
E ∈ (E−, E+), such that E0 ∈ (E−, E+), τ(E0) = T0 and ϑ(E0) = q0, and
for each E ∈ (E−, E+), ϑ is an immersion at E, the brake orbit γ(ϑ(E))
is nondegenerate with respect to E given T = τ(E), and ϑ transversally
intersects zmsH(E) = {q ∈ Q : H(σ(q)) = E} at ϑ(E).

Remark. The zmsH(E) is the zero-momentum surface of energy E
for H.

P r o o f (of Theorem 5.4). Suppose that γ(σ(q0)) is nondegenerate with
respect to E0 given T0. By the Implicit Function Theorem, there is an in-
terval (E−, E+) containing E0 and unique and smooth functions T = τ(E),
q = ϑ(E) such that π′Fτ(E)σϑ(E) = 0 and H(σϑ(E)) − E = 0 for all E in
(E−, E+). Moreover, we can take (E−, E+) so that for all E in (E−, E+),
τ(E) 6= 0 and ϑ(E) 6∈ Ze(X). It follows from the proof of the Implicit
Function Theorem that

L(E, τ(E)) =
∂((H(σ(q))− E)× π′Ftσ(q))

∂(t, q)

∣∣∣∣
t=τ(E), q=ϑ(E)

is invertible for all E ∈ (E−, E+). Hence each brake orbit γ(σϑ(E)) in the
family is nondegenerate with respect to E given τ(E).

We show that ϑ is an immersion. To get an expression involving dϑ/dE
we differentiate H(σϑ(E)) = E with respect to E. Doing so, we obtain

d(Hσ)(ϑ(E))
dϑ(E)

dE
= 1.

Thus, dϑ(E)/dE is nonzero for all E ∈ (E−, E+). So E 7→ ϑ(E) is an
immersion, and hence it is a local homeomorphism [12].

For each E ∈ (E−, E+), ϑ(E) is a regular point of Hσ by Proposition 5.2.
So there is a neigborhood of ϑ(E) in zmsH(E) which is a submanifold
with Tϑ(E) zmsH(E) = ker d(Hσ)(ϑ(E)). As d(Hσ)(ϑ(E))dϑ(E)/dE = 1,
we have span{dϑ(E)/dE} + Tϑ(E) zmsH(E) = Tϑ(E)Q. That is, for each
E ∈ (E−, E+), ϑ transversally intersects zmsH(E) at ϑ(E).
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A one-parameter family of brake orbits E 7→ (τ(E), ϑ(E)), E∈(E−, E+)
may be a subfamily of a cyclic one-parameter family of brake orbits, but
cannot be a cyclic family in and of itself. Suppose to the contrary that
it is cyclic. Then there is a reparameterization ν 7→ (τh−1(ν), ϑ(h−1(ν)),
ν ∈ R, which is periodic in ν where h : (E−, E+)→ R is a homeomorphism.
So there is a ν0 such that ϑ(h−1(ν + ν0)) = ϑ(h−1(ν)) for all ν ∈ R. In
particular, ϑ(h−1(ν0)) = ϑ(h−1(0)). Then Hσϑ(h−1(ν0)) = Hσϑ(h−1(0)).
As h−1(ν) is the energy, h−1(ν0) = h−1(0), which is a contradiction to h
being a homeomorphism.

For an R-reversible vector field X that has a first integral H we can say
more about brake orbits, their nondegeneracy with respect to its first inte-
gral value given an interbraking time, and their inclusion into one-parameter
families of brake orbits.

Proposition 5.5. If X is R-reversible, has a first integral H, and
γ(σ(q0)) is a brake orbit , then γ(σ(q0)) is nondegenerate with respect to
E0 = H(σ(q0)) given T0 if and only if γ(σ(q0)) is nondegenerate with re-
spect to E0 given −T0.

P r o o f. Arguing as we did in Proposition 4.6, we have π′Ftσ(q) =
−π′F−tσ(q). Differentiating this equation with respect to t and evaluating
at t = T0 and q = q0 we get Y (T0) = Y (−T0). Differentiating π′Ftσ(q)
= −π′F−tσ(q) with respect to q and evaluating at t = T0, q = q0 we
get K(T0) = −K(−T0). Consequently, kerK(T0) = kerK(−T0) and
K(T0)(ker d(Hσ)(q0)) = K(−T0)(ker d(Hσ)(q0)). We therefore have

ker d(Hσ)(q0) ∩ kerK(T0) = ker d(Hσ)(q0) ∩ kerK(−T0))

and

K(T0)(ker d(Hσ)(q0)) ∩ span{Y (T0)}
= K(−T0)(ker d(Hσ)(q0)) ∩ span{Y (−T0)}.

It now follows from Theorem 5.3 that γ(σ(q0)) is nondegenerate with respect
to E0 given T0 if and only if γ(σ(q0)) is nondegenerate with respect to E0

given −T0.

Theorem 5.6. If X is R-reversible, H is a first integral of X, and
γ(σ(q0)) is a brake orbit that is nondegenerate with respect to E0 = H(σ(q0))
given T0, then there is a unique and smooth one-parameter family E 7→
(τ(E), ϑ(E)), E ∈ (E−, E+), of periodic brake orbits for which τ(E0) = T0
and ϑ(E0) = q0.

P r o o f. By Theorem 5.4, there is a unique and smooth one-parameter
family E 7→ (τ(E), ϑ(E)), E ∈ (E−, E+), of brake orbits for which τ(E0) =
T0 and ϑ(E0) = q0. By Proposition 2.5, each of these brake orbits is peri-
odic.
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6. First integral-interbraking time duality. In the presence of a
first integral, there is a relationship between the first integral values and the
interbraking times of the members of a one-parameter family of brake orbits.
Suppose that H is a first integral of X, and suppose that η 7→ (τ(η), ϑ(η)),
η ∈ (η−, η+), is a smooth one-parameter family of brake orbits. Define the
first integral function by ξ(η) = Hσϑ(η).

Definition 6.1. The first integral function ξ(η) is called strongly mono-
tone at η0 if dξ/dη|η=η0 6= 0. The interbraking time function τ(η) is called
strongly monotone at η0 if dτ/dη|η=η0 6= 0.

If τ(η) is strongly monotone at η0, then we can reparameterize a subfam-
ily of η 7→ (τ(η), ϑ(η)) by the interbraking time T = τ(η). This does not nec-
essarily imply that γ(σϑ(η0)) is nondegenerate with respect to T0 = τ(η0).
Similarly, if ξ(η) is strongly monotone at η0, then we can reparameterize a
subfamily of η 7→ (τ(η), ϑ(η)) by the first integral value E = Hσϑ(η). This
does not necessarily imply that γ(σϑ(η0)) is nondegenerate with respect to
E0 = Hσϑ(η0) given T0 = τ(η0).

Lemma 6.2. Suppose H is a first integral of X and η 7→ (τ(η), ϑ(η)),
η ∈ (η−, η+), is a smooth one-parameter family of brake orbits. Let ξ(η) =
Hσϑ(η). For η0 ∈ (η−, η+), set q0 = ϑ(η0), T0 = τ(η0), and E0 = Hσϑ(η0).
Then

(a)
dϑ

dη

∣∣∣∣
η=η0

∈ ker d(Hσ)(q0) if and only if
dξ

dη

∣∣∣∣
η=η0

= 0, and

(b)
dϑ

dη

∣∣∣∣
η=η0

∈ kerK(T0) if and only if Y (T0)
dτ

dη

∣∣∣∣
η=η0

= 0.

P r o o f. Differentiation of the equations ξ(η)=Hσϑ(η) and π′Fτ(η)σϑ(η)
= 0 with respect to η and setting η = η0 gives the respective equations

d(Hσ)(q0)
dϑ

dη

∣∣∣∣
η=η0

=
dξ

dη

∣∣∣∣
η=η0

and Y (T0)
dτ

dη

∣∣∣∣
η=η0

+K(T0)
dϑ

dη

∣∣∣∣
η=η0

= 0,

from which the lemma follows.

Theorem 6.3 (Duality). Suppose that H is a first integral of X and
that η 7→ (τ(η), ϑ(η)), η ∈ (η−, η+), is a smooth one-parameter family of
brake orbits. Let η0 ∈ (η−, η+), and set q0 = ϑ(η0), T0 = τ(η0), and E0 =
ξ(η0). Then γ(σ(q0)) is nondegenerate with respect to T0 and ξ(η) is strongly
monotone at η0 if and only if γ(σ(q0)) is nondegenerate with respect to E0

given T0 and τ(η) is strongly monotone at η0.

P r o o f. Suppose that γ(σ(q0)) is nondegenerate with respect to T0 and
that ξ(η) is strongly monotone at η0. By part (a) of Lemma 6.2, ϑ is an
immersion at η0 and dϑ/dη|η=η0 6∈ker d(Hσ)(q0). By part (b) of that lemma,
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Y (T0) 6= 0 and τ(η) is strongly monotone at η0. The invertibility of K(T0)
and the equation Y (T0)dτ/dη|η=η0 +K(T0)dϑ/dη|η=η0 = 0 imply that

K(T0)

(
span

{
dϑ

dη

∣∣∣∣
η=η0

})
= span

{
Y (T0)

dτ

dη

∣∣∣∣
η=η0

}
.

Hence, K(T0)(ker d(Hσ)(q0)) ∩ span{Y (T0)} = {0}. The invertibility of
K(T0) implies that ker d(Hσ)(q0) ∩ kerK(T0) = {0}. Therefore, by The-
orem 5.3, γ(σ(q0)) is nondegenerate with respect to E0 given T0.

Suppose that γ(σ(q0)) is nondegenerate with respect to E0 given T0 and
τ(η) is strongly monotone at η0. By Theorem 5.3, Y (T0) 6= 0. By Theorem
5.4, there is a unique and smooth one-parameter family E 7→ (τ(E), ϑ(E)),
E ∈ (E−, E+), such that q0 = ϑ(E0), T0 = τ(E0). By uniqueness, τ(E) =
τ(η) whenever E = ξ(η) for all E in a neighborhood of E0. Hence

dτ

dη

∣∣∣∣
E=E0

dξ

dη

∣∣∣∣
η=η0

=
dτ

dη

∣∣∣∣
η=η0

.

Since τ(η) is strongly monotone at η, ξ(η) is strongly monotone at η0. In the
case of n = 1, it follows from part (b) of Lemma 6.2 that K(T0) is invertible.
In the case of n ≥ 2, the vector Y (T0) belongs to the range of K(T0) since
Y (T0)dτ/dη|η=η0 + K(T0)dϑ/dη|η=η0 = 0. By Proposition 5.2, the rank of
K(T0) is at least n− 1. If the rank of K(T0) is n− 1, then L(E0, T0) is not
surjective since Y (T0) belongs to the range of K(T0). Therefore, γ(σ(q0)) is
nondegenerate with respect to T0.

In a one-parameter family of periodic brake orbits parameterized by a
first integral, duality gives a sufficient condition for the strict monotonicity
of a period as a function of the first integral. The interbraking time function
of a one-parameter family E 7→ (τ(E), ϑ(E)), E ∈ (E−, E+), is called a
period function if Fτ(E)σϑ(E) = σϑ(E) for all E ∈ (E−, E+).

Corollary 6.4. Suppose that H is a first integral of X and that E 7→
(τ(E), ϑ(E)), E ∈ (E−, E+), is a smooth one-parameter family of peri-
odic brake orbits such that τ is a period function. Let E0 ∈ (E−, E+). If
γ(σϑ(E0)) is nondegenerate with respect to τ(E0), then near E0, τ(E) is a
strictly monotone function of E.

P r o o f. Take η = E in Theorem 6.3.

In certain R-reversible Hamiltonian dynamical systems, [7] and [13] give
sufficient conditions for the strict monotonicity of the period function of a
one-parameter family of periodic brake orbits parameterized by the Hamil-
tonian (or energy). These seem to be different from the sufficient condition
given in Corollary 6.4. However, the relationship between a critical point of
the period function and possible bifurcations is in accordance with [8].
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7. One-parameter families of periodic brake orbits. For an R-
reversible vector field X, Theorems 4.7 and 5.6 give two ways of generating
a one-parameter family of periodic brake orbits from a given periodic brake
orbit in terms of the two notions of nondegeneracy for a brake orbit. The
analogous notions of nondegeneracy for a periodic orbit when applied to a
periodic brake orbit of an R-reversible vector field X that has a first integral
H also generate one-parameter families of periodic brake orbits. This then
gives four ways to generate one-parameter families of periodic brake orbits
from a given periodic brake orbit.

A nonconstant orbit γ(z0) of the flow Ft of X is periodic if there is a
T0 > 0 for which FT0

(z0) = z0. A one-parameter family of periodic orbits is a
continuous curve η 7→ (τ(η), z(η)), η ∈ (η−, η+), for which Fτ(η)z(η) = z(η)
for all η ∈ (η−, η+) and z(η) is a local homeomorphism.

Lemma 7.1. If X is R-reversible and η → (τ(η), z(η)), η ∈ (η−, η+),
is a one-parameter family of periodic orbits, then η 7→ (τ(η), Rz(η)), η ∈
(η−, η+), is also a one-parameter family of periodic orbits.

P r o o f. From the hypotheses, RFt = F−tR and Fτ(η)z(η) = z(η) for all
η ∈ (η−, η+). Then

Fτ(η)Rz(η) = Fτ(η)RFτ(η)z(η) = Fτ(η)F−τ(η)Rz(η) = Rz(η)

for all η ∈ (η−, η+). Thus, η 7→ (τ(η), Rz(η)), η ∈ (η−, η+), is a one-
parameter family of periodic orbits.

A periodic orbit γ(z0) with a period of T0 is called elementary with
respect to T0 if the rank of

A(T0) =
∂(Ft(z)− z))

∂z

∣∣∣∣
t=T0, z=z0

is 2n− 1. Otherwise, it is called nonelementary with respect to T0.

Theorem 7.2. Suppose that H is a first integral of an R-reversible vector
field X, and that γ(σ(q0)) is a periodic brake orbit with period T0. If σ(q0)
is a regular point of H and γ(σ(q0)) is elementary with respect to T0, then
there exists a unique and smooth one-parameter family of periodic brake
orbits T 7→ (T, ϑ(T )), T ∈ (T−, T+), where ϑ(T0) = q0.

P r o o f. By Proposition 4.5, X is transverse to σ(Q \ Ze(X)) at σ(q0).
We can therefore choose coordinates (q1, . . . , qn, p1, . . . , pn) on M so that
X(σ(q0)) is transverse to the hyperplane {pn = 0}. For d(Hσ)(q0) 6= 0 and
γ(σ(q0)) elementary with respect to T0, it is a classical result (p. 147 of [24])
that there exists a smooth and unique function T 7→ z(T ) defined on an in-
terval (T−, T+) containing T0 for which z(T0) = σ(q0), and z(T ) ∈ {pn = 0}
and FT z(T ) = z(T ) for all T ∈ (T−, T+). Differentiating FT z(T ) = z(T )
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with respect to T and evaluating at T = T0 yields

A(T0)
dz

dT

∣∣∣∣
T=T0

= −X(σ(q0)),

from which it follows that dz/dT |T=T0
6= 0. Hence T 7→ z(T ) is an immersion

and hence a local homeomorphism in a neighborhood of T0. Therefore, by
taking a smaller interval containing T0 if necessary, T 7→ (T, z(T )), T ∈
(T−, T+), is a one-parameter family of periodic orbits. By Lemma 7.1,
T → (T,Rz(T )), T ∈ (T−, T+), is also a one-parameter family of periodic
orbits. Now Rz(T0) = Rσ(q0) = σ(q0) = z(T0). Also, Rz(T ) ∈ {pn = 0} for
all T ∈ (T−, T+). By the uniqueness of z(T ) we must have Rz(T ) = z(T ) for
all T ∈ (T−, T+). This implies that z(T ) = σϑ(T ) where ϑ(T ) = πz(T ). By
taking a smaller neighborhood of T0, we can assume that ϑ(T ) 6∈ Ze(X) for
all T ∈ (T−, T+). So z(T ) ∈ σ(Q \ Ze(X)), which implies that γ(z(T )) is a
periodic brake orbit. Also, as z(T ) is smooth and a local homeomorphism,
so is ϑ(T ). Consequently, as γ(z(T )) = γ(σϑ(T )), T 7→ (T, ϑ(T )), T ∈
(T−, T+), is a unique and smooth one-parameter family of periodic brake
orbits for which ϑ(T0) = q0.

A periodic orbit γ(z0) with first integral value E0 and period T0 is called
elementary with respect to E0 given T0 if the rank of

B(E0, T0) =
∂((Ft(z)− z)× (H(z)− E))

∂(t, z)

∣∣∣∣
t=T0, E=E0, z=z0

is 2n. Otherwise, it is called nonelementary with respect to E0 given T0.

Theorem 7.3. Suppose that H is a first integral of an R-reversible vector
field X, and that γ(σ(q0)) is a periodic brake orbit with first integral value
E0 = H(σ(q0)) and period T0. If σ(q0) is a regular point of H and γ(σ(q0))
is elementary with respect to E0 given T0, then there exists a unique and
smooth one-parameter family of periodic brake orbits E 7→ (τ(E), ϑ(E)),
E ∈ (E−, E+), for which τ(E0) = T0 and ϑ(E0) = q0.

P r o o f. Arguing as in the proof of Theorem 7.2, we find that X(σ(q0))
is transverse to {pn = 0}. As σ(q0) is a regular point of H and γ(σ(q0))
is elementary with respect to E0 given T0, it is a classical result (p. 147
of [24], p. 136 of [17]) that there exists a unique and smooth function
E 7→ (τ(E), z(E)) defined on an interval (E−, E+) containing E0 for which
τ(E0) = T0, z(E0) = σ(q0), and z(E) ∈ {pn = 0}, H(z(E)) = E, Fτ(E)z(E)
= z(E) for all E ∈ (E−, E+). Differentiating H(z(E)) = E with respect to
E and evaluating at E = E0, we get

dH(σ(q0))
dz

dE

∣∣∣∣
E=E0

= 1.
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This implies that z(E) is an immersion at E0, and hence in a neighborhood
of E0, z(E) is a local homeomorphism. Arguing as in the last part of the
proof of Theorem 7.2, we find that E 7→ (τ(E), ϑ(E)), E ∈ (E−, E+), where
ϑ(E) = πz(E), is a unique and smooth one-parameter family of periodic
brake orbits for which τ(E0) = T0 and ϑ(E0) = q0.
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