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ADDITIVE FUNCTIONS FOR QUIVERS WITH RELATIONS

BY

HELMUT LENZ ING (PADERBORN) AND IDUN RE ITEN (TRONDHEIM)

Abstract. Additive functions for quivers with relations extend the classical concept
of additive functions for graphs. It is shown that the concept, recently introduced by T.
Hübner in a special context, can be defined for different homological levels. The existence
of such functions for level 2 resp.∞ relates to a nonzero radical of the Tits resp. Euler form.
We derive the existence of nonnegative additive functions from a family of stable tubes
which stay tubes in the derived category, we investigate when this situation does appear
and we study the restrictions imposed by the existence of a positive additive function.

Introduction. It is classical that among connected quivers exactly the
extended Dynkin quivers ~∆ admit a positive additive function (see [3, 6, 17]);
actually, the existence of a nonnegative additive function ensures extended
Dynkin type. But also a wild quiver may admit a nonzero additive function.
Such an additive function λ attaches to every vertex p of ~∆ an integer λ(p)
and satisfies for each p the additivity condition

2λ(p) =
∑

p→q

λ(q) +
∑

q→p

λ(q),

where the sum is taken over all arrows starting or ending at p. Additivity is
thus a concept not concerning the quiver itself but its underlying unoriented
graph.

The concept of an additive function has recently been extended by
Hübner [9] to quivers with relations, therefore to finite-dimensional alge-
bras, interpreting relations as arrows with a negative sign. His main result
states that the rank function on a weighted projective line yields a positive
(resp. nonnegative) additive function for the endomorphism ring of each tilt-
ing bundle (resp. tilting sheaf). Hence each concealed canonical algebra, in
particular each tame concealed or tubular algebra, admits a positive addi-
tive function. This provides another explanation for the existence of additive
functions on extended Dynkin quivers.

We stress in the present paper that the concept of an additive function
attached to a finite-dimensional algebra Σ is homological in nature.Actually,
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86 H. LENZING AND I. REITEN

we need to account for various levels of additivity, depending on the level
l up to which the extension spaces ExtiΣ(Sp, Sq), i ≤ l, between simple
Σ-modules are taken into account. These spaces are to be interpreted as
some kind of higher relations from q to p. In particular, we show that the
2-additive (resp. the ∞-additive or simply additive) functions correspond
naturally to the members of the radical of the Tits form (resp. the Euler
form).

The requirement of a positive additive function seems to be quite strong.
We show in Theorem 2.5 that an algebra Σ, derived equivalent to a canon-
ical algebra, has a positive additive function if and only if it is concealed
canonical, i.e. the endomorphism algebra of a tilting bundle on a weighted
projective line. We show, moreover, that each endomorphism ring of what
we call a narrow tilting complex on a weighted projective line has a non-
negative function which is additive for each level l ≥ 2. In particular, each
quasitilted algebra of canonical type [14] has this property, which extends
the results of [9].

The existence of an additive function for Σ is often derived from the
existence of a family of stable tubes in the module category which stay
tubes in the derived category (Proposition 2.1). We further provide a useful
criterion ensuring this property for a large class of one-point extensions
(Theorem 3.5).

We discuss existence and uniqueness of additive functions for various
classes of algebras, including one-point extension algebras of concealed can-
onical algebras with modules of arbitrary regular length, thus including the
pg-critical algebras of [16]. We also provide examples and counterexamples
to various effects and conjectures.

Conventions. All algebras are finite-dimensional over an algebraically
closed field k. We further assume these algebras to be basic and connected
and to have finite global dimension, hence not to have loops in their ordinary
quiver. The term module always refers to finitely generated right modules.
As basic references for undefined terms we recommend [2] and [19].

The authors thank the referee for helpful comments, in particular for
suggesting Example 4.3(c).

1. Basic facts on additivity. Let Σ = k[ ~∆]/I be a basic finite-

dimensional k-algebra given in terms of a quiver ~∆ with an admissible ideal
I of relations. We assume that the set ∆0 of vertices of ~∆ consists of the
integers 1, . . . , n and denote by Sp the simple Σ-module corresponding to
the vertex p. We fix an integer l ≥ 2 (resp. l = ∞) and introduce a new

coloured quiver ~Q(l)Σ with the same vertex set ∆0 and whose arrows are
coloured by the natural numbers i from 0 to l (resp. by all natural numbers):
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from vertex p to vertex q we draw

a(i)pq = dimk Ext
i
Σ(Sq, Sp)

arrows of colour i. In particular, a
(1)
pq (resp. a

(2)
pq ) denotes the number of

arrows (resp. relations) from p to q in the ordinary quiver of Σ. The cases
l = 2 and l = ∞ will be the most interesting for us. Note that the coloured
quiver ~Q(∞)Σ determines the global dimension of Σ.

For each l ≥ 2 we consider the (usually nonsymmetric) bilinear form on
the Grothendieck group K0(Σ) given on classes of simple Σ-modules by the
expression

〈[Sp], [Sq]〉
(l) =

l∑

i=0

(−1)ia(i)qp ,

where for l = ∞ we remove the superscript (l). For l = 2 we thus recover
the Tits form, while for l = ∞ we recover the Euler form given on classes
of Σ-modules by

〈[X], [Y ]〉 =

∞∑

i=0

(−1)
i
dimk Ext

i
Σ(X,Y ).

We also consider the associated symmetric bilinear form

(x | y)(l) = 〈x, y〉(l) + 〈y, x〉(l)

and the corresponding radical of 〈−,−〉(l) or (− |−)(l) consisting of all y

with (− | y)(l) = 0.

Definition 1.1. An integral-valued function λ on the set ∆0 of vertices
of Σ is called l-additive if for each vertex p we have

2λ(p) =

l∑

i=1

(−1)
i−1

∑

q∈∆0

(a(i)pq + a(i)qp )λ(q).

For l = ∞ we say that λ is additive. If λ is l-additive for each l ≥ 2, we call
λ a strongly additive function.

Also here l-additivity only depends on the unoriented (coloured) graph

underlying the quiver ~Q(l)Σ. This can be made more precise as follows:
For any l ≥ 2 the coloured quiver ~Q(l)Σ keeps the full information on

the form 〈−,−〉(l). On the other hand, the concept of an l-additive function
only depends on the symmetric form (−,−)(l). The full information on
the symmetric form is thus kept by the nonoriented digraph Q(l)Σ, again

with vertex set ∆0, and which has
∑l

i=0, i odd(a
(i)
pq + a

(i)
qp ) solid edges and

∑l
j=2, j even(a

(j)
pq + a

(j)
qp ) dotted edges between p and q. For l = ∞ we remove

the superscript (l) for ~Q(l)Σ and Q(l)Σ.
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Since Σ is assumed to have finite global dimension, the classes [P1], . . .
. . . , [Pn] of indecomposable projective modules form a Z-basis of K0(Σ).
Here, Pi denotes the projective cover of the simple module Si.

In this setting we will view an additive function λ as the linear form on
K0(Σ) with λ([Pi]) = λ(i). We say that λ is positive if λ(i) > 0 for each i;
we call λ nonnegative if λ is nonzero and λ(i) ≥ 0 for each i. Finally λ is
called negative if −λ is positive.

With each linear form λ on K0(Σ) we further associate its characteristic
class

[λ] =

n∑

p=1

λ(p)[Sp]

so that 〈[Pi], [λ]〉 = λ(i) for all i, and therefore λ = 〈−, [λ]〉.

Proposition 1.2. A linear form λ : K0(Σ) → Z is l-additive if and

only if its characteristic class [λ] belongs to the radical of the bilinear form

〈−,−〉(l). Moreover , if λ is additive then λ([λ]) = 0.

P r o o f. Identifying members of K0(Σ) with column vectors from Z
n with

respect to the basis of classes of simple Σ-modules, we may express (x | y)(l)

in terms of the matrices A(i) = (a
(i)
pq ) as the matrix product

(x | y)
(l)

= xt
( l∑

i=0

(−1)
i
(A(i) + (A(i))t)

)
y.

Now [λ] belongs to the radical of 〈−,−〉(l) if and only if (− | [λ])(l) = 0,
equivalently if

l∑

i=0

(−1)
i
(A(i) + (A(i))t)[λ] = 0,

which just expresses the additivity of λ.
Assume now that λ is additive. Then λ([λ]) = 〈[λ], [λ]〉 = 0 since [λ]

belongs to the radical of the Euler form.

The existence of a 2-additive (resp. additive) function thus relates to a
nonzero radical of the Tits (resp. the Euler) form, called further on the Tits
radical (resp. Euler radical).

Assume that Σ is given in terms of a quiver with relations. It is then
very easy to check whether a function is 2-additive; also determining the
complete Tits radical is an easy exercise in linear algebra. We note that
for the calculation of the Euler radical we do not need explicit information
on the higher extension spaces ExtiΣ(Sp, Sq): If C = (〈[Pi], [Pj ]〉) denotes
the Cartan matrix of Σ, expressed in the basis of classes of indecomposable
projective modules, then the Euler radical, expressed in the same basis, is
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the subgroup of all x satisfying (C + Ct)x = 0. Note that the (i, j)-entry
of C equals the dimension of Hom(Pi, Pj), so also the Euler radical is very
easy to compute.

The Euler radical equals also the fixed point set of the Coxeter transfor-

mation Φ = ΦΣ , the automorphism of K0(Σ) which is uniquely determined
by the validity of the formula

〈y, x〉 = −〈x,Φy〉 for all x, y ∈ K0(Σ).

The existence of a nonzero Euler radical can thus conveniently be read
off from the Coxeter polynomial of Σ, the characteristic polynomial of the
Coxeter transformation. We note that the Coxeter polynomial is preserved
under derived equivalence, in particular under tilting. The next proposition
underlines the importance of additive functions.

Proposition 1.3. If Σ and Σ′ are derived equivalent algebras of finite

global dimension, then they have isomorphic groups of additive functions.

P r o o f. Each equivalence of triangulated categories between the bounded
derived categories Db(mod(Σ)) and Db(mod(Σ′)) induces an isomorphism
of Grothendieck groups K0(Σ) ∼= K0(Σ

′) preserving the Euler forms, thus
inducing an isomorphism from the Euler radical of Σ to the Euler radical
of Σ′.

Passing to a derived equivalent algebra may, however, cause the loss of
the positivity of an additive function: Each representation-finite algebra Σ
which is tilted from a tame hereditary algebra Λ inherits from Λ a nonzero
additive function λ : K0(Σ) → Z, which is unique up to multiplication with
a nonzero integer. Since, as a tilted algebra, Σ has global dimension ≤ 2,
it further follows that λ is l-additive for each l ≥ 2. Let T be a tilting
module over Λ such that Σ = EndΛ(T ). Because Σ is representation-finite,
T needs to contain an indecomposable preprojective and an indecomposable
preinjective summand, where the additive rank function for Λ takes values
of opposite sign.

The existence of a 2-additive function may be lost when passing to a
derived equivalent algebra. Expressed in different terms this means that an
algebra Σ may have a nonzero Tits radical, but the Tits radical of an algebra
Σ′, derived equivalent to it, may be zero (see Example 4.4).

2. Positive additive functions. A main reason for an algebra Σ to
have an additive function is the existence of τ -periodic objects, in particular
tubes, in the module category or in the derived category, where τ refers to
the Auslander–Reiten translation of mod(Σ) and Db(Σ), respectively. It
moreover often suffices to exhibit τ -periodic elements in K0(Σ), where now
τ stands for the Coxeter transformation ΦΣ , the automorphism induced on
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the K-theoretic level by the Auslander–Reiten translation of Db(Σ). Recall
that we assume that Σ has finite global dimension.

Of particular importance is the case of a family of stable tubes T in
mod(Σ) which stay tubes in Db(Σ), because this produces a nonnegative
additive function for Σ. If moreover T is sincere, that is, if for each inde-
composable projective Σ-module Pi there is a nonzero homomorphism from
Pi to a member of T , then Σ even admits a positive additive function λ.

Let y be an element of K0(Σ) of τ -period p. Then x =
∑p

i=1 τ
i(y) is

stable under the Coxeter transformation τ , so it is a member of the Euler
radical of K0(Σ). Note that x may be zero even if y is nonzero. Similarly,
if Y is an object of Db(Σ) of τ -period p, then X =

⊕p
i=1 τ

iY is a nonzero
τ -stable object of Db(Σ), yielding a τ -stable class x = [X] in K0(Σ); also
here it may happen that x is zero. On the other hand, for an object Y in
mod(Σ) of τ -period p, the direct sum X =

⊕p
i=1 τ

iY always has a nonzero
class in K0(Σ).

Proposition 2.1. (i) If K0(Σ) has a nonzero τ -stable element x, then
λ = 〈−, x〉 is a nonzero additive function. This happens, in particular , if
Db(Σ) has a τ -periodic object X of period p yielding a nonzero class x =∑p

i=1[τ
iX].

(ii) If mod(Σ) has a family T of stable tubes which stay tubes in Db(Σ),
then Σ has a nonnegative additive function. If moreover T is sincere, then
Σ has a positive additive function.

P r o o f. Assertion (i) is a direct consequence of Proposition 1.2, and
assertion (ii) follows from (i) by the remarks preceding Proposition 2.1.

Corollary 2.2. Assume that Σ has a family T of stable tubes whose

members have both projective and injective dimension at most one. Then

Σ admits a nonnegative additive function and , further , a positive additive

function if T is additionally sincere.

P r o o f. Since each almost split sequence η : 0 → X → Y → Z → 0
of Σ-modules with injective dimension idΣ X ≤ 1 and projective dimension

pdΣ Z ≤ 1 yields an Auslander–Reiten triangle X → Y → Y
η

−→ X[1] in
Db(Σ) (see [5, I.4.7]), the family T stays a family of stable tubes in the
derived category.

A prominent class of algebras having tubes in the derived category is
built by the derived canonical algebras, which, by definition, are derived
equivalent to a canonical algebra.A special case of derived canonical algebras
are the concealed canonical (resp. almost concealed canonical) algebras de-
fined as the endomorphism algebras of tilting bundles (resp. tilting sheaves)
on a weighted projective line X, or equivalently as the endomorphism alge-
bras of tilting modules T over a canonical algebra Λ, where T is built from
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indecomposable Λ-modules of positive (resp. nonnegative) rank; see [12].
In [13] and [14] the concealed canonical (resp. almost concealed canonical)
algebras are further characterized as the connected algebras whose module
category admits a sincere separating family of standard stable tubes (resp.
of standard tubes not containing injectives). According to [18] the concealed
canonical algebras can, moreover, be characterized as those having a sincere
family of stable tubes whose modules do not lie on external short cycles.

The concealed canonical and almost concealed canonical algebras are
quasitilted algebras. Recall from [7] that an algebra Σ is quasitilted if it
is isomorphic to the endomorphism ring of a tilting object for a hereditary
abelian k-category. This is equivalent to stating that gl.dimΣ ≤ 2 and
further that each indecomposable module X has projective dimension or
injective dimension at most one. If a quasitilted algebra Σ is derived equiv-
alent to a canonical algebra, we say that Σ is quasitilted of canonical type.
For further information on this class of algebras, including a characteriza-
tion as the algebras having a sincere separating family of semiregular tubes,
we refer to [14].

Corollary 2.3. (i) For each derived canonical algebra Σ the rank func-

tion on Db(Σ) ∼= Db(cohX) yields a nonzero additive function for Σ.

(ii) For each almost concealed canonical algebra Σ, more generally each

quasitilted algebra of canonical type, the rank function yields a nonnegative

strongly additive function λ.
(iii) For each concealed canonical algebra Σ the rank function yields a

positive strongly additive function. Moreover , if Σ is not tubular , then each

nonzero additive function is positive or negative.

P r o o f. The corollary mostly summarizes the discussion preceding it.
Note that the classes of indecomposable summands of a tilting complex form
a basis of K0(Σ). Because the rank function for cohX is nonzero, each tilting
complex in Db(cohX) contains an indecomposable direct factor of nonzero
rank, which proves (i). Under the assumptions of (ii) the rank function is
nonnegative. This function is strongly additive since, as a quasitilted algebra,
Σ has global dimension ≤ 2. If Σ is moreover concealed canonical, the rank
function yields a positive strongly additive function. The second assertion
of (iii) now follows from the fact that the Euler radical has rank one if Σ is
not tubular; see for instance [11].

Note that each tubular algebra has a nonzero additive function which
takes the value zero, so (iii) cannot be improved.

As the following example of a pg-critical algebra shows (see [16] for a
definition), there are further algebras besides the concealed canonical ones
which have a positive additive function. (See Section 3 for further informa-
tion.)



92 H. LENZING AND I. REITEN

Example 2.4. The following algebra has global dimension two:

[11 ]

[1
1
]

[12 ] [11 ] [10 ]

[1
2
] [1

2
] [1

0
] [1

0
]

[11 ]

IIIIIIIIIIIII $$

TTTTTTTTTTTTT **>>>��

jjjjjjjjjjjjj 44uuuuuuuuuuuuu ::

>>>��
//

??���>>>��

//

??���
??���

where the lower square is commutative and the sum of the three paths
from the source to the sink equals zero. The Tits and Euler radical agree
and, moreover, form a group of rank two. The upper and the lower row,
respectively, of the displayed values give a basis for the group of additive
functions.

For a derived canonical algebra the requirement of a positive additive
function is quite restrictive, as can be seen from our next result. We first
recall some background. Since the abelian category C = cohX of coherent
sheaves on a weighted projective line is hereditary [4], its derived category
Db(C) is the additive closure of

⋃
n∈Z

C[n], where each C[n] is a copy of C
with objects written X[n], X ∈ C, n ∈ Z, and where

HomDb(C)(X[n], Y [m]) = Extm−n
C

(X,Y ).

If Λ denotes the canonical algebra attached to X, then Σ is derived equiva-
lent to Λ if and only if Σ is isomorphic to the endomorphism ring of a tilting
complex T in Db(C), where a tilting complex T has no self-extensions, that
is, Hom(T, T [n]) = 0 for each 0 6= n ∈ Z, and moreover, T generates Db(C)
as a triangulated category. The minimal number of copies of C needed to
contain all indecomposable summands of T is called the width of the tilting
complex T , a concept we will need later.

Theorem 2.5. Let Σ be a derived canonical algebra. Then Σ admits

a positive additive function λ if and only if Σ is concealed canonical , and
hence is quasitilted.

P r o o f. If Σ=End(T ) for a tilting bundle in cohX, we have already seen
that the rank function yields a positive additive function for Σ. Conversely
assume that Σ is derived canonical and therefore isomorphic to the endo-
morphism ring of a tilting complex T in the derived category Db(cohX) for
some weighted projective line X. If the genus of X is different from one, the
radical of the Euler form for X, hence for Σ, has rank one and is generated
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by the rank function for cohX; see [11]. If the genus of X equals one, the
radical of the Euler form has rank two. Since the automorphism group of
Db(cohX) acts transitively on the rank one direct summands of the radical
(see [11]), we can also in this case assume—without loss of generality—that
a given nonzero additive function is a positive integer multiple of the rank
function.

We thus derive from the assumption that the rank function is posi-
tive on each indecomposable direct summand of T . This implies—invoking
Hom(C[n], C[m]) = 0 for m − n ≥ 2 and connectedness of Σ—that T lies
in just one copy of cohX and moreover is a vector bundle. Thus Σ, as the
endomorphism algebra of a tilting bundle, is concealed canonical.

3. Nonnegative additive functions. A major class of algebras with
a nonzero additive function is obtained by forming one-point extensions,
where again we distinguish the three levels of K-groups, module categories
and derived categories, respectively. Often additive functions for an algebra
Σ or a one-point source extension Σ[M ] (resp. sink extension [M ]Σ) arise
in connection with a Σ-module M whose class is periodic under the Coxeter
transformation.

Proposition 3.1. Assume that Σ has finite global dimension and that

S is a nonzero Σ-module whose class is p-periodic under the Coxeter trans-

formation ΦΣ. Let Σ denote the one-point sink extension [S]Σ =
(

Σ 0

S k

)
.

Then the following assertions hold :

(i) The additive function λ : K0(Σ) → Z with characteristic class [λ] =∑p
j=1 Φ

j
Σ [S] annihilates [S]. If moreover [λ] 6= 0, then λ extends to a nonzero

additive function λ on Σ taking value zero on the extension vertex.

(ii) If each Φj
Σ [S] is the class of some Σ-module, then [λ] 6= 0, and the

additive functions λ and λ are nonnegative.

P r o o f. We view (right) Σ-modules as Σ-modules with support in the
subalgebra Σ. In particular, the indecomposable projectives P1, . . . , Pn over
Σ become indecomposable projectives over Σ, and there is just one ad-
ditional indecomposable projective Σ-module Pn+1, corresponding to the
extension vertex n+ 1.

We introduce the following notations: V = K0(Σ), equipped with the
Euler form 〈−,−〉V , further V = K0(Σ), equipped with the Euler form
〈−,−〉

V
, finally τ (resp. τ) denotes the Coxeter transformation for Σ (resp.

Σ) and s = [S].

By means of the basis [P1], . . . , [Pn+1] of K0(Σ) it is straightforward to
verify the following assertions:
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1. V = V ⊕ Zs∗, where s∗ = [Pn+1].
2. 〈v, s∗〉

V
= 〈v, s〉V and 〈s

∗
, v〉

V
= 0 for all v ∈ V .

3. 〈s∗, s∗〉
V
= 1.

Since s is p-periodic under Φ, the orbit sum [λ] =
∑p

j=1 τ
js is a fixed

point for τ , hence belongs to the Euler radical of 〈−,−〉V . First we show
that λ(s) = 0. Indeed, since τ preserves the Euler form we get 〈s, τ js〉V =
〈τ−js, s〉V , hence summation over the τ -orbit of s yields 〈s, [λ]〉V = 〈[λ], s〉V .
Therefore 2λ(s) = 2〈s, [λ]〉V = (s | [λ]) = 0 since [λ] belongs to the Euler
radical of V .

Since λ = 〈−, [λ]〉
V
, additivity of λ amounts to showing that [λ] also

belongs to the Euler radical of 〈−,−〉
V
. This follows directly from

〈v, [λ]〉
V
+ 〈[λ], v〉

V
= 0 for v ∈ V , 〈s∗, [λ]〉

V
+ 〈[λ], s∗〉

V
= −λ(s) = 0

and proves assertion (i).
For assertion (ii) let Mj be a module with [Mj ] = Φj

Σ [S] and put M =⊕p
j=1 Mj . Then for each p = 1, . . . , n we get λ(p) = dimk Hom(Pp,M),

which is ≥ 0.

By the definition, additive functions incorporate information about the
relations for an algebra.

Corollary 3.2. In addition to the assumptions in the proposition as-

sume that λ is 2-additive, for instance that gl.dimΣ ≤ 2, and that λ is

positive. Then there is at least one relation ending in the extension vertex.

P r o o f. Since λ vanishes at the extension vertex n+ 1 we get
n∑

p=1

λ(p) dimk Ext
2
Σ
(Sn+1, Sp) =

n∑

p=1

λ(p) dimk Ext
1
Σ
(Sn+1, Sp),

which by assumption is > 0.

We illustrate this by our next example; see also Example 3.9.

Example 3.3. Let Σ be the Kronecker quiver 1 ⇉ 2, and let λ be the
additive function given by λ(1) = λ(2) = 2. If M is any regular Σ-module
with dimension vector (2 2) then the one-point sink extension [M ]Σ is given
by the quiver

1
x1

⇉
x2

2
y1

⇉
y2

3

with two relations from vertex 1 to vertex 3 depending on the choice of M
and which are, up to a change of bases, given as follows:

1. if M = S ⊕ S, where S is simple regular, then y1x1 = 0 = y2x1;
2. if M = S1 ⊕ S2, where S1 and S2 are nonisomorphic simple regular,

then y1x1 = 0 = y2x2;
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3. if M is indecomposable regular of quasi-length two, then y2x1 = 0 and
y1x1 = y2x2.

Of course, the actual form of the relations does not matter for the addi-
tivity of the function λ extending λ with λ(3) = 0.

In the situation of Proposition 3.1 we next show that passage to the
one-point sink extension [M ]Σ will change the rank of the Euler radical,
hence of the group of all additive functions, by at most one.

Proposition 3.4. Let Σ and Σ be as in Proposition 3.1. Let r (resp.
r) denote the rank of the Euler radical R of Σ (resp. the Euler radical R
of Σ). Then |r − r| ≤ 1.

P r o o f. Consider the map π : R → Z, x 7→ 〈s∗, x〉
V
. Then the kernel of

π is a subgroup of the Euler radical R of Σ. Hence r ≤ r + 1.
Further, the subgroup R′ of R consisting of all x with 〈x, s〉 = 0 yields a

subgroup of R. Hence r − 1 ≤ r.

The situation of Proposition 3.1 is frequently encountered when dealing
with one-point extensions with a module from a family of stable tubes that
stay tubes in the derived category. To iterate the procedure it is important
to know that one again gets such tubes with the same properties over the
one-point extension. We write X∗ for the Σ-dual of a Σ-module X.

Theorem 3.5. Assume that Σ satisfies the following conditions:

(i) gl.dimΣ ≤ 2.
(ii) Σ has an infinite family T of pairwise orthogonal stable tubes whose

members have pdΣ N ≤ 1 and satisfy N∗ = 0.

If M is a finite direct sum of objects in T , then the one-point sink

extension Σ = [M ]Σ also satisfies conditions (i) and (ii) with the new family

of tubes T obtained from T by removing the tubes containing a summand

from M .

P r o o f. We continue to use the conventions from the proof of Proposi-
tion 3.1, in particular we identify mod(Σ) with the full exact subcategory
of right Σ-modules taking value zero at the extension vertex.

The assumption pdΣ M ≤ 1 implies that gl.dimΣ ≤ 2. Since, moreover,
projective Σ-modules stay projective over Σ, it follows that each module
X from T has pd

Σ
X ≤ 1 and also Hom

Σ
(X,P ) = 0 if P is projective

in mod(Σ). Denote by Pn+1 the indecomposable projective corresponding
to the extension vertex. Since Hom

Σ
(X,Pn+1) = HomΣ(X,M) = 0 by

assumption, the modules X from T satisfy Hom
Σ
(X,Σ) = 0.

Next we are going to show that an almost split sequence 0 → τΣX →
E → X → 0, where X as before is taken from T , stays almost split in
mod(Σ). We view the Σ-modules as triples (ki, YΣ , h) where h : M i → YΣ
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is a Σ-linear map. Let f : τΣX → Y be a nonisomorphism, where Y =
(ki, YΣ , h) is indecomposable over Σ. If i = 0 or if τΣX → Y is not a split
monomorphism, it is clear that f extends to E. If i 6= 0 and τΣX → Y is
a split monomorphism, then τΣX becomes a direct summand of Y . Since
τΣX is not a direct summand of Y there must be a nonzero map M → τΣX,
which is impossible.

Corollary 3.6. Let Σ be concealed canonical , for instance tame con-

cealed. Then Σ has a separating tubular family T of standard stable tubes

which stay tubes in Db(Σ). If M is any module from T , not necessarily in-

decomposable, then the one-point sink extension [M ]Σ has a tubular family

in the derived category and also a nonnegative additive function.

P r o o f. This follows from Theorem 3.5 and Proposition 3.1.

Example 3.7. This class covers those pg-critical algebras from [16] which
arise as a one-point extension from a tame concealed algebra of type (2, 2, n),

i.e. D̃n+2, with a regular module of regular length two from the tube of
rank n. These algebras have global dimension ≤ 2 and all have a radical of
rank two. This is put into proper context by our next result.

Proposition 3.8. Let Σ be a concealed canonical algebra and M a

nonzero (and possibly decomposable) module taken from a separating family

of stable tubes. Then the following hold for Σ = [M ]Σ:

(i) The Euler radical for Σ has rank one or two.

(ii) Always Σ has a nonnegative additive function. It has a positive ad-

ditive function if and only if the rank of the Euler radical for Σ is two.

P r o o f. If Σ is nontubular then the Euler radical of Σ has rank one,
and assertion (i) follows from Propositions 3.1 and 3.4. For a tubular Σ
we are going to show that the group of additive functions for Σ extending
to Σ with value zero at the extension vertex has rank one, and then by
Proposition 3.4 assertion (i) also follows in this case. Each additive function
for Σ has the form λ = 〈−, x〉 where x belongs to the Euler radical of Σ.
Moreover, λ extends to an additive function λ on Σ taking value zero at
the extension vertex if and only if 〈s, x〉 = 0. Since x is fixed under ΦΣ

this yields 〈v, x〉 = 0, where v =
∑p

i=1 Φ
j
Σ(s). Note that by assumption v

is nonzero. Since for a tubular algebra the restriction of the Euler form to
the Euler radical R is nondegenerate [11], it follows that the subgroup of R
formed by all x satisfying 〈s, x〉 = 0 has rank one, which concludes this part
of the proof.

Proposition 3.1 yields an additive function λ1 for Σ which is positive on
each vertex of Σ and takes value zero at the extension vertex. If rather Σ
has an Euler radical of rank one, it cannot have a positive additive function.
On the other hand, if the rank of the Euler radical for Σ is two, there is
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another additive function λ2 with a positive value at the extension vertex.
A suitable linear combination of λ1 and λ2 satisfies the requirements.

As shown by the passage from tame concealed to tubular (resp. from
tubular to wild canonical) through one-point extensions by a quasi-simple
module, the rank of the Euler radical may actually increase (resp. drop) by
one. In contrast to what happens in Example 3.7, we get an Euler radical
of rank one if we form the one-point extension of Ãp,q by a regular module
of quasi-length two from one of the exceptional regular components.

Whereas the requirement of a positive additive function forces a derived
canonical algebra to be concealed canonical, in particular quasitilted, the
consequences of the existence of a nonnegative additive function for a derived
canonical algebra Σ are much weaker. Indeed, such an algebra Σ may
have arbitrarily large global dimension and also arbitrarily large width—for
the realization by a tilting complex—as can be seen from Example 4.3(a).
In particular, such an algebra does not need to be quasitilted. Even the
additional requirement gl.dimΣ ≤ 2 will not enforce quasitiltedness, as is
shown by the following example.

Example 3.9. The endomorphism algebra Σ of a narrow tilting complex
of canonical type always has global dimension ≤ 3. Even if Σ is not qua-
sitilted it may happen that gl.dimΣ = 2. For an explicit example consider
the algebra given by the quiver

1

0 1 1 0

y

>>>>>>��x //

x

@@������ // y //

with the two zero relations x2 = 0 and y2 = 0, which is derived canonical of
weight type (4). We have also marked the values of the rank function.

No characterization of derived canonical algebras having a nonnegative
additive function is known. A natural subclass of such algebras, however, is
provided by the endomorphism algebras of compact and, more specifically,
of narrow tilting complexes. By definition a tilting complex T in Db(cohX)
is called compact if its indecomposable direct summands of nonzero rank all
lie in a single copy of cohX in the derived category. Call T+ the direct sum
of these summands. Then—up to translation in the derived category—we
may assume that T+ lies in cohX and hence is a vector bundle. It is easy
to see that Σ+ = End(T+) is concealed canonical and that Σ = End(T ) is
obtained from Σ+ by branch enlargement in the sense of [1]. Conversely,
each branch enlargement of a concealed canonical algebra is isomorphic to
the endomorphism ring of a compact tilting complex (see [15]). Clearly, the
rank function induces a nonnegative additive function for Σ. It is interesting
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to note in this context that according to [1] each representation-infinite
algebra which is derived tame canonical is of the above type; see [15] for a
different proof.

A compact tilting complex T is called narrow if its indecomposable sum-
mands lie in cohX or in cohX[−1]. It is easily checked that in this case
Σ = End(T ) has global dimension ≤ 3 and that the rank function induces
a nonnegative function for Σ which is l-additive for each l ≥ 2. Each qua-
sitilted algebra of canonical type is of this type, the converse not being true;
see Example 4.3(b).

There are many further instances of algebras having families of stable
tubes in mod(Σ) which stay tubes in the derived category. Besides the pg-
critical algebras this concerns (Skowroński, unpublished) all coil algebras,
generalized multicoil algebras, and combinations of those. A complete char-
acterization of such algebras, however, seems to be difficult.

4. Examples. In this section we illustrate the limitations of what can be
true through examples. We organize the examples according to the features
we want to treat.

4.1. The classical case. We first consider the classical case, coming
from quivers without relations. For a connected graph Σ it is well known
that there is a positive additive function λ for Σ if and only if Σ is an ex-
tended Dynkin diagram. Actually, the answer is the same when considering
a nonnegative additive function. To see this, assume λ is a nonzero additive
function on Σ with λ(x) = 0, having a neighbour y with λ(y) > 0. By
additivity of λ there must also be a neighbour z of x with λ(z) < 0. This
contradiction shows that any nonnegative additive function λ on Σ must be
positive.

There are however many other connected graphs Σ than the extended
Dynkin diagrams which admit some nonzero additive function, and no com-
plete description is known for such graphs. One simple procedure for obtain-
ing graphs with some nonzero additive function is putting together positive
additive functions for extended Dynkin diagrams, some with opposite sign.
For example we have the following:

1 1 −1 −1

2 −2

1 1 0 −1 −1

<<<��
����� FFF "" ||xxx

AA��� ]]<<<
oo //

yyy << bbEEE
4.2. Additive functions and tubes. We have seen that the existence of

positive or nonnegative additive functions is closely connected with the ex-
istence of tubes for the module category or for the derived category.
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We first show that an algebra can admit a positive additive function
without having any tube for the module category or for the derived category.

Example 4.2(a). The algebra Σ given by the quiver

1 ⇉ 1
x

−→ 1
y

−→ 1 ⇉ 1

with the relation y ◦ x = 0 is derived equivalent to the wild hereditary
algebra ∆ given by the same quiver (where we remove the relation). The
function λ on the vertices of Σ whose values are depicted above is additive
and 2-additive. Since ∆ is wild, there is however no nonzero object in the
module category or in the derived category which is stable under τ .

The next example shows that there may be a tube in the derived cate-
gory giving rise to a positive additive function, but no tube in the module
category.

Example 4.2(b). Let Σ be the algebra given by the linear quiver

◦
x

−→ ◦
x

−→ ◦
x

−→ ◦
x

−→ ◦
x

−→ ◦
x

−→ ◦
x

−→ ◦
x

−→ ◦

of 9 points with the 6 zero relations x3 = 0. It is easily checked that Σ
is isomorphic to the endomorphism algebra of the tilting complex on the
weighted projective line X = X(2, 3, 5) given, in the above order, by the
objects

O, S, τO[1], τS[1], τ2O[2], τ2S[2], τ3O[3], τ3S[3], τ4O[4],

where O is the structure sheaf, τ is the Auslander–Reiten translation in
coh(X), and S is the unique simple sheaf of τ -period five with Hom(O, S) 6=0.

Hence Σ is derived equivalent to any tame hereditary algebra of type Ẽ8.
In view of [8] an equivalent statement is also that Σ is iterated tilted of

type Ẽ8.
Let Σ′ be a hereditary algebra of type Ẽ8. Then Db(Σ) ∼= Db(Σ′) has a

tube giving rise to an additive function for Σ. But since Σ is of finite type,
there is no tube for Σ.

Next we describe the digraph QΣ which has the same vertices 1, . . . , 9
as Σ. If |p − q| = 1 or 4 or 7 then there is one solid edge between p and q,
and there is one dotted edge between p and q if and only if |p− q| = 3 or 6.

Finally, we point out that even if there are tubes in the module category,
there may not be any additive functions.

Example 4.2(c). In [10] there are examples of tame algebras, tilted
from wild hereditary algebras. The Euler radical is zero, so that there is
no nonzero additive function. However, the algebras have tubes. Here one
can see that for any tube either the condition “projective dimension at most
one” or the condition “X∗ = 0” is violated.
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4.3. Two-additive and additive functions. For global dimension at most
two the notions of 2-additive and additive functions coincide. For higher
global dimension the concepts are usually different. As we have seen, it
is the question of the relationship between the Tits and the Euler radi-
cal. We give various examples to show that they do not necessarily coin-
cide.

Consider first Example 4.2(b). The rank function yields an additive func-
tion, unique up to multiplication by an integer, and given on the above quiver
by the sequence [1, 0,−1, 0, 1, 0,−1, 0, 1]. It is clear that this function is not
2-additive and further easy to check that Σ does not admit any nonzero
2-additive function.

In the next examples there are nonnegative additive functions which are
not 2-additive. This happens for arbitrarily high global dimension.

Example 4.3(a). The algebra Σ given by the quiver

◦
x

⇉
y

◦
x

−→ ◦
x

−→ ◦ · · · ◦
x

−→ ◦

with n + 1 vertices and the n − 1 relations x2 = 0 is derived equivalent to
the canonical algebra of type (1, n), that is, to a tame hereditary algebra

of type Ãn, and actually realizable as the endomorphism algebra of the
compact tilting complex on the weighted projective line X(n) of width n−1
consisting of

O, O(~c ), S, τS[1], τ2S[2], . . . , τn−2S[n− 2],

where S is the simple sheaf of τ -period n with Hom(O, S) 6= 0. In particular,
Σ admits an additive function [1, 1, 0, 0, . . . , 0, 0], which is however not 2-
additive. Moreover, gl.dimΣ = n, so that we can have arbitrarily large
global dimension.

Next we give an example where the Tits radical is properly contained in
the Euler radical.

Example 4.3(b). The poset algebra Σ given by the quiver

with all 6 possible commutativity relations is derived equivalent to the
canonical algebra of tubular type (3, 3, 3). Actually, Σ is the endomorphism
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algebra of a narrow tilting complex on the weighted projective line X(3, 3, 3).
The algebra Σ has global dimension three and has an Euler radical of rank
two.

The two rows of the scheme below constitute a basis of the group of
additive functions:

[01 ] [11 ]

[−1
0 ] [01 ] [11 ] [10 ]

[01 ] [11 ]

The lower row defines a generator for the Tits radical which, in this case, is
thus properly contained in the Euler radical. Moreover, and in contrast to
Example 2.4, which also has an Euler radical of rank two, here there does
not exist any positive additive function.

The next example, due to the referee, shows that positive additive and
2-additive functions do not always coincide.

Example 4.3(c). The string algebra Σ given by the quiver

◦
x

⇉
y
◦

x

⇉
y
◦

x

⇉
y

◦

with all possible relations xy=0=yx has global dimension three. The Euler
radical has rank three, and is generated by [1, 1, 0, 0], [0, 0, 1, 1] and [0, 1, 1, 0],
whereas the Tits radical has rank one and is generated by [0, 1, 1, 0]. Hence,
there is a positive additive function but no positive 2-additive function.

4.4. Change under derived equivalence. We have seen that the existence
of a nonzero additive function is preserved under derived equivalence. This
is however not the case for 2-additive functions.

Consider again Example 4.2(b). The algebras Σ and Σ′ are derived
equivalent, and Σ′ has a 2-additive function. It is however easy to see that
Σ does not have such a function.

This example also shows that for two derived equivalent algebras one
may have a positive additive function for one, but for the other one not
even a nonnegative additive function.

4.5. Radical rank and nonnegative additive functions. The main classes
of algebras admitting a positive additive function are on the one hand the
concealed canonical algebras and on the other the pg-critical algebras, which
have Euler radical rank one or two. The next example shows that there are
examples of algebras having arbitrarily high rank of the Euler radical, and
having a positive additive function.
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Example 4.5. The algebra

◦ ◦ ◦ ◦ · · · ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ · · · ◦ ◦

◦ ◦ ◦

// // // // // //

��
��� ��

��� ��
��� ��~~~ ??��� ��

OO ~~~??�����

~~~??�����~~~ ?? ~~~ ?? ~~~ ??

with n commutative squares has global dimension two and a radical of rank

n. The additive function λ taking value one on each vertex is positive; more-
over, for each of the n− 1 convex subquivers of shape

1 1

2

1 1

===��
@@���===��

@@���
we get an additive function, extending the above function by 0 for the re-
maining vertices. This yields a basis λ, λ1, . . . , λn−1 for the group of additive
functions, equivalently for the radical, expressed in the basis of classes of
simple modules.
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