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FINITE GROUPS WITH GLOBALLY
PERMUTABLE LATTICE OF SUBGROUPS

BY

C. B A G I Ń S K I AND A. S A K O W I C Z (BIA LYSTOK)

Abstract. The notions of permutable and globally permutable lattices were first
introduced and studied by J. Krempa and B. Terlikowska-Os lowska [4]. These are lattices
preserving many interesting properties of modular lattices. In this paper all finite groups
with globally permutable lattices of subgroups are described. It is shown that such finite
p-groups are exactly the p-groups with modular lattices of subgroups, and that the non-
nilpotent groups form an essentially larger class though they have a description very similar
to that of non-nilpotent modular groups.

1. Preliminaries. Let L be a lattice with the least element 0 and the
greatest element 1. Furthermore for all a ≤ b ∈ L let [a, b] = {x ∈ L : a ≤
x ≤ b} be an interval of L.

Let X = {x1, . . . , xn} ⊂ L \ {0}. Then we will say that X is (or the
elements x1, . . . , xn are):

• independent if for every 1 ≤ i ≤ n we have xi ∧ (
∨
k 6=i xk) = 0;

• sequentially independent if for every k<n we have (
∨k
j=1xj)∧xk+1 =0.

As in [4] a lattice L will be called permutable if any 3-element sequen-
tially independent subset of L is in fact independent. In other words, L is
permutable if for all x, y, z ∈ L,

x ∧ y = 0 & (x ∨ y) ∧ z = 0⇒ (y ∨ z) ∧ x = 0 & (z ∨ x) ∧ y = 0.

A lattice L will be called globally permutable if all non-empty intervals of
L are permutable lattices. It is clear that every globally permutable lattice
is permutable but not conversely.

Permutable lattices were first studied in [4] where their basic proper-
ties were described and some known results concerning uniform dimension
of modular lattices were extended to this broader class of lattices. The de-
scription of finite permutable lattices (see Theorem 1.1 below) suggests that
they should be very similar to modular lattices. On the other hand the
modularity of subgroup lattices is an interesting property of groups. It is
therefore of some interest and importance to study the role which the class
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66 C. BAGIŃSKI AND A. SAKOWICZ

of permutable lattices plays in investigation of groups. The theory of sub-
group lattices has been studied for many years. For a survey of known results
see for instance the book [6] of Schmidt.

In this paper we give a description of all finite groups with globally per-
mutable lattice of subgroups. We are indebted to J. Krempa for encouraging
us to study this topic and for many useful conversations.

We begin with some known results. Our notation is standard and follows
[2], [3] and [6]. In particular, L(G) denotes the lattice of subgroups of a
group G.

Theorem 1.1 ([4]). Let L be a finite lattice. Then:

(a) L is globally permutable if and only if none of the sublattices of L is
isomorphic to the lattice L1 or L2 (see figures below).

(b) L is permutable if and only if none of the sublattices of L containing
0 of L is isomorphic to L1 or L2.

q
q

Z
Z
ZZ

Z
Z
ZZ

q
q qJJJ

J
JJ

�
�
��

�
�
��

q

q
q q q
q q

q

Z
Z

ZZ

�
�
��

Z
Z
ZZ

�
�
��

�
�
��

Z
Z
ZZ

L1 L2

Fig. 1 Fig. 2

Corollary 1.2. Any finite modular lattice is globally permutable.

Theorem 1.3 ([6]). Let G be a finite p-group. The following conditions
are equivalent :

(a) L(G) is modular.

(b) Either G is a Hamiltonian 2-group, or G contains an abelian normal
subgroup A with cyclic factor group G/A; further there exists an element
b ∈ G with G = A〈b〉 and a positive integer s such that b−1ab = a1+p

s

for
all a ∈ A, with s ≥ 2 in case p = 2.

(c) Each section of G of order p3 is modular.

We say that G is a P ∗-group if G is a semidirect product of an elementary
abelian normal subgroup A by a cyclic group 〈t〉 of prime power order such
that t induces a power automorphism of prime order on A.

Theorem 1.4 ([6]). A finite group has a modular subgroup lattice if
and only if it is a direct product of P ∗-groups and modular p-groups with
relatively prime orders.
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For subgroups H1, . . . ,Hn of a group G we denote by L(H1, . . . ,Hn) the
sublattice of L(G) generated by these subgroups.

Lemma 1.5 ([5]). Let G be an arbitrary group. If A and B are normal
subgroups of G and C is a subgroup of G then L(A,B,C) is modular.

We begin with a simple observation concerning finite p-groups and nil-
potent groups.

Proposition 1.6. Let G be a finite p-group. The lattice L(G) is globally
permutable if and only if L(G) is modular.

P r o o f. By Theorem 1.3 we need only show that the dihedral group of
order 8 and the non-abelian group of order p3 and exponent p, p > 2, are
not globally permutable.

First let G = 〈a, b | a4 = b2 = 1, b−1ab = a3〉 be dihedral of order 8. For
A = 〈ab〉, B = 〈a2〉, C = 〈b〉, we have |A| = |B| = |C| = 2, |A ∨ B| = 4 =
|B∨C|, A∨C = A∨B∨C = G and obviously A∧B = A∧C = B∧C = {e}.
Hence the lattice L(A,B,C) is isomorphic to L2.

Now let G = 〈a, b, c | ap = bp = cp = 1, ab = bac, ac = ca, cb = bc〉.
Again it is easily seen that for the subgroups A = 〈a〉, B = 〈b〉, C = 〈c〉 the
lattice L(A,B,C) is isomorphic to L2.

Since the direct product of globally permutable lattices is globally per-
mutable, we have:

Corollary 1.7. Let G be a finite nilpotent group. Then L(G) is globally
permutable if and only if L(G) is modular.

The following example shows that this is not the case in general.
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Example 1. Let

G = 〈a, b | a5 = b4 = 1, b−1ab = a2〉,

that is, G is a group of order 20 which is a semidirect product of a cyclic
group of order 5 and its group of automorphisms. It is clear that L(G) is
not modular. Moreover, as is seen from Fig. 3, L(G) does not contain a
sublattice isomorphic to L1 or L2. Hence L(G) is globally permutable. This
is the smallest group whose lattice is globally permutable but not modular,
as will be seen from Theorem 2.9. Note also that in L(G) a normal subgroup
and two arbitrary subgroups generate a modular lattice.

2. Main results. Now we turn to the general case. We begin with
recalling Thompson’s classification of minimal simple groups.

Theorem 2.1 ([8]). Every minimal simple group is isomorphic to one of
the following groups:

(a) PSL(2, 2p), p any prime,

(b) PSL(2, 3p), p any odd prime,

(c) PSL(2, p), p any prime exceeding 3 such that p2 + 1 ≡ 0 (mod 5),

(d) Sz(2p), p any odd prime,

(e) PSL(3, 3).

Lemma 2.2. If G is soluble and the lattice L(G) is globally permutable
then G is supersoluble.

P r o o f. Suppose that G is not supersoluble with smallest possible order.
Let

1 = G0 ≤ G1 ≤ . . . ≤ Gn = G

be a chain of normal subgroups of G, which cannot be ramified. If G1 is
cyclic then G/G1 is again globally permutable and not supersoluble, which
contradicts the minimality of G. So G1 is an elementary abelian p-group
which is not cyclic and for each g ∈ G1, 〈gG〉 = G1.

Fix x ∈ G1. We show that there exists a p′-element y in G such that
xy 6∈ 〈x〉. Suppose not, that is, gy ∈ 〈g〉 for every p′-element y of G and
every g ∈ G1. Let q be the largest prime dividing |G| and let Q be a Sylow
q-subgroup of G. By ([3], VI, 9.1), G1Q is a normal subgroup of G. If q > p
then elements of Q act trivially on G1. Otherwise there exist y ∈ Q and
x1, x2 ∈ G1 such that 〈x1〉 ∩ 〈x2〉 = 1 and xy1 = x2. It is easily seen that
L(〈x1〉, 〈x2〉, 〈y〉) ' L1.

So G1Q = G1 ×Q and then Q is a characteristic subgroup of G1Q, that
is, Q is normal in G. Moreover G/Q is not supersoluble, which is not possible
by minimality of G. Hence q = p and then G1 ≤ Q. But by ([3], III, 2.6),
G1 must be contained in the center Z(Q) of Q, so all cyclic subgroups of G1



LATTICE OF SUBGROUPS 69

must be invariant under conjugation by all elements of G. This contradicts
the fact that G1 is a minimal normal subgroup of G and is not cyclic.

Now let A = 〈x〉, B = 〈xy〉, C = 〈y〉, where x ∈ G1 and y is a p′-
element such that xy 6∈ 〈x〉. Standard considerations show that the sublattice
L(A,B,C) of L(G) is isomorphic to L1.

Theorem 2.3. Let G be a finite group. If L(G) is globally permutable
then G is supersoluble.

P r o o f. We use Thompson’s classification of minimal simple groups
(Theorem 2.1). First we show that none of the groups listed in Theorem 2.1
is globally permutable.

Let G be the Suzuki group Sz(2p) with p prime. Then G = 〈A,C〉 where

A =

〈
1 0 0 0

a 1 0 0

aθ + b aθ 1 0

a2+θ + ab+ bθ b a 1


∣∣∣∣∣ a, b ∈ GF(2p)

〉
,

C =

〈
1 a a1+θ + b a2+θ + ab+ bθ

0 1 aθ b

0 0 1 a

0 0 0 1


∣∣∣∣∣ a, b ∈ GF(2p)

〉

and θ is the automorphism of GF(2p) such that θ2 = 2 ([2]). Let

B =

〈
c1+θ 0 0 0

0 cθ 0 0

0 0 cθ 0

0 0 0 c−1−θ


〉

with 0 6= c ∈ GF (2p). Then B 6≤ 〈A,C〉 and L(A,B,C) ' L2.

Now let G = PSL(2, p) with p prime such that p2 + 1 ≡ 0 (mod 5). Let
F = GF(p) and ζ ∈ F be a generator of the multiplicative group F ∗. It is
easily seen that as in the previous case the subgroups

A =

〈(
1 1

0 1

)〉
, B =

〈(
1 0

1 1

)〉
, C =

〈(
ζ 0

0 ζ−1

)〉

generate a sublattice of L(SL(2, p)) isomorphic to L2. Moreover the image of
L(A,B,C) in L(PSL(2, p)) under the epimorphism induced by the natural
epimorphism SL(2, p)→ PSL(2, p) is isomorphic to L(A,B,C).



70 C. BAGIŃSKI AND A. SAKOWICZ

Now let G = PSL(3, 3). Let F = Z3. Consider three elements a, b ∈
UT(3, 3) and c ∈ D(3, 3) such that

a =

 1 2 0

0 1 1

0 0 1

 , b =

 1 2 0

0 1 2

0 0 1

 , c =

 2 0 0

0 2 0

0 0 1

 .

Let A = 〈a〉, B = 〈b〉, C = 〈c〉. Then |A| = |B| = 3, |C| = 2 and A ∧ B =
A∧T = B ∧T = E. Since b = cac, we have A∨C = A∨B ∨C = B ∨C and
(B ∨A) ∧ C = E. Hence L(A,B,C) is isomorphic to L1.

Finally, let G be one of the groups SL(2, 2p), SL(2, 3p) where p is a prime
as in Theorem 2.1. It is well known that the upper triangular subgroups of
these groups are soluble but not supersoluble. So by Lemma 2.2 they are
not globally permutable and their images in PSL(∗, ∗) are not either.

Lemma 2.4. Let G = PH be a semidirect product of a normal elementary
abelian p-group P and a cyclic p′-group H = 〈y〉. If L(G) is globally per-
mutable, then there exists an integer k such that y−1xy = xk for all x ∈ P .
Moreover there exists a prime q < p such that |G/CG(P )| = qn.

P r o o f. Let h ∈ H and x ∈ P . If xh 6∈ 〈x〉 then one can easily check that
L(〈xh〉, 〈x〉, 〈h〉) ' L1. Hence all cyclic subgroups of P are normal in G. Let
〈x1, x2〉 be a subgroup of P of order p2. If xy1 = xk11 , xy2 = xk22 where k1 6≡ k2
(mod p) then (x1x2)y = xk11 x

k2
2 6∈ 〈x1x2〉. That is, the cyclic subgroup 〈x1x2〉

is not normal in G. Therefore k1 ≡ k2 (mod p) and we can replace all ki by
a fixed k for all x ∈ P . Now suppose that there are distinct primes q, r
such that qr divides |G/CG(P )|. In other words there exist y1, y2 ∈ 〈y〉 and
integers m1,m2 such that o(y1) = q, o(y2) = r, m1 6≡ 1 (mod p), m2 6≡ 1
(mod p) and xy1 = xm1 , xy2 = xm2 for all x ∈ G. Let A = 〈y1〉, B = 〈x〉,
C = 〈xy2〉, where x is a fixed element of P , x 6= 1. We have |A ∨ B| = pq,
|B ∨C| = pr, A∨C = A∨B ∨C and A∧B = A∧C = B ∧C = {e}. Hence
the lattice L(A,B,C) is isomorphic to L2. Therefore |G/CG(P )| is a power
of a prime q and of course q | p− 1.

Corollary 2.5. Let p be the largest prime dividing |G| and let P be
an elementary abelian Sylow p-subgroup of G. If L(G) is globally permutable
then G/CG(P ) is cyclic.

Lemma 2.6. Let p be the largest prime dividing |G| and let P be a Sylow
p-subgroup of G. If L(G) is globally permutable and CG(P ) 6= G then P is
elementary abelian.

P r o o f. Let G be a minimal counter-example to the lemma. By Corol-
lary 2.3 and ([3], VI, 9.1), P is a normal subgroup of G. By Lemma 2.4 and
by the choice of G there exists an element y of order qn, q prime, q < p,
such that y ∈ G \ CG(P ) and G = 〈P, y〉 = P 〈y〉. Since Φ(P ) � G and
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〈Φ(P ), y〉 < G, Φ(P ) is elementary abelian and again by Lemma 2.4 there
exist integers k and m such that for all z ∈ Φ(P ),

zy = zk,(1)

and for every g ∈ P there exists z ∈ Φ(P ) such that

gy = gmz.(2)

As P is modular, by Proposition 1.6, but not elementary abelian, there
exists an element x in P of order p2 (Theorem 1.3) and xy = xkz for a
certain element z ∈ Φ(P ). Now it follows from (1) and (2) that 〈x, z〉 � G,
p2 ≤ |〈x, z〉| ≤ p3 and by minimality of G, 〈x, y, z〉 = G. If |〈x, z〉| = p2

then z ∈ 〈x〉 and 〈x〉 � G. For the subgroups A = 〈y〉, B = 〈xp〉, C =
〈xy〉 we have L(A,B,C) ' L2, a contradiction. Therefore |〈x, z〉| = p3

and Φ(〈x, z〉) = 〈xp〉. Now in the factor group 〈x′, y′, z′〉 = 〈x, y, z〉/〈xp〉
the subgroups A = 〈x′〉, B = 〈z′〉, C = 〈y′〉 again generate a sublattice
isomorphic to L2. This contradiction ends the proof.

Lemma 2.7. Let p be the largest prime dividing |G| and let P be a Sylow
p-subgroup of G. If L(G) is globally permutable and P is not a direct factor
of G, then there exists a prime q and a Sylow q-subgroup Q of G such that
PQ is a direct factor of G.

P r o o f. Let {p1, . . . , pt} be the set of all primes smaller than p dividing
|G|, p1 > . . . > pt. Since, by Theorem 2.3, G is supersoluble, it has a Sylow
system {P, P1, . . . , Pt} of pi-subgroups of G ([3], VI, 2.3). Hence P is normal
in G and there exists a p′-subgroup H of G such that G = PH, H = P1 . . . Pt
and P1 . . . Pi � H for i = 1, . . . , t. Let q = ps be the largest prime among
p1, . . . , pt such that certain q-elements act non-trivially by conjugations on P .
We denote by K the subgroup P1 . . . Ps−1. By the choice of q, K ≤ CG(P )
and then PK = P ×K �G.

Let Q = Ps be the Sylow q-subgroup of G. If Q 6≤ CG(K) then there
exists i, 1 ≤ i ≤ s− 1, such that Q 6≤ CG(Pi). Since L(PQ) and L(PiQ) are
globally permutable, P and Pi are elementary abelian by Lemma 2.6. Let
y ∈ Q\(CG(P )∪CG(K)) and let x1 ∈ P , x2 ∈ Pi, x1, x2 6= 1. By Lemma 2.4,
y−1x1y = xk11 y−1x2y = xk22 . It is easy to see that L(〈y〉, 〈x1〉, 〈yx1x2〉) ' L2,
a contradiction.

Therefore Q ≤ CG(K) and PKQ = PQ×K. Let T = Ps+1 . . . Pt. Since
H = (K ×Q)T , we have G = ((PQ)×K)T . Now suppose that there exists
a prime r = pj , r < q, such that the Sylow r-subgroup R = Pj is not con-
tained in CG(PQ). Let z ∈ R \ CG(PQ). If z ∈ CG(Q) then z 6∈ CG(P )
and for y ∈ Q \ CG(P ) and 1 6= x ∈ P we have L(〈y〉, 〈x〉, 〈xz〉) ' L2. So
z 6∈ CG(Q). Since L(QR) is globally permutable, Q is elementary abelian
and there exists an integer k such that for every a ∈ Q, z−1az = ak. Now
suppose y ∈ Q does not centralize P . Then in the factor group G/CG(P ), the
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images of y, z are non-trivial and 〈zCG(P ), yCG(P )〉 ' 〈y, z〉 is non-abelian.
This contradicts G/CG(P ) being cyclic by Corollary 2.5. Thus all elements
of T commute with all elements of PQ and then G = (PQ)× (KT ).

Lemma 2.8. Let p and q be primes with p > q and let G = PQ, where
P � G is a Sylow p-subgroup and Q is a Sylow q-subgroup of G. If L(G) is
globally permutable and Q 6≤ CG(P ) then Q is cyclic.

P r o o f. Suppose by contradiction that Q is not cyclic. Since by Corol-
lary 2.5 the commutator subgroup Q′ of Q is contained in CQ(P ) it has to be
a normal subgroup of G. So we may assume that Q′ = 1 (otherwise replace
G by G/Q′). Now let 1 6= x ∈ P , y ∈ Q \ CQ(P ) and 1 6= z ∈ CQ(P ) \ 〈y〉.
We may also assume that y and z are of order q. It is easily seen that for
A = 〈y〉, B = 〈yx〉, C = 〈yxz〉 we have L(A,B,C) ' L2.

As an immediate consequence of Lemmas 2.4, 2.6, 2.7 and 2.8 we get the
following.

Proposition 2.9. Let G be a finite group which is not a direct product
of its nontrivial subgroups. Then L(G) is globally permutable if and only if
there exist primes p and q, p > q, such that :

(a) |G| = pnqm;

(b) A Sylow p-subgroup P of G is normal in G and elementary abelian;

(c) Sylow q-subgroups of G are cyclic;

(d) If Q = 〈y | yqm = 1〉 is a Sylow q-subgroup of G, then there exists an
integer k such that gy = gk for all g ∈ P , and kq

m ≡ 1 (mod p).

Let p and q be primes and let k,m, n, r be positive integers such that
m ≥ k and qr | p − 1, kq

r ≡ 1 (mod p), kq
r−1 6≡ 1 (mod p). The groups

described in Proposition 2.9 have the following presentation in terms of
generators and relations:

G = 〈y, x1, . . . , xn | yq
m

= xpi = 1, [xi, xj ] = 1,(3)

y−1xiy = xki , i, j = 1, . . . , n〉.

We will complete the classification of finite groups with globally permutable
lattice of subgroups by proving that L(G) is globally permutable. We begin
with listing some elementary properties of G.

Let P = 〈x1, . . . , xn〉. It is clear that P is a Sylow p-subgroup of G and
P �G. For a subgroup H of G we denote by PH a Sylow p-subgroup of H.
One can easily see that PH = P ∩H.

Lemma 2.10. (i) If H ≤ G then there exists x ∈ P and an integer i,

0 ≤ i ≤ m, such that H = 〈yqix, PH〉.
(ii) Z(G) = 〈yqr 〉.
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(iii) A subgroup H of G is normal in G if and only if H ≤ PZ(G) or
P ≤ H.

(iv) A subgroup H is not normal in G if and only if PH 6= P and Sylow
q-subgroups of H contain non-trivial central elements.

Lemma 2.11. (i) If H and K are q-subgroups of G such that H 6≤ K and
K 6≤ H then H ∩K = Z(G).

(ii) If H and K are not normal subgroups of G then Z(G) ≤ H ∩K.

(iii) If H and K are subgroups of G such that H ∩ K 6� G then some
Sylow q-subgroup of H is contained in K or some Sylow q-subgroup of K is
contained in H.

(iv) If H,K ≤ G then PH ∩ PK = PH∩K .

Proposition 2.12. If a group G has presentation (3) then L(G) is glo-
bally permutable.

P r o o f. We show that neither L1 nor L2 can be embedded into L(G).
Let A,B,C be subgroups of G, at most one of them being normal in G
(Lemma 1.5). Suppose by way of contradiction that L(A,B,C) ' L1 or
L(A,B,C) ' L2, that is, A,B and C are situated as in Figure 4 or Figure 5.
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Since by Lemma 2.11(ii), Z(G) ≤ A ∧ B ∧ C, we can consider G/Z(G)
in place of G and assume that Z(G) = 1. By Lemma 2.10(i) we can assume
that

A = 〈yqix, PA〉, B = 〈yqjx′, PB〉, C = 〈yql , PC〉

where x, x′ ∈ P . We consider several special cases:

I. A ∧ B ∧ C � G. It is obvious that P 6≤ A ∧ B ∧ C because all the
subgroups of G containing P form a chain. Hence by Lemma 2.10(iv) we
need only show that a non-trivial q-element belongs to A ∧ B ∧ C, which
contradicts the normality of A ∧B ∧ C.

I.1. L(A,B,C) ' L1. Suppose first that exactly one of the subgroups
A,B,C is normal in G. Note that, by Lemma 2.10(iii), a normal subgroup
of G either contains P or is contained in P .
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I.1.a. Let A�G. Assume first that A ≤ P , i.e. A = PA. Since B,C 6�G

we have yq
j 6= 1 6= yq

l

. Moreover

〈yql , PA, PC〉 = A ∨ C = B ∨ C = 〈yql , yqj , x′, PB , PC〉.

Hence there are a ∈ PA and c ∈ PC such that x′ = ac. Therefore yq
j

c =
(yq

j

x′)a−1 ∈ A ∨ B. Observe that l ≤ j; otherwise Sylow q-subgroups of

A ∨ C and B ∨ C would have different orders. Thus yq
j

c ∈ C and then
1 6= yq

j

c ∈ (A ∨ B) ∧ C = A ∧ B ∧ C. This contradicts the fact that
A ∧B ∧ C �G.

Now assume that P ≤ A. Then PA = P and PC = PC∧P = PB∧B = PB .
Of course PC < P—otherwise either A ≤ C or C ≤ A. In particular we have

P 6≤ A∧C = A∧B∧C. Since by assumption C 6�G again we obtain yq
l 6= 1.

So if yq
i 6= 1 there exists an element 1 6= y′ ∈ 〈yqi〉∩〈yql〉 ≤ A∧C = A∧B∧C

(as A = 〈yqi , P 〉). This again contradicts the fact that A∧B ∧C�G. Hence

yq
i

= 1 and then A = P . This is a special case of the situation A ≤ P which
was already considered.

I.1.b. C �G and A,B 6�G. Assume that C ≤ P . Since A ∨ C = B ∨ C,
Sylow q-subgroups of A and B must have the same order. This means that
i = j. Now

A ∨B = 〈yqix, x−1x′, PA, PB〉 ≤ B ∨ C = 〈yqix′, PB , PC〉.

So there exist b ∈ PB and c ∈ PC such that x−1x′ = bc and then x−1x′b−1 =
c ∈ (A∨B)∧C = B∧C ≤ B. Hence x−1x′ ∈ B and yq

i

x = yq
i

x′(x−1x′)−1 ∈
B. Therefore yq

i

x ∈ A ∧ B. But yq
i

x 6= 1, which contradicts the normality

of A ∧ B ∧ C in G. Now assume that P < C, that is, PC = P and yq
l 6= 1.

Then 〈yqix〉 has non-trivial intersection with C. As in the previous case this
means that A ∧B ∧ C = A ∧ C 6�G.

I.1.c. Now let A,B,C 6�G, that is, yq
i

, yq
j

, yq
l 6= 1. Since A and B play

symmetric roles in L(A,B,C) we may assume that i ≤ j. Let z ∈ P be such

that (yq
i

x)q
j−i

z = yq
j

x′, that is, z = xtx′ for some t ∈ N. Similarly to the

previous case we have A ∨B = 〈yqix, z, PA, PB〉. Moreover

〈yqmin{i,l}
, x, PA, PC〉 = A ∨ C = B ∨ C = 〈yqmin{j,l}

, x′, PB , PC〉.

It is clear that x 6= 1 6= x′ and even more, x 6∈ PA ∨ PC ; otherwise there are
a ∈ PA and c ∈ PC such that x = ac and then xa−1 = c and yq

i

xa−1 = yq
i

c.

Let 1 6= y′ ∈ 〈yqi〉 ∩ 〈yqj 〉 ∩ 〈yql〉 and d ∈ N be such that (yq
i

)d = y′.

Then (yq
i

xa−1)d = (yq
i

c)d = y′c′ ∈ A ∧ C = A ∧ B ∧ C and y′c′ 6∈ P , a
contradiction. Analogously x′ 6∈ PB ∨ PC . We now have z = xtx′ ∈ A ∨ C =
A∨B∨C, i.e. there are a ∈ A, c ∈ C and an integer v such that xtx′ = xvac.

If v ≡ 0 (mod p) then za−1 = c ∈ (A ∨ B) ∧ C = A ∧ B ∧ C. Hence z =

(za−1)a ∈ A and then yq
j

x′ = (yq
i

x)q
j−i

z ∈ A ∧B, a contradiction. If v ≡ t
(mod p) then x′a−1 = c, that is, yq

j

c = yq
j

x′a−1 ∈ A∨B. Again let 1 6= y′ ∈
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〈yqj 〉∩〈yql〉 and (yq
j

)d = y′. Thus (yq
j

x′a−1)d = (yq
j

c)d = y′c′ ∈ (A∨B)∧C.
So we may assume that v 6≡ 0 (mod p) and v 6≡ t (mod p). Take an integer
w such that uw ≡ −1 (mod p). Therefore cw = (x−vza−1)w = xzwa−w and

then A ∨ B 3 ((yq
i

x)zwa−w)d = (yq
i

cw)d = y′c′ ∈ C for a suitable d such

that (yq
i

)d = y′ 6= 1. This is the last contradiction which ends part I.1.
I.2. L(A,B,C) ' L2. The proof is similar to that in I.1.

I.2.a. Let A � G and A ≤ P (i.e. A = PA). We also have yq
j 6= 1 6= yq

l

and

A ∨ C = 〈yql , PA, PC〉, A ∨B = 〈yqjx′, PA, PB〉 = A ∨B ∨ C.

Since Sylow q-subgroups of A∨B have order |yqjx′|, we obtain |yql | ≤ |yqjx′|,
that is, l ≥ j. This means that B ∨ C = 〈yqj , x′, PB , PC〉. Observe now that
x′ ∈ 〈PA, PB〉, that is, x′ = ab where a ∈ PA, b ∈ PB . Hence x′b−1 = a ∈
(B ∨ C) ∧ A = A ∧B ∧ C and then x′ = (x′b−1)b ∈ B. Thus yq

j ∈ B, which

implies 1 6= yq
l ∈ B ∧ C, a contradiction.

The case P ≤ A can be easily reduced to P = A, which belongs to the
case just considered.

I.2.b. C � G. Again we only consider the situation C ≤ P, because the
case P ≤ C easily reduces to P = C. So let C ≤ P, that is, C = PC . Since
A and B play symmetric roles in L(A,B,C) we may assume that i ≤ j. We
now have

A ∨ C = 〈yqix, PA, PC〉, A ∨B = 〈yqix, yqjx′, PA, PB〉.

Let z be an element of P such that (yq
i

xz)q
j−i

= yq
j

x′. Hence

A ∨B = 〈yqix, z, PA, PB〉.

Since PC 6≤ PA (otherwise C ≤ A) we can find c ∈ PC \ PA. Take a ∈ PA
and b ∈ PB such that c = zdab as c ∈ A ∨ B. If d ≡ 0 (mod p) then
ca−1 = b ∈ (A ∨ C) ∧ B = A ∧ B ∧ C. Hence c = (ca−1)a ∈ A. So d 6≡ 0
(mod p) and we may assume that d = 1 (if it is not the case we can take a

suitable power of c in place of c). Thus (yq
i

x)ca−1 = (yq
i

xz)b and

(yq
i

xca−1)q
j−i

= yq
j

x′b′ ∈ (A ∨ C) ∧B = A ∧B ∧ C.

I.2.c. Let A,B,C 6�G, that is, yq
i

, yq
j

, yq
l 6= 1. Let 1 6= y′ ∈ 〈yqi〉 ∩ 〈yqj 〉

∩ 〈yql〉. We have

A ∨B = 〈yqix, yqjx′, PA, PB〉, A ∨ C = 〈yqmin{i,l}
, x, PA, PC〉,

C ∨B = 〈yqmin{j,l}
, x′, PB , PC〉.

Since B ∨ C,A ∨ C < A ∨B, we have

A ∨B = 〈yqi , yqj , x, x′, PA, PB〉.
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By the argument similar to that used in I.1.c we have x, x′ 6∈ PA ∨ PB .
In fact x ∈ PA ∨ PB implies x = ab with a ∈ PA and b ∈ PB , and then
yq

i

xa−1 = yq
i

b ∈ A; hence for d ∈ N such that 1 6= (yq
i

)d ∈ 〈y′〉 we have

1 6= (yq
i

xa−1)d = (yq
i

b)d ∈ (B ∨ C) ∧ A. Hence PA∨B = 〈x, x′, PA, PB〉. Let
c ∈ PC be arbitrary. Then c = xwx′vab for suitable a ∈ PA, b ∈ PB and
w, v ∈ N. Thus x−wca−1 = x′vb ∈ (A∨C)∧ (B ∨C) = C, that is, there exist

c′ ∈ PC and a power b′ of b such that x′b′ = c′. Therefore yq
j

x′b′ = yq
j

c′. Now
for t ∈ N such that 1 6= (yq

j

)t ∈ 〈y′〉 we obtain 1 6= (yq
j

x′b′)t = (yq
j

c′)t ∈
C ∧B = A ∧B ∧ C.

II. A ∧ B ∧ C 6� G. Since A ∧ B 6� G, by Lemma 2.11(iii) there exists

a q-element y1 such that A = 〈yq
j

1 , PA〉, B = 〈yq
j

1 , PB〉. Hence A ∧ B =

〈yq
max{i,j}

1 , PA ∧ PB〉. Repeating the argument for the subgroups A ∨ B and
C we deduce that there exists a q-element y2 such that

A ∨B = 〈yq
min{i,j}

2 , PA ∨ PB〉, C = 〈yq
l

2 , PC〉.

We may then assume that

A = 〈yqi , PA〉, B = 〈yqj , PB〉, A = 〈yql , PC〉

and because A and B play similar roles we may assume that i ≤ j. Suppose
now that P (A,B,C) ' L1. Since P has a modular lattice of subgroups and
PA∨C = PA ∨ PC we have

PA∨B = PA∨B ∧ (PA ∨ PC) = PA ∨ (PA∨B ∧ PC) = PA ∨ P(A∨B)∧C = PA.

Hence PA < PB and B < A, a contradiction.
If L(A,B,C) ' L2 then analogously

PA∨C = PA∨C ∧ (PA ∨ PB) = PA ∨ (PA∨C ∧ PB) = PA ∨ P(A∨C)∧B = PA.

Note further that the subgroups A ∧B, A ∧C and B ∧C are equal, so their
Sylow q-subgroups have the same order, which by Lemma 2.11(iii) means
that two of the numbers i, j, l are equal and the third one is not greater than
the first two. So if l < i then i = j and Sylow q-subgroups of A ∨ B have
smaller order than Sylow q-subgroups of A ∨ C, which is impossible. Thus
l ≥ i and then C ≤ A. This is the last contradiction which ends the proof of
the proposition.

Now we are able to summarize the results.

Theorem 2.13. Let G be a finite group. Then L(G) is globally per-
mutable if and only if G is one of the following groups:

(a) a finite modular p-group;
(b) a group described in (3);
(c) a direct product of groups given in (a) and (b), with pairwise co-prime

orders.
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Tempsky, Wien, 1995, 219–230.
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