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Abstract. For a split graph order L over a complete local regular domain O of
dimension 2 the indecomposable Cohen–Macaulay modules decompose—up to irreducible
projectives—into a union of the indecomposable Cohen–Macaulay modules over graph
orders of type •— •. There, the Cohen–Macaulay modules filtered by irreducible Cohen–
Macaulay modules are in bijection to the homomorphisms φ : O(µ) → O(ν) under the
bi-action of the groups (Gl(µ,O),Gl(ν,O)), where O = O/〈π〉 for a prime π. This problem
strongly depends on the nature of O. If O is regular, then the category of indecomposable
filtered Cohen–Macaulay modules is bounded. This latter condition is satisfied if L is the
completion of the Hecke order of the dihedral group of order 2p with p an odd prime at
the maximal ideal 〈q − 1, p〉, and more generally of blocks of defect p of complete Hecke
orders. If O is not regular, then the category of indecomposable filtered Cohen–Macaulay
modules is unbounded.

1. Introduction. Brauer tree algebras arise as modular blocks of cyclic
defect and their indecomposable modules are classified purely combinatori-
ally (cf. the paper [GaRi; 79]). Integral p-adic blocks with cyclic defect are
Brauer tree orders and in case the defect is p the indecomposable lattices
arise from the projective resolution of an irreducible lattice — Green’s walk
around the Brauer tree (cf. [Ro; 92], [Gr; 74]). Graph orders generalize the
tree orders and have been used successfully to get information on modular
blocks with dihedral defect (as done in [KaRo; 98]). Maximal deformations
of blocks with cyclic defect and “blocks of cyclic defect” of p-adic Hecke
orders are described as tree orders over the two-dimensional complete ring
O := Z[q, q−1]〈q−1,p〉 (1). Let L be such a tree order over O. Then a de-
scription of the Cohen–Macaulay L-modules (2) seems to be out of reach,
since in general the epimorphic images of Cohen–Macaulay modules are not
Cohen–Macaulay.

1991 Mathematics Subject Classification: Primary 16G30.
This research was partially supported by the Deutsche Forschungsgemeinschaft.
(1) A maximal deformation is an O-order such that for specializing q to 1 we obtain

the p-adic block and for q ∈ O \ (1 + pZp) we obtain a maximal Zp-order.
(2) These are the left L-modules which are O-free.

[25]
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A good substitute seem to be those Cohen–Macaulay modules which
have a filtration with irreducible Cohen–Macaulay modules (3) as sections.
W. Rump has given an example of a Cohen–Macaulay module which is not
filtered with respect to any ordering.

In the case of a tree order (4) over a one-dimensional base ring, the
extension groups between the irreducible lattices are isomorphic to Fp, and
so there is essentially only one extension, the projective cover sequence.

In the two-dimensional situation, the extension groups are of the form
O := O/〈π〉 for a height one — and hence principal — prime ideal 〈π〉.
The structure of the category of filtered Cohen–Macaulay L-modules now
depends heavily on the arithmetical structure of the Z〈p〉-order O. The ring

O is a subring of the ring Rp of p-adic integers in the algebraic number field
Kp := Q[q, q−1]/〈π〉 · Q[q, q−1] in case O is Z[q, q−1]p and π is given by an
irreducible polynomial.

In case O = Rp, i.e. O is a complete discrete rank one valuation ring,
the only indecomposable filtered Cohen–Macaulay modules are then given
as follows: We start the walk around the tree from an end vertex. The
walk then gives rise to a numbering of the rational idempotents and also to
the projective resolution of the unique irreducible Cohen–Macaulay module
M0 corresponding to the chosen end vertex. The only irreducible Cohen–
Macaulay modules are the syzygies Ωi(M0), 0 ≤ i ≤ s, where s + 1 is
the number of vertices in our tree. The construction of Cohen–Macaulay
modules is done as follows: We calculate Ext1L(Ωi−1(M0), Ωi(M0)) ' O and
so the non-isomorphic exact sequences are given as extensions

Eν : 0→ Ωi(M0)→ Xν → Ωi−1(M0)→ 0,

which corresponds to the element %ν ∈ Ext1L(Ωi−1(M0), Ωi(M0)), with
〈%〉 = rad(O). It turns out that {Xν | ν = 0, 1, . . .} are non-isomorphic
indecomposable Cohen–Macaulay modules. The main result is that these
are all indecomposable filtered Cohen–Macaulay L-modules.

In case O 6= Rp, we can find in the category of filtered Cohen–Macaulay
L-modules modules of arbitrarily large O-rank. This case will be considered
in Section 7. Luckily, in all the examples I know of blocks of cyclic defect of
Hecke orders and of deformations of blocks with defect p we are in the first
situation, i.e. O = Rp.

We shall give here — as a demonstration — a description of the filtered
Cohen–Macaulay modules for localized dihedral groups of order 2p for an
odd prime p.

(3) A Cohen–Macaulay module M for L is irreducible if it spans a simple module over
the total ring of quotients of L.

(4) We assume here a tree order since the situation is more complex for a general
graph order.
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So let Hp = HDp
⊗Z[q,q−1] Z[q, q−1]〈q−1,p〉 be the completion of the Hecke

order HDp
of the dihedral group of order 2 ·p for an odd prime p at the max-

imal ideal 〈q− 1, p〉 of Z[q, q−1]. Then Hp is a tree order which is described
as follows (cf. [Ro; 98]):

Let R = Z[θp]
C2 be the ring of the integers in the fixed field under

the cyclic group of order two of the pth cyclotomic field and define O2 =
R⊗Z Z[q, q−1]〈q−1,p〉. InO2 we have the prime ideal 〈π〉 = 〈(q−θp)·(q−θ−1p )〉.
We observe that O2 := O2/〈π〉 ' Z〈p〉[θp] is regular of dimension one, i.e. a
rank one valuation ring. The order L2 is defined as

L2 :=

(
O2 O2

〈π〉 O2

)
.

We put L1 = Z[q, q−1]〈q−1,p〉 = L3 and denote by Φp(q) the pth cyclotomic
polynomial. The ring Hp is then obtained as the pull-back

Hp L1 × L3

L2 Z〈p〉[θp]× Z〈p〉[θp]
��

//

φ

��
ψ //

where φ is reduction modulo 〈Φp(q)〉 × 〈Φp(q)〉, and ψ is reduction modulo
the ideal (

〈π〉 O2

〈π〉 〈π〉

)
.

We label the rational central primitive idempotents of A, the algebra
spanned by L := Hp, as (e1, e2, e3), where ei is the unit element in Li.
The non-isomorphic irreducible Cohen–Macaulay Hp-modules are{

N1 = L1, M1 =

(
O2

〈π〉

)
, M2 =

(
O2

O2

)
, N3 = L3

}
.

Green’s walk around the Brauer tree (cf. [Gr; 74]) gives the projective res-
olution

N3 → P
α3−−→Q

α2−−→Q
α1−−→P → N3,

which is put together from the projective cover sequences

E1 : 0→M1 → P
φ1−−→N3 → 0,

E2 : 0→ N1 → Q
φ2−−→M1 → 0,

E3 : 0→M2 → Q
φ3−−→N1 → 0,

E4 : 0→ N3 → P
φ4−−→M2 → 0.
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We now look at the modulesX which have an (e1,e2,e3)-Cohen–Macaulay
filtration, i.e. X1 ⊆ X2 ⊆ X3 = X such that

X1 ' N (s1)
1 , X2/X1 'M (t1)

1 ⊕M (t2)
2 , X3/X2 ' N (s3)

3 .

Theorem 1.1. The indecomposable non-isomorphic Cohen–Macaulay
Hp-modules having an (e1, e2, e3)-filtration are given as:

• the irreducible Cohen–Macaulay Hp-modules {N1,M1,M2, N3},
• the modules φ−11 ((pν + π) ·N3), ν = 0, 1, . . . ,

• the modules φ−12 (((1− θp)ν + π) ·M1), ν = 0, 1, . . .

If we look at the modules X which have an (e2, e1, e3)-Cohen–Macaulay
filtration, i.e. X1 ⊆ X2 ⊆ X3 such that

X1 'M (t1)
1 ⊕M (t2)

2 , X2/X1 ' N (s1)
1 , X3/X2 ' N (s3)

3 ,

we obtain

Theorem 1.2. The indecomposable non-isomorphic Cohen–Macaulay
Hp-modules having an (e2, e1, e3)-filtration are given as:

• the irreducible Cohen–Macaulay Hp-modules {N1,M1,M2, N3},
• the modules φ−11 ((pν + π) ·N3), ν = 0, 1, . . . ,

• the modules φ−13 ((pν + π) ·N1), ν = 0, 1, . . .

In the following sections we describe the situation in its most general
setup.

2. d-Dimensional orders

Definition 2.1. 1. A locally regular noetherian integral domain O of
dimension d is an integral domain O such that for every maximal ideal m
the completion Om is regular of dimension d. (This is sometimes also called
a regular ring , cf. [Na; 62], §28.)

2. Let Oi for 1 ≤ i ≤ s be locally regular noetherian integral domains of
dimension d with field of fractions Ki. By abuse of notation we shall write
O = {Oi} and treat it as a ring. Similarly, we put K = {Ki}. A finitely gene-
rated

∏
1≤i≤s Ki-module V is called a finite-dimensional K-vector space,

and a
∏

1≤i≤s Oi-module M is called a Cohen–Macaulay O-module pro-

vided M '
⊕

℘
(νi,j)
i,j , where ℘ij are projective Oi-ideals; in particular, M

is finitely generated.

3. Let A =
∏s
i=1 A·ei be a K-algebra, i.e. for each i the ring Ai := A·ei

is a separable Ki-algebra; here {ei} are central idempotents in A.

4. A Cohen–Macaulay O-order L in A is a subring of the K-algebra A
which is a Cohen–Macaulay O-module spanning A.
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5. We denote by CM(L) the category of Cohen–Macaulay modules over
L, i.e. of left L-module which are at the same time Cohen–Macaulay O-
modules.

6. The Cohen–Macaulay radical , radCM(L), of the Cohen–Macaulay
order L is defined as the two-sided ideal % in L satisfying the following
conditions:

(a) % is a two-sided Cohen–Macaulay module.
(b) L/% =

∏n
i=1 Li, where for each i the ring Li is Morita equivalent

to an integral domain — not necessarily commutative — of Krull
dimension d− 1. Let φ : L → L := L/% · L be the natural map.

(c) If there is an epimorphism L ψ−−→X where X has Krull dimension
d − 1, then we have a factorization, i.e. a map χ : L → X with
ψ = φ · χ.

(d) The ideal % is unique with respect to these properties.

Remark 2.2. 1. Let O = R[q], where R is the ring of algebraic integers
in an algebraic number field. If R is not a principal ideal domain, then O
is not regular in the classical sense; however, all completions at maximal
ideals are, since the maximal ideals have the form m = 〈f, ℘〉, where ℘ is
a maximal ideal in R and f ∈ R[q] is irreducible modulo ℘ (cf. [Mu; 88]).
In the completion Om the ideal ℘ becomes principal, since the completion
R℘ of R at ℘ embeds into Om. These rings occur in connection with Hecke
orders of dihedral groups of order 2p with p odd.

2. One has to be careful with quotients of O modulo height one prime
ideals. In general, these quotients will not be locally regular; they will be
of Krull dimension d− 1, which is tantamount to being a Cohen–Macaulay
order. In fact, let O = Z[q] and let f ∈ O be an irreducible polynomial
such that in the algebraic number field K := Q[q]/〈f〉 the ring of integers is
strictly larger than O := O/〈f〉. Then O is not regular; but it is a Z-order,
and so it has Krull dimension d− 1 (here d = 2).

3. We have allowed in the definition of a Cohen–Macaulay order L the
orders Li := L · ei to be defined over possibly different rings. This is not
“l’art pour l’art”; the situation occurs in the structure of Hecke orders of
dihedral groups (cf. [Ro; 98 I]). We give an example below.

4. In case d = 1, the notion of Cohen–Macaulay radical coincides with
the Jacobson radical, since integral domains of Krull dimension 0 are skew
fields.

5. We now give some examples which show that the Cohen–Macaulay
radical may exist or may not exist. Let O be regular local of dimension d,
and let

L :=

(
O O
a O

)
.
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Then L is a Cohen–Macaulay order in our sense if a is a projective ideal, i.e.
a is a product of height one prime ideals, and so locally free of height one.

• Let O be complete and let a = 〈πν〉 for some principal height one prime
ideal 〈π〉. Then

radCM(L) =

(
πO O
πν · O π · O

)
,(1)

L/radCM(L) =

(
O 0
0 O

)
, where O = O/〈π〉.(2)

We see that radCM(L) = rad(L) is the Jacobson radical if d = 1.
• Let O = Z[q]〈q,p〉, where p is a rational prime, and let a = 〈pq〉. Then

radCM(L) does not exist. In fact, the ideals

Jp :=

(
p · O O
p · q · O p · O

)
,(3)

Jq :=

(
q · O O
p · q · O q · O

)
(4)

have all the properties of the Cohen–Macaulay radical but there is not
a unique minimal one. Moreover, for the intersection

Jpq =

(
p · q · O O
p · q · O p · q · O

)
,(5)

we have

L/Jpq =

(
O 0
0 O

)
,(6)

where O is the pull-back

O Fp[q]〈q〉

Z〈p〉 Fp
��

//

��
//

which is definitely not an integral domain.

There are, however, many instances where the Cohen–Macaulay radical
does exist. We shall give several examples below as graph orders.

The category of Cohen–Macaulay modules is not a “good” category,
since in general epimorphism images of Cohen–Macaulay modules need not
be Cohen–Macaulay (examples will be given later on). Hence one cannot in
general describe Cohen–Macaulay modules inductively via extensions.

In order to find a good substitute, we propose the following category:
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Definition 2.3. 1. A Cohen–Macaulay module M over O has a Co-
hen–Macaulay filtration provided it has a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mi ⊂Mi+1 ⊂ . . . ⊂Mn = M,

where the sections are Cohen–Macaulay modules over O.

2. We say that a Cohen–Macaulay order (of dimension d) has a Cohen–
Macaulay filtration with respect to E provided there exists a complete (5)
ordered chain E := (e1, . . . , es) of central primitive orthogonal idempotents

of A such that with εi :=
∑i
j=1 ej we have a Cohen–Macaulay filtration

0 ⊂ L · ε1 ⊂ . . . ⊂ L · εs = L.

3. For M ∈ CM(L) we put

Mi = M ∩ εi · A ·M.

We note that the moduleMi is pure inMi+1; but in general, the quotient will
not be Cohen–Macaulay. We say that M has a Cohen–Macaulay filtration
with respect to E provided

0 ⊆M1 ⊆ . . . ⊆Ms = M

is a Cohen–Macaulay filtration of M .

4. We denote by CMf
E(L) or briefly by CMf(L) the category of L-modules

which have a Cohen–Macaulay filtration with respect to E .

In the case of the graph orders we shall describe various categories
CMf

E(L); in those cases, however, we do not know the full category CM(L)
of all Cohen–Macaulay modules for L. W. Rump has given an example
where a Cohen–Macaulay L-module has no Cohen–Macaulay filtration for
any numbering of the central primitive idempotents.

3. “Hereditary” orders. Let O be a (single) complete regular local
domain of Krull dimension d, maximal ideal m := 〈π, τ1, . . . , τd−1〉 and field
of fractions K. We note that O/〈π〉 is a complete local domain of Krull
dimension d− 1.

Assumption 3.1. Assume that Ω is a maximal Cohen–MacaulayO-order
in a skew field D with height one principal prime ideal 〈ω〉 over 〈π〉, such that
Ω/〈ω〉 is an O/〈π〉-order of Krull dimension d − 1, and such that the ring
Ω := Ω/〈τ1, . . . , τd−1〉 is a maximal order in a skew field over the complete
Dedekind domain O/〈τ1, . . . , τd−1〉.

Note that the last condition is a very strong one (cf. Remark 2.2).

(5) I.e.
∑s

j=1 ej = 1.
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Proposition 3.2. Let

(7) H :=



Ω Ω Ω . . . Ω Ω
〈ω〉 Ω Ω . . . Ω Ω
〈ω〉 〈ω〉 Ω . . . Ω Ω

. . . . . . . . .
. . . . . . . . .

〈ω〉 〈ω〉 〈ω〉 . . . Ω Ω
〈ω〉 〈ω〉 〈ω〉 . . . 〈ω〉 Ω


n

.

We call H a Cohen–Macaulay hereditary order of size n over Ω with re-
spect to 〈ω〉. The category of finitely generated Cohen–Macaulay H-modules,
CM(H), coincides with the category of finitely generated projective H-
modules, P f(H). Moreover ,

(8) radCM(H) :=



〈ω〉 Ω Ω . . . Ω Ω
〈ω〉 〈ω〉 Ω . . . Ω Ω
〈ω〉 〈ω〉 〈ω〉 . . . Ω Ω

. . . . . . . . .
. . . . . . . . .

〈ω〉 〈ω〉 〈ω〉 . . . 〈ω〉 Ω
〈ω〉 〈ω〉 〈ω〉 . . . 〈ω〉 〈ω〉


n

with quotient

H/radCM(H) '
n∏
1

Ω/〈ω〉.

P r o o f. This follows under some weaker conditions from the characteri-
zation of Cohen–Macaulay orders of finite Cohen–Macaulay type as isolated
singularities by M. Auslander and I. Reiten in [AuRe; 89]. We shall, however,
give a short proof which arose in a discussion with Dorin Popescu.

Because of our hypotheses, the order H := H/〈τ1, . . . , τd−1〉 is a classical
hereditary order, and hence every H-lattice is projective (6). We have the
reduction functor

F : CM(H)→ CM(H), M 7→M := M/〈τ1, . . . , τd−1〉 ·M.

We shall use this functor to show that M is projective. Our hypothesis M ∈
CM(H) implies that M 'O O(n) as O-modules. Since M is projective, there
exists a projective module P ∈ CM(H) which reduces to M , i.e. P ' M .
The reduction modulo 〈τ1, . . . , τd−1〉 preserves the rank, and so we have

n := rankO(M) = rankO(M) = rankO(P ).

Let φ : M → M and ψ : P → M be the reduction maps. Because of the
projectivity of P there exists a homomorphism χ : P →M with χ ◦ φ = ψ.

(6) In our situation this is the same as Cohen–Macaulay.
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Nakayama’s lemma implies that χ : P →M is surjective; but then the above
rank considerations show that χ must also be injective.

These orders will play the crucial role in the construction of our graph
orders.

4. The order of a truncated graph. The definition has originally
been given in [Ro; 96] in the one-dimensional case and also in Rump’s paper
[Ru; 98]. However, for the convenience of the reader we repeat it here in the
generality needed.

Definition 4.1. A truncated graph G consists of a finite set of vertices
V = V (G) = {v1, . . . , vn} and a set of edges E = E(G) = E1 ∪ E2, where
the edges in E1 join two, not necessarily distinct, vertices, which are called
the genuine edges, and the truncated edges in E2 are associated to only one
vertex, and have a free second vertex (not to be confused with loops).

Next we choose a fixed local embedding of G into the plane, i.e. every
vertex v together with the germs of edges of v (local edges at v) is embedded
into the plane.

We then call G a locally embedded truncated graph.

We always assume that the graphs under consideration are connected.

Note 4.2. 1. In G we allow loops — a loop is then automatically a
genuine edge — and multiple edges.

2. Although not every finite graph can be embedded into the plane,
every graph can be locally embedded into the plane.

3. A local embedding of a vertex v is given if we number the germs
of the edges at v (i.e. the local edges) and the truncated edges at v as
ε(v) := (e1(v), . . . , env (v)). We call nv the valency of v.

4. A cyclic permutation of ε(v) gives rise to the same local embedding.

5. If a local embedding is given, it gives rise to a unique numbering of the
germs of the edges and truncated edges of v modulo a cyclic permutation.
This observation is important for the uniqueness of our constructions later
on.

We shall now construct an order L depending on the locally embedded
graph G with truncated edges such that certain modules have the walks
along the graph as projective resolutions. This will be done in two steps.
First, with each locally embedded vertex we associate a Cohen–Macaulay
hereditary order (cf. Proposition 3.2). We then use the genuine edges to de-
fine certain congruences between the orders corresponding to the respective
vertices in order to construct the order L = L(G).
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Assumption 4.3. 1. Let G be a finite connected locally embedded trun-
cated graph and let v be a fixed locally embedded vertex with local edges
(genuine and truncated) ε(v) = (e1(v), . . . , env

(v)).

2. Let Ov be a complete regular local integral domain of dimension d
with field of fractions Kv and with a fixed principal height one prime ideal
〈π(v)〉 which is part of a regular sequence, i.e. the maximal ideal is

mv = 〈π(v), τ1(v), . . . , τd−1(v)〉.

3. Let Dv be a finite-dimensional skew field over Kv.
4. Assume that Ωv is a Cohen–Macaulay Ov-order in Dv with height

one principal 2-sided prime ideal 〈ωv〉 over 〈π(v)〉 such that Ωv/〈ωv〉 is an
order of Krull dimension d− 1.

5. We also assume that the rings Ωv satisfy Assumption 3.1.

Definition 4.4 (The order associated with v). 1. The order associated
with the locally embedded vertex v is then given by Hv, which is the order
H from Proposition 3.2 with n = nv and Ω := Ωv and ω = ωv.

2. We denote by Ωjv the (j, j)-entry Ωv in Hv.
3. We put, for 1 ≤ j ≤ nv,

(9) Mv,j :=


Ωv
. . .
Ωv
〈ωv〉
. . .
〈ωv〉


nv

j th row
.

Then the modules {Mv,j : 1 ≤ j ≤ nv} constitute a complete set of
non-isomorphic indecomposable projective Hv-modules (cf. Proposition 3.2)
and hence also a complete set of indecomposable Cohen–Macaulay modules
for Hv.

4. We then have natural inclusions (except the last, which is right mul-
tiplication by ω(v)):

(10) Mv,1 →Mv,2 → . . .→Mv,nv−1 →Mv,nv

·ω(v)−−→Mv,1.

5. We identify Mv,j with the germ of the edge ej(v) at the vertex v; then
the above chain of inclusions represents the cycle εv from Note 4.2; it is the
clockwise walk around v starting at e1(v).

6. To simplify the notation we shall identify Mv,i with Mv,i+nv but keep-
ing in mind that multiplication by ω(v) is involved here.
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7. Conjugation with the element

ωv :=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
ω 0 0 . . . 0 0


nv

cyclically permutes the indecomposable projective Hv-modules {Mv,j}; it
induces an automorphism αv of Hv.

8. We have seen in Note 4.2 that the local embedding only determines
εv up to a cyclic permutation; this can, however, be compensated by the
automorphism αv.

9. Hence this construction of Hv only depends on the local embedding
of v, the order Ωv, and the element ωv.

Before we can finally define the order associated with G, we have to fix
some more notation:

Assumption 4.5. 1. For each pair {v, w} of vertices we have an isomor-
phism

Ωv/〈ωv〉 ' Ωw/〈ωw〉.
2. We fix a ring Ω, which is isomorphic to Ωv/ωv for every v ∈ V .
3. By φv : Ωv → Ω we denote a fixed epimorphism with kernel ωv ·Ωv.

Note that there may be many different epimorphisms of this kind.

4. We use the abbreviation Ωv
ω
—Ωw to denote the pull-back

(12)

Ωv
ω

——Ωw Ωv

Ωw Ω
��

//

φv

��
φw //

Note that Ωv
ω
—Ωw changes — not only up to isomorphism — if the maps

φv and φw are changed.

Definition 4.6 (The order associated with G). Put H :=
∏
v∈V Hv.

We now describe the order L := L(G) as a subring of H spanning the same
algebra. Let v ∈ V be a vertex and let ei(v) be the germ of a genuine edge at
v (cf. Note 4.2). Since ei(v) is a genuine edge, it is associated with a second
vertex ej(w); note that v = w is possible.

We now replace in Hv × Hw (in Hv if v = w) the product Ωiv × Ωjw
by Ωv

ω
—Ωw (cf. Definition 4.4). This means that we have identified the

(i, i)-entry of Hv with the (j, j)-entry in Hw “modulo” ω. We do this for all
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genuine edges. Then L = L(G) is called the order associated with the graph
G (with respect to {Ωv} and {φv}).

Let us note some obvious properties of L(G):

Note 4.7. 1. For the graph order L(G) we have

radCM(L(G)) =
∏
v∈V

radCM(Hv) (cf. Proposition 3.2).

2. The indecomposable projective Cohen–Macaulay L-modules are in
bijection to the “edges” — both genuine and truncated — of G, so we label
them {Pe}e∈E .

3. If e = ei(v) is a truncated edge with vertex v, then Pe = Mv,i is a
projective Hv-module as well as a projective L-module.

4. In this case we have a short exact sequence

0→Mv,i−1 → Pe = Mv,i → Ω → 0.

5. If e is a genuine edge, then Pe is the pull-back

(13)

Pe Mv,i

Mw,j Ω
��

//

φi
v

��
φj
w //

(The case v = w is not excluded.)
6. We have the following commutative diagram with exact rows and

columns for a genuine edge:

(14)

0 0 0

0 Mv,i−1 Mv,i Ω 0

0 Mv,i−1 Pe Mw,j 0

0 0 Mw,j−1 Mw,j−1 0

0 0 0

//

OO

//

OO

//

OO

//

//

OO

//

OO

//

OO

//

//

OO

//

OO

//

OO

//
OO OO OO

the maps being self-explanatory.
7. It should be noted that the kernels of the projections Pe →Mv,i and

Pe → Mw,j are projective Cohen–Macaulay H-modules, and that they are
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local L-modules; this is the reason why we can interpret the “walks around
the graph” as projective resolutions of some of the modules {Mv,j} (cf. [Ro;
96]).

8. Actually, there is no reason to require that A is separable, the whole
construction works if the rings Ωv are finitely generated — as modules —
local algebras.

5. Cohen–Macaulay modules over graph orders. Let L = L(G)
be the graph order of a locally embedded truncated graph as in Defini-
tion 4.1. According to Proposition 3.2 the only irreducible Cohen–Macaulay
L-modules (7) are the modules {Mv,i : v ∈ V, 1 ≤ i ≤ nv}.

In order to describe the L-modules with a suitable Cohen–Macaulay
filtration, we first compute the extension groups between the irreducible
Cohen–Macaulay L-modules. (If there are loops, one has to take the filtra-
tion induced by the edges and the Cohen–Macaulay H-modules.)

Proposition 5.1. We have (8) for Mv,i not projective and Mw,j−1 not
injective in CM(L),

Ext1L(Mv,i,Mu,k) =

{
Ω if Mu,k = Ω1(Mv,i),
0 otherwise.

P r o o f. We use the projective cover sequence from diagram (14),

Ee : 0→Mw,j−1
ψe−−→Pe

φe−−→Mv,i → 0,

noting that e is a genuine edge, Mv,i not being projective. Noting further
that Pe is also an injective object in the category of Cohen–Macaulay L-
modules (9) we conclude that

Ext1L(Mv,i,Mu,k) ' HomL(Mw,j−1,Mu,k),

where the latter are the homomorphisms modulo those factoring via ψe.
Hence if u 6= w, then Ext1L(Mv,i,Mu,j) = 0. So we may assume that u = w
and that k = j + l with −1 ≤ j ≤ nw − 1. We have the chain of “natural
inclusions”

(15) Mw,j−1
ιj−1−−−→Mw,j

ιj−−−→ . . .→Mw,j−2
ιj−2−−−→Mw,j−1,

where the composition of all the maps is multiplication by ωv, and moreover,
ιj−1 already factorizes via ψe. Since Ωv/ωv ' Ω the statement follows.

(7) These are the modules M such that A ·M is simple.
(8) Ω1(−) means the first syzygy.
(9) It is easily seen that all indecomposable projective modules corresponding to

genuine edges are also injective in the category of Cohen–Macaulay modules. The in-
decomposable projective modules corresponding to truncated edges are not injective in
CM(L).
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The next result is straightforward.

Lemma 5.2. We have

Ext1L(Mv,i,Mw,j−1) ' EndL(Mv,i) ' EndL(Mw,j−1) ' Ω.

Moreover , Ext1L(Mv,i,Mw,j−1) is an (Ωv, Ωw)-bimodule, and for xv ∈ Ωv
and zw ∈ Ωw we have (10)

zwEe ≡ Eexv ⇔ xvφv = zwφw,

(zw + ωw · z′w)Ee ≡ zwEe, and similarly on the other side. In particular ,
for every zw ∈ Ωw there exist an xv ∈ Ωv such that zwEe ≡ Eexv (cf.
Assumption 4.5 for the definition of φv and φw).

We next explicitly describe the extensions in Ext1L(Mv,i,Mw,j−1). Given
xv ∈ Ωv, we can then form the commutative diagram with exact rows via
the pull-back (for brevity we write M := Mv,i and N := Mw,j−1)

Ee : 0 N Pe M 0

xvEe : 0 N Xxv
M 0

//
�
�
�
�
�

�
�
�
�
�

ψe // φe // //

// ψxv //

βxv

OO

φxv //

xv

OO

//

Then

(16) Xxv
' φ−1e (M · xv).

According to the pull-back in (13), we may view

Pe = {(a, b) : a ∈Mv,i, b ∈Mw,j , aφ
i
v = bφjw} ⊂Mv,i ×Mw,j ,

and so we may also view Xxv
⊂ Mv,i ×Mw,j . The map ψe : N → Pe is

then given by n 7→ (n, 0). Similarly the map ψxv : N → Xxv is given by
n 7→ (n, 0). As we have described Pe via a pull-back (cf. diagram (13)), we
have a similar description for Xxv

. We now fix some notation:

• Let Mxv
= M · xv.

• Denote by Ωxv
the image of Mxv

under the map Mv,i → Ω with kernel
Mv,i−1. Then Xxv

is the pull-back described as follows:

(10) Recall that φv : Ωv → Ω is the map which is incorporated into the definition of
L (cf. Assumption 4.5).
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(17)

0 0 0

0 Mv,i−1 ∩Mxv Mxv Ωxv
0

0 Mv,i−1 ∩Mxv Xxv
Mw,j−1 +Mw,jzw 0

0 0 Mw,j−1 Mw,j−1 0

0 0 0

//

OO

//

OO

//

OO

//

//

OO

//

OO

//

OO

//

//

OO

//

OO

//

OO

//
OO OO OO

where zw is defined as follows: the ring EndL(Pe) is given as a pull-back

Ωv
ω

——Ωw Ωv

Ωw Ω
��

//

φv

��
φw //

So we may choose zwΩw such that xvφv = wzφw, which then as a pair
(xv, zw) give rise to an endomorphism of Pe. Note, however, that the element
zw is not uniquely determined by xv; it is unique in the stable category, i.e.
in its action on the extension groups. We may thus view

Xxv ⊂Mxv ⊕ (Mw,j−1 +Mw,j · zw).

Note that the latter module is in general not a Cohen–Macaulay module; it
has, however, a Cohen–Macaulay filtration, as described by the extension
xvEe.

6. Examples of Cohen–Macaulay modules for graph orders. As
pointed out in Remark 2.2 the reduction modulo principal prime ideals has to
be done with great care. We shall elaborate on two examples. Let Z[q, q−1]〈m〉
be the completion with respect to a maximal ideal. We now consider the
following two essentially different cases:

Definition 6.1. • Let p be an odd rational prime and let π1 := Φpn(q)
be the pnth cyclotomic polynomial. In this case we choose m = 〈q−1, p〉. We
denote by θpn a primitive pnth root of unity and put O1 = Z[q, q−1]m, the
completion at m. In this case O1 := O1/〈π1〉 = Z[θpn ]〈θpn−1〉 is a discrete
rank one valuation ring with maximal ideal m1 := 〈θpn − 1〉, a principal
prime ideal over 〈p〉.
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• As a second example let π2 := f0(q) be a monic irreducible poly-
nomial over Z〈p〉 and let m be a maximal ideal of Z〈p〉[q, q−1] such that
f0(q) stays irreducible in the completion O2 := Z〈p〉[q, q−1]m. Assume that

O2 :=O2/〈f0(q)〉 is not the ring of p-adic integers in Q〈p〉[q, q−1]/〈f0(q)〉. In

this case O2 is a local Z〈p〉-order which is not maximal, and so its maximal
ideal m2 = 〈α1, . . . , αm〉 is not cyclic, say it is minimally generated by m ≥ 2
elements.

We next consider the Oi graph orders for the graph •— •:

Definition 6.2. Let φi : Oi → Oi be the reductions modulo πi for
i = 1, 2. We define the Cohen–Macaulay Oi-order Li as the pull-back

Li Oi

Oi Oi
��

//

φi

��
φi //

Let Ki be the quotient field of Oi and let Ai be the Ki-algebra generated
by Oi.

The structure of the Cohen–Macaulay Li-modules is completely different
in case i = 1 and in case i = 2.

Let us collect some easy facts (cf. Section 5).

Note 6.3. • We have the projective resolutions

Eli : 0→ πi ·Ni → Pi →Mi → 0

and

Eri : 0→ πi ·Mi → Pi → Ni → 0;

moreover, HomLi
(Mi, Ni) = HomLi

(Ni,Mi) = 0.

• Ext1Li
(Mi, Ni) = Ωi = Ext1Li

(Ni,Mi).

• The corresponding extensions are described in Lemma 5.2.

•We shall write CMl(Li) (CMr(Li)) for the category of Cohen–Macaulay
Li modules having a Cohen–Macaulay filtration with respect to (e1, e2)
((e2, e1) resp.), where e1 is the primitive idempotent of Ai with e1 ·Ni 6= 0
and e2 is the primitive idempotent of Ai with e2 ·Mi 6= 0.

Claim 6.4. Let the following extension of Cohen–Macaulay Li-modules
be given:

0→ Ni ⊕ Ni → Ei →Mi → 0.

• If i = 1, then E1 decomposes.

• If i = 2, then there exists an extension where E2 is indecomposable.
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P r o o f. Because of the hypotheses from Note 6.3 (cf. [Ro; 70], Chap. X)
the module Ei decomposes if and only if the corresponding matrix

Ei ∈ (Ext1Li
(Mi, Ni),Ext1Li

(Mi, Ni))

decomposes under transformations of the form Ai ·Ei ·Bi with Ai ∈ Gl(2, Ωi)
and Bi ∈ Gl(2, Ωi). The matrix Ei is given as Ei = (αi, βi) with αi, βi ∈ Ωi.
We now consider our two cases:

Case 1. Let i = 1. Then — if necessary after renumbering — there exists
an element γ1 ∈ Ω1 with α1 · γ1 = β1, since Ω1 is a valuation ring. Hence
E1 decomposes.

Case 2. If i = 2, then there are elements α2 and β2 such that none
of them is a multiple in Ω2 of the other. Hence the matrix (α2, β2) can-
not be decomposed and so the middle term of the corresponding extension

(α2, β2) ∈ Ext1L1
(M1, N

(2)
1 ) is indecomposable.

Proposition 6.5. • In Case 1 let τ be a generator of the radical of Ω1

and let τ be a preimage in Ω1. The non-isomorphic indecomposable Cohen–
Macaulay L1-modules in CMl(L1) are the modules El

ν occurring in the
middle term of the exact sequence τν · El

1 for ν = 0, 1, . . . and the two
irreducible modules M and N .

The non-isomorphic indecomposable Cohen–Macaulay L1-modules in
CMr(L1) are the modules Er

ν occurring in the middle term of the exact
sequence Er

1 · τν for ν = 0, 1, . . . and the two irreducible modules M and N .
The indecomposable Cohen–Macaulay L1-modules in CMl(L1)∩CMr(L1)

are thus the modules P1,M1, N1 (11).
• In Case 2, there are indecomposable modules of arbitrarily large rank

and with an (e1, e2)-filtration.

P r o o f. Case 1. Let X ∈ CMl(L1) be indecomposable. Since it has a
Cohen–Macaulay (e1, e2)-filtration, we have an exact sequence

E : 0→ X ′ → X → X ′′ → 0

with e1 · X ′ = X ′ and e2 · X ′′ = X ′′. If N (resp. M) is the only inde-
composable Cohen–Macaulay L1 · e1- (resp. L1 · e2-) module, we conclude
that

X ′ ' N (s1)
1 and X ′′ 'M (s2)

1 .

Therefore the above sequence E corresponds to a matrix E ∈ Mat(s2 ×
s1, Ω1) which is operated on by Gl(s2, Ω1) from the left and by Gl(s2, Ω1)
from the right. Since Ω1 is a principal ideal domain, we can reduce E under
this operation to the diagonal form; i.e. the sequence E decomposes unless

(11) I do not know whether there are indecomposable Cohen–Macaulay L1-modules
of arbitrarily large rank which then cannot have a Cohen–Macaulay filtration.
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s1 = 1 = s2. Thus E = % · El
1 for some % ∈ Ω1. Since modifying with a

unit does not change the isomorphism class of X, we may replace % by τν ,
provided % has value ν. The case of CMr(L1) is dealt with similarly.

Case 2. We generalize the example from Claim 6.4: Let m2 = {α, β, . . .}.
Then the matrix

En :=


α β 0 . . . 0 0
0 α β . . . 0 0
. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 0 α


n

gives an indecomposable filtered Cohen–Macaulay module as an exact se-

quence in Ext1L2
(M

(n)
2 , N

(n)
2 ).

7. The classification of Cohen–Macaulay modules with a Cohen–
Macaulay filtration for graph orders. We let L be the O-order corre-
sponding to the graph G with underlying hereditary H =

∏
v∈V (O)nv with

parameter 〈π〉 = 〈πv〉 = 〈ωv〉 for every vertex v being a height one prime
ideal. We put O := O/〈π〉 with field of fractions K. For brevity we write
J := radCM(L) for the Cohen–Macaulay radical of L, which is at the same
time the Cohen–Macaulay radical of H.

Remark 7.1. In case O = Z[q]m is the completion at a maximal ideal
with 〈 p 〉 = Z ∩ O and π = f an irreducible monic polynomial over Z〈p〉,
we conclude that O/〈π〉 is an integral domain of Krull dimension 1 with
|O : Z〈p〉| <∞; as a matter of fact, this degree is the degree of f .

Note 7.2. We have

(18)

H := H/J '
∏

2·|E1|

O ×
∏
|E2|

O,

L := L/J '
∏
|E1|

O ×
∏
|E2|

O,

where the embedding of a copy of O corresponding to the genuine edge
e ∈ E1 (cf. Definition 4.1) from L into two copies of O corresponding to
the endpoints of e is the diagonal embedding. For a truncated edge e ∈ E2

(again Definition 4.1) we have the identity as identification.

This implies that the embedding problem L ⊂ H decomposes as

(L ⊂ H) =
( ∏
e∈E1

Oe
(α,β)−−→Ov,i ×Ow,j

)
(19)

×
( ∏
e∈E2

Oe → Ov,i
)
,
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where the edge e ∈ E1 has local edges v, i and w, j and the truncated edge
e ∈ E2 has (only) the local edge v, i.

As mentioned in the introduction, the Cohen–Macaulay representation
type of L strongly depends on O. We now demonstrate this.

Recall that for a finitely generated O-torsion-free O-module T we denote
by T ∗∗ = HomO(HomO(T,O)O) its Cohen–Macaulay-fication.

Proposition 7.3. Let M be an indecomposable not irreducible Cohen–
Macaulay module for L. Then there are exactly two vertices v and w together
with an edge e = vi —wj such that

MH := (H ·M)∗∗ 'Mν
v,i ⊕M

µ
w,j

with µ, ν ∈ N \ {0} (12).
For an edge e = vi — wj we put

CM(L)e := {M ∈ CM(L) : MH 'Mν
v,i ⊕M

µ
w,j , µ, ν ∈ N}.

Note that here we allow µ = 0 and ν = 0.
The category CM(L)e is equivalent to CM(L(• — •)) with respect to

Ω1 = O, Ω2 = O and ω1 = ω2 = 〈π〉.
Before we come to the proof, we note:

Claim 7.4. For a Cohen–Macaulay L-module M we have a chain of
inclusions:

(20) J ·MH = J · (H ·M)∗∗ ⊂M ⊆ H ·M ⊆ (H ·M)∗∗ = MH.

P r o o f. Let
0→ X → Y → T → 0

be an exact sequence of finitely generated O-modules with X and Y torsion-
free for O and T a torsion module. Since T ∗ = 0, we get the exact sequence

0→ Y ∗ → X∗ → T1 → 0,

where T1 is again an O-torsion module. Thus we obtain an exact sequence

0→ X∗∗ → Y ∗∗ → T2 → 0,

where T2 is again O-torsion. Hence

X∗∗ ⊂ Y ∗∗.
We have the inclusion J ·M = J ·H·M ⊂M with torsion cokernel, and hence
we conclude that (J ·H·M)∗∗ ⊂M∗∗ = M (13). However, since every Cohen–
Macaulay module for H is projective and since J is a Cohen–Macaulay
module for H, we conclude that (J ·H ·M)∗∗ = J · (H ·M)∗∗) = J ·MH.

(12) This is so, since M is not irreducible.
(13) We have identified M with M∗∗, since M is Cohen–Macaulay.
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Definition 7.5. Let D0 be the category whose objects are pairs (X,Y )
of a finitely generated torsion-free L-module X embedded into a finitely
generated projective H-module Y . A morphism α : (X,Y ) → (X1, Y 1) is
an H-homomorphism α : Y → Y 1 such that α↓X : X → X1.

Note 7.6. Because of equation (19) the category D0 decomposes into
the product of the categories De over all edges e = vi — wj and categories
which correspond to the identity embedding O → O corresponding to the
truncated edges.

Since the truncated edges only give one indecomposable projective rep-
resentation, we shall omit them in our considerations.

Claim 7.7. Given a Cohen–Macaulay L-module M , the functor F induced
from

F : CM(L)→ D0 : M → (M := M/J ·MH,MH := MH/J ·MH).

preserves indecomposability , i.e. M is an indecomposable Cohen–Macaulay
L-module if and only if F(M) is an indecomposable object in D (14).

P r o o f. Assume that M
α−−→MH decomposes, i.e. M = Z1 ⊕ Z2,MH =

Y 1 ⊕ Y 2 and α = (α1, α2) with αi : Zi → Yi. Since Zi are projective

H-modules, they can be lifted to projective H-modules Yi
σi−−→Y i. We now

define Xi = σ−1(Im(αi)). Then M = X1 ⊕ X2, since simultaneously with
MH also J ·MH decomposes.

Combining this with the observation in Note 7.2 we get:

Corollary 7.8. The indecomposable Cohen–Macaulay modules for L
are in bijection with

∏
e∈E ind(CM(L(•— •))) with respect to (O, 〈π〉).

This also completes the proof of Proposition 7.3.

Because of the above results we can make the following

Assumption 7.9. From now on we assume that the underlying graph is
• — •. (This is legitimate since truncated edges only contribute one projec-
tive irreducible Cohen–Macaulay module.) The order H is then O × O =
H · e1 ×H · e2, and L is the diagonal modulo 〈π〉.

Moreover, we shall only study the Cohen–Macaulay modules which have
a Cohen–Macaulay filtration. There are exactly two filtrations, namely
(e1, e2) and (e2, e1). Since the associated categories of filtered Cohen–
Macaulay modules are isomorphic, we restrict attention to the category
CMf(L) of (e1, e2)-filtered Cohen–Macaulay modules.

(14) Here we do allow truncated edges.
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We consider representations of the embedding problem

(21) L ∆−−→H = O1 ×O2

where Oi 'rings O and L 'rings O; moreover, ∆ is the diagonal.

The objects under consideration are quintuples (X,Y1, Y2, φ1, φ2), where
X is a torsion-free L-module of finite rank and Yi is a free Oi-module of finite
rank. φi : X → Yi is an L-homomorphism for i = 1, 2. Morphisms are triples
(α : X → X ′, βi : Yi → Y ′i , i = 1, 2) such that φi · βi = α · φ′i, i = 1, 2.
We shall, however, modify our functor F as follows. Recall that we are con-
sidering only (e1, e2)-filtered Cohen–Macaulay modules for L. Given such a
module M we have associated with it two exact sequences:

(22)
0→ N1 →M → Q2 → 0,

0→ N2 →M → L1 → 0,

where Q2 and N2 are Cohen–Macaulay modules for O2 and N1 is a Cohen–
Macaulay module for O1; note that although L1 is not a Cohen–Macaulay
module in general, it is a submodule of the Cohen–Macaulay module L∗∗2 ,
and thus N2 is Cohen–Macaulay; because of the Cohen–Macaulay filtra-
tion Q2 is Cohen–Macaulay for O2, and so N1 is Cohen–Macaulay. Using
Claim 7.4 we conclude that Q2 := π−11 ·N1 ⊃ L1. We can thus modify our
above sequences as follows:

(23)
0→ π1 ·Q1 →M

φ̃1−−→Q2 → 0,

0→ N2 →M
φ̃2−−→Q2.

We now consider the functor G from CMf(L) to the representations of the
embedding problem (21):

(24) M/(π1 ·Q1 ⊕ π2 ·Q2)
(φ1,φ2)−−−→Q1/π1 ·Q2 ⊕ Q2/π2 ·Q2.

As above in Proposition 7.3 and Claim 7.7 the functor G recovers isomor-
phism and decomposability. We thus have to determine the image under G
of CMf(L).

Proposition 7.10. • The image under the functor G of a module M ∈
CMf(L) is of the form

X := (X,Y1, Y2, ψ1 : X → Y1, ψ2 : X → Y2),

where X = M := M/(π1 ·Q1⊕π2 ·Q2) ' L(µM ), the module Y1 ' O(νM )
1 and

Y2 ' O(µM )
2 ; i.e. X ' Y2 as O-modules, and moreover , ψ2 is an O-linear

map and ψ2 is an isomorphism, which can then be taken as the identity.

• Conversely , every object X = (Oµ,Oν ,Oµ, ψ, id) as above is the image
of a Cohen–Macaulay module in CMf(O).
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• M ' M ′ if and only if there are α ∈ Gl(µM ,O) and β ∈ Gl(νM ,O)
with ψM · β = α · ψM ′ .
• M is indecomposable if and only if OµM

ψ−−→OνM is indecomposable.

P r o o f. Because of the exact sequences in (23) the map ψ2 is an isomor-
phism and can thus be taken to be the identity. Hence the representations
in the image of G have the form described above.

Since on the object X every modification on X can be compensated for
— via ψ2 — by a modification of Y2, the statements about the morphism
and decompositions are immediate.

It thus remains to determine the image of G.

So let an object X
(ψ1,id)−−−→Y1⊕Y2 be given with Yi free of finite rank over

O. This object then gives rise to the short exact sequence

(25) 0→ X
(ψ1,id)−−−→Y1 ⊕ Y2 → Y1 → 0.

We can lift Yi to a projective H·ei-module Qi, and we obtain an epimorphism
α := α1⊕α2 : Q1⊕Q2 → Y1⊕Y2. If we now let M := α−1(Im(ψ1, id)), then
M is a finitely generated torsion-free L-module, and we get the following
commutative diagram with exact rows and columns:

(26)

0 0 0

0 X Y1 ⊕ Y2 Y1 0

0 M Q1 ⊕Q2 Y1 0

0 π1 ·Q1 ⊕ π2 ·Q2 π1 ·Q1 ⊕ π2 ·Q2 0 0

0 0 0

//

OO

ψ1,id //

OO

//

OO

//

//

OO

χ1,χ2 //

OO

//

OO

//

//

OO

//

OO

//

OO

//
OO OO OO

Because of Nakayama’s Lemma, the map χ2 : M → Q2 is surjective.

The next claim is the crucial observation.

Claim 7.1. We have an exact sequence

0→ π1 ·Q1 →M1 → Q2 → 0.

P r o o f. From the diagram (26) we get the short exact sequence

(27) 0→ π1 ·Q1 →M/π2 ·Q2 → X ' Y2 → 0.
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This uses heavily the equality X = Y2. We now obtain from M the exact
sequence from (22),

(28) 0→ N1 →M → Q2 → 0,

which induces the exact sequence

0→ N1 →M/π2 ·Q2 → Q2/π2 ·Q2 = Y2 → 0.

Comparing this with the exact sequence from (27) and noting that the
right-hand maps are the same, we conclude that N1 = π1 · Q1. Thus the
sequence (28) is O-split, and so M ∈ CMf(L).

Let us summarize the result as follows:

Theorem 7.12. Let L(G) be the graph order of a truncated graph with
Ωv = O and ωv = π. Let (e1, . . . , em) be an ordering of the primitive idem-
potents of the underlying algebra such that genuine edges have neighboring
idempotents.

1. Apart from the projective irreducible Cohen–Macaulay modules the
category of the modules in CMf(L(G)), i.e. filtered with respect to the above
sequence of idempotents, decomposes into the disjoint union of categories
CMf(L)e, one for each genuine edge e.

2. The categories CMf(L)e are all isomorphic. They are all equivalent
to CMf(L), where L is the graph order for • — • with respect to the above
data.

3. The objects in CMf(L) are given by the homomorphisms Oµ → Oν
with the bi-action of (Gl(µ,O),GL(ν,O)), where O = O/〈π〉.

4. If O has infinite lattice type (note that this is a ring of Krull dimension
one), then CMf(L) has infinite type. (This is a very coarse condition. Finer
distinctions for infinite type may be derived from the arguments in the proof
of Proposition 6.5.)

P r o o f. For the construction of the ordered chain (e1, . . . , em) of prim-
itive idempotents we note that every indecomposable projective P of L(G)
which does not correspond to a truncated edge projects onto exactly two
different primitive idempotents ε and η (unless there are loops). Moreover,
no other indecomposable projective projects onto either ε or η. Hence an
ordering as claimed above does exist.

Now, only the last statement needs verification. Let L be an indecom-
posable O-lattice and let Oµ be a projective cover of L. Embed L into Oν
with torsion cokernel. Then the object Oµ → L → Oν is indecomposable,
as is easily seen.

Corollary 7.13. In the case when O is regular , the filtered Cohen–
Macaulay modules are given as in Section 7.
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Remark 7.14. The above results also hold if the rings Ov at the various
vertices are not the same.
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