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FINITELY GENERATED GROUPS HAVING A FINITE SET OF
CONJUGACY CLASSES MEETING ALL CYCLIC SUBGROUPS

BY

A. A. I V A N O V (WROC LAW)

Abstract. We study infinite finitely generated groups having a finite set of conjugacy
classes meeting all cyclic subgroups. The results concern growth and the ascending chain
condition for such groups.

0. Preliminaries. Throughout the paper we denote by G an infinite
finitely generated group. We say that a group G has a threading tuple if
there are non-trivial w1, . . . , wk ∈ G (the threading tuple) such that for every
non-trivial g ∈ G there exists a natural number n such that gn is conjugate
to some wi, 1 ≤ i ≤ k. The paper is motivated by the following question:
Is there an infinite finitely presented group having a threading tuple? The
question has arisen in model theory. The positive answer would provide a
finitely axiomatizable strongly minimal structure (see [9] for group-theoretic
connections with questions of this kind).

S. V. Ivanov has constructed several examples of finitely generated
groups with finitely many conjugacy classes. One of the examples satis-
fies the condition that any proper subgroup is cyclic of order p, where p is
a fixed prime (see [13], p. 425). However the examples are not finitely pre-
sented and there is no hope to make them such. The reason is that Ivanov’s
construction uses the method of Olshanskĭı, which is designed for producing
infinitely presented groups.

Another way to obtain a finitely generated group having a threading
tuple is to find a group G with a normal subgroup H such that:

(a) the group H has a threading tuple and is allowed to be infinitely
generated (for example quasicyclic);

(b) G/H is a Burnside type group and for any non-trivial g ∈ G there
exists n such that gn ∈ H \ {1}.

This idea is applied in Theorem 31.3 of [13] which provides a finitely
generated group G with a normal finite subgroup H (contained in the center
of G) such that G/H is a finitely generated group of exponent n and for any
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non-trivial g ∈ G, gn ∈ H \ {1}. It is clear that H forms a threading tuple
of G.

In a sense the only known methods that give really unexpected finitely
generated groups (at least in the class of periodic groups) are the ones of
Olshanskĭı and Grigorchuk. The latter can help to produce finitely presented
groups with unusual properties [8]. Since Grigorchuk type groups (1) (real-
izable as Burnside groups of automorphisms of rooted trees) have subex-
ponential growth, the following question looks quite important: Is there an
infinite finitely generated group of subexponential growth having a threading
tuple?

An example answering this question cannot be residually finite (see
Corollary 0.2 below). Since Grigorchuk type groups are residually finite,
the most natural way to obtain an example is to apply the idea described
above: find a group G with a normal quasicyclic (or finite) subgroup H such
that G/H is a Grigorchuk type group and for any non-trivial g ∈ G there
exists n such that gn ∈ H \ {1}. Below we give some evidence that this
is the only way that may give a required example, when additionally the
FC-center is non-trivial.

On the other hand, it looks probable that demanding the ascending
(descending) chain condition, a frequent property of Olshanskĭı type groups,
we can eliminate examples involving Grigorchuk type groups. This makes
us think that most likely a finitely generated group having a threading tuple
and satisfying the a.c.c. (d.c.c.) must be very similar to Ivanov’s examples.
We partially confirm this in Section 2.

The author is grateful to Krzysztof Krupiński for discussions.

Normal subgroups. The following observations show that the known
Grigorchuk type groups do not have threading tuples.

Lemma 0.1. Let w1, . . . , wk be a threading tuple of G and let H be a
non-trivial normal subgroup of G. Then

(1) {w1, . . . , wk} ∩H 6= ∅.
(2) If g1, . . . , gm, . . . are representatives of all cosets of H in G then for

any element g ∈ H there exist n ∈ ω and wj ∈ H such that gn is conjugate
in H to some g−1i wjgi. In particular , if H is of finite index in G then H
has a threading tuple. If , moreover , the number of conjugacy classes of G
is finite then the same holds for H.

P r o o f. (1) is obvious. To see (2) let {w1, . . . , wl} = H ∩ {w1, . . . , wk}.
We claim that the elements wgi

j , 1 ≤ i, 1 ≤ j ≤ l, form a threading tuple
(possibly infinite) in H. Indeed, if g ∈ H then there exist n ∈ ω, h ∈ H,

(1) A better but longer name: Aleshin–Grigorchuk–Gupta–Sidki–Sushchanskĭı groups.
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i ∈ ω, j ≤ k such that gn = h−1g−1i wjgih. Since H is a normal subgroup,
j ≤ l. If the index of H is finite then so is the number of elements of the
form wgi

j . The same argument proves the last statement of the lemma.

Corollary 0.2. If w1, . . . , wk is a threading tuple of G then for any
proper homomorphism φ : G → G1 there exists wi such that φ(wi) = 1. In
particular , G has no infinite descending normal series with trivial intersec-
tion. If G has finitely many conjugacy classes then G has no infinite normal
series.

P r o o f. We only comment the last statement: any normal subgroup and
its complement is closed under conjugation.

Krzysztof Krupiński has pointed out that Corollary 0.2 implies that G in
the corollary is not a finitely generated linear group: by a theorem of Maltsev
(see [12], p. 408) a finitely generated linear group is residually finite.

Since all Grigorchuk type groups are residually finite, they do not have
threading tuples. In the next section we show that if a finitely generated
group G of subexponential growth has a threading tuple then G is periodic
with π(G) (the set of all primes dividing the orders of elements of G) finite.

Periodic groups. The finiteness of π(G) of a periodic group having a
threading tuple comes from the following observation.

Lemma 0.3. If a periodic group G has a threading tuple then π(G) is
finite. The group G has a finite number of conjugacy classes of elements of
prime orders.

P r o o f. Let w1, . . . , wm be a threading tuple. Let P be the set of all
primes dividing the orders of wi. Then π(G) ⊆ P .

Let G be periodic and have a threading tuple. Since π(G) is finite we can
find a threading tuple that meets any conjugacy class of elements of prime
order.

Lemma 0.4. Under the above circumstances if G is not a 2-group then
there are at least two conjugacy classes of elements of prime orders.

P r o o f. The lemma is obvious if |π(G)| > 1. Let π(G) = {p}. We now
use an argument from [7]. Let |g| = p and n0 ∈ {2, . . . , p − 1} be chosen
so that g and gn0 are conjugate in G. Consider h such that h−1gh = gn0 .
Then for any i we have h−ighi = gn

i
0 . Since G is a p-group, there exists

m = ps such that g = gn
m
0 . This implies nm0 = 1 (mod p). Since n0 is prime

to p we see that n
(p−1)
0 = 1 (mod p) (apply Euler’s Theorem). Choose the

minimal l > 1 such that nl0 = 1 (mod p). Then l |m and l | p− 1. This is a
contradiction.



4 A. A. IVANOV

It is worth noting that Theorem 41.1 of [13] gives a finitely generated
divisible p-group (p ≥ 3) containing a quasicyclic H (isomorphic to Cp∞)
such that any element of G is conjugate to an element of H. It is clear that
the elements of prime order in H form a threading tuple of G.

FC-center. The proof of the following lemma was suggested by the ref-
eree. It is more constructive than the original proof by the author.

Lemma 0.5. Let G have a threading tuple and let g ∈ G be of infinite
order. Then there is a natural number m such that for infinitely many n
with m |n the elements gm and gn are conjugate in G.

P r o o f. For h, h′ ∈ G write h ∼ h′ whenever h and h′ are conjugate in G.
Let w1, . . . , wk be a threading tuple in G. For g as in the statement, there
exist integers l and i1 such that gl ∼ wi1 . Further, there exist exponents
di > 1 such that

wd1
i1
∼ wi2 , wd2

i2
∼ wi3 , . . . , w

dk
ik
∼ wik+1

, . . . , w
dk+r

ik+r
∼ wik .

Then for d = d1 · . . . · dk−1 and d′ = dk · . . . · dk+r we have gl·d ∼ wik ∼ wd′

ik
.

We set m = l · d; then gn ∼ gm for any n of the form n = m(d′)s, s ≥ 0.

Corollary 0.6. If a finitely generated group G has a threading tuple then
its commutant G′ is of finite index in G. In particular , G is not solvable.

P r o o f. If [G : G′] is infinite then G/G′ is an infinite finitely generated
abelian group. So there exists g ∈ G such that for all i ∈ ω \ {0} the
elements gi do not belong to G′. Choose m < n as in Lemma 0.5. Then
(gG′)n, (gG′)m ∈ G/G′ are distinct and conjugate. This is a contradiction.

It is well known that the union of all finite conjugacy classes of a group
G forms a characteristic subgroup FC(G). We call it the FC-center of G.
It is also well known (see [6]) that for periodic G the FC-center is locally
normal (any finite subset is contained in a finite normal subgroup) and its
quotient by the center is residually finite. Moreover, if the center is infinite
then it is a direct sum of finitely many quasicyclic groups.

Proposition 0.7. Let G be a finitely generated group having a threading
tuple. Then

(a) G has infinite conjugacy classes.

(b) Let G be periodic and let H be an infinite normal subgroup of G. If
H is a Chernikov group (i.e., a finite extension of a direct sum of finitely
many quasicyclic groups), then there is a normal subgroup G0 ≤ G such that
G0 is of finite index in G and its center Z(G0) is a direct sum of finitely
many quasicyclic groups.
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P r o o f. (a) If G is not periodic then apply Lemma 0.5. If G is periodic
then FC(G) is locally finite and since G is finitely generated, G/FC(G) is
infinite.

(b) Let N be the subgroup of H of finite index which does not have
subgroups of finite index. Then N is normal in G and is a direct sum of
finitely many quasicyclic groups (see 19.3.2 of [10]). LetG0 be the centralizer
of N in G. If G0 is of infinite index in G then the natural homomorphic
image of G in Aut(N) is infinite and periodic. This is impossible (see 19.3.4
of [10]).

Theorem 31.3 of [13] provides a finitely generated group having a thread-
ing tuple with non-trivial (finite) FC-center.

1. Subexponential growth. As we noticed in the previous section, a
finitely generated group having a threading tuple is not of polynomial growth
(by Gromov’s theorem finitely generated groups of polynomial growth are
virtually nilpotent). Below we study what happens when the growth is
subexponential. To a great extent the results of this section concern pe-
riodic finitely generated groups in general. The following proposition shows
how such groups arise in our situation.

Proposition 1.1. Let G have a threading tuple. If G does not have free
2-generated subsemigroups (in particular , if G has subexponential growth)
then G is periodic.

P r o o f. Suppose G has an element g of infinite order. Choose m as in
Lemma 0.5. Let m |n, m 6= n and h−1gmh = gn. We may assume that
m = 1 and n is sufficiently large. It is clear that h is of infinite order. The
group generated by all high−i, i ∈ Z, is locally cyclic but not cyclic. Thus
it is not finitely generated. Lemma 1 of [11] states that if a group has no
free subsemigroups then for any pair a, b of its elements the subgroup 〈a〈b〉〉
is finitely generated. So we get a contradiction. On the other hand, it is
clear that a group having a free 2-generated subsemigroup is of exponential
growth.

The proposition (and Lemma 0.3) shows that in order to find a finitely
generated group of subexponential growth and with a threading tuple we
may consider only periodic groups with π(G) finite.

We now describe some general property which is inconsistent with subex-
ponential growth. This motivates our further results.

Definition 1.2. Let G be finitely generated with a fixed generating set.
A word w in the generators of G is geodesic if the corresponding element of
G cannot be written as a shorter word. The length |g| of an element g ∈ G is
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the length of the corresponding geodesic word. A geodesic word w is called
wide if there are infinitely many geodesic words which have prefix w.

The trace of G (denoted by Tr(G)) is the set of all words which are
geodesic and wide with respect to the generators of G.

It is clear that the trace of an infinite finitely generated group is infinite.

Let Cg be the conjugacy class of g ∈ G. We say that a tuple c1, . . . , cl ∈
Cg is orthogonal if for distinct X,Y ⊂ {1, . . . , l},

∏
i∈X ci 6=

∏
i∈Y ci.

Let Prod(Cg) be the set of all g′ · g′′ where g′ and (g′′)−1 are of the form
c1 · . . . ·ck (not necessarily with the same k) with c1, . . . , ck ∈ Cg orthogonal.

Lemma 1.3. Let G be a finitely generated group, g ∈ G and let Cg be
the conjugacy class of g. Assume that there are natural numbers s and s0
such that there exist infinitely many k with the property that the trace Tr(G)
contains a geodesic word w satisfying the following conditions:

(1) Any subword of w having empty intersection with the prefix of length
s0 is not conjugate to any element of Prod(Cg).

(2) There exists a sequence of prefixes ∅ ⊂ w0 ⊂ w1 ⊂ . . . wk ⊆ wk+1 = w
such that |w0| ≤ s0 and for any j ≤ k, ||wj+1| − |wj || ≤ s and the sequence
w−1j wi−1gw

−1
i−1wj , 1 ≤ i ≤ j, is orthogonal.

Then the growth of G is exponential.

P r o o f. For G as above and a tuple h ∈ G we say that an element
c ∈ G is h-paradoxical if for some word w0 the trace of G contains infinitely
many elements w with the following property: w can be presented as an
h-word extending w0 and geodesic with respect to the generators of G and
if w0 ⊂ w1 ⊂ . . . ⊂ w is the sequence of its h-prefixes extending w0 then
all elements wk ·

∏k
i=1(w−1k wi−1cw

−1
i−1wk)ei , 1 ≤ k, ei ∈ {0, 1}, are pairwise

distinct.

We prove that the element g from the statement of the lemma is para-
doxical with respect to the sequence h of all words of length not greater than
s. Take an infinite geodesic word α such that any subword w′ ⊆ α satisfies
(1) and (2) of the lemma. The existence of such an α follows from König’s
Lemma.

König’s Lemma also implies the existence of an infinite sequence of pre-
fixes w0, w1, . . . , wk, . . . such that for any k the elements w−1k wi−1gw

−1
i−1wk,

i ≤ k + 1, form an orthogonal tuple and ||wk+1| − |wk|| ≤ s.
To see that g is h-paradoxical suppose that for some k ≤ l and ei, di ∈

{0, 1}, the elements

wk ·
k∏

i=1

(w−1k wi−1gw
−1
i−1wk)ei and wl ·

l∏
i=1

(w−1l wi−1gw
−1
i−1wl)

di
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are the same. Since w−1k wl is a subword of α, condition (1) implies that the
case k 6= l is impossible. Then the equalities ei = di, i ≤ k, follow from the
orthogonality.

Let g be paradoxical. It is easy to see that there is an infinite h-word γ,
geodesic with respect to the generators of G, such that any finite sequence
of its prefixes has the property of the above definition for g.

Then the rest of the lemma follows from the argument of Subsection 52
of [4]: express γ in the form w0h1h2 . . . , where wi = w0h1 . . . hi; to a se-
quence e1 . . . el, ei ∈ {0, 1}, assign the element w0x

e1
1 · . . . · x

el
l , where xei =

hi(h
−1
i ghi)

e is considered as a color of an edge. Since g is h-paradoxical,
this creates a 2-tree (called paradoxical in [4]).

We now return to finitely generated periodic groups. The theorem below
is applicable if G has infinite normal locally normal subgroups (for example,
if FC(G) is infinite). In a sense it states that then case (b) of Proposition 0.7
is most probable for G of subexponential growth (compare with Lemma 1.3).

Theorem 1.4. Let G be a finitely generated periodic group and let H < G
be infinite, locally normal and normal in G. For g ∈ H of prime order let
Wg be the set of all geodesic words w such that any subword of w and
its inverse is not conjugate to any element of Prod(Cg), where Cg is the
conjugacy class of g. Assume that H is not Chernikov. Then there exists
g ∈ H of prime order such that

(∗) there exists an infinite sequence w0, w1, . . . , wk, . . . ∈Wg such that for
any k the sequence w−1j gwj , 0 ≤ j ≤ k, is orthogonal.

P r o o f. If for any p ∈ π(H) the conjugacy class of elements of order p is
finite then the set of all elements of prime order generates a finite subgroup
that meets every subgroup of H. In [3] V. Belyaev describes locally finite
groups P for which there exists a finite subgroup F0 < P such that for
any non-trivial finite F0-invariant subgroup F1 < P , F0 ∩ F1 6= {1}. In
particular, Theorem 2.5 of that paper asserts that such a group P has a
normal subgroup N which is Chernikov and P/N does not have non-trivial
finite normal subgroups. By local normality of H this implies that H is
Chernikov, a contradiction.

Applying Theorem 2.5 of [3] again we deduce that for any finite subgroup
F0 < H there is a non-trivial finite F0-invariant subgroup F1 < H with
F0 ∩F1 = {1}. Let g ∈ H be of prime order with an infinite conjugacy class
Cg such that for any finite F0 generated by elements of Cg an appropriate
F1 meets Cg. As π(H) is finite, such a g exists. We show that g satisfies (∗).

Since H is localy finite, it is of infinite index in G. Then G/H under
the generators corresponding to the ones of G has an infinite geodesic word.
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Its natural preimage γ in G is geodesic as well. All subwords of γ form an
infinite subset of Wg.

Since H is normal in G, any element of G is a product hw, where h ∈ H
and w ∈ Wg. By local normality of H we see that Cg consists of finitely

many sets g
Wg

i where gi is conjugate to g in H. By the choice of g we obtain

an infinite orthogonal sequence in one of the sets g
Wg

i .

Remarks. 1. If in the condition (∗) we can additionally claim that there
exists a sequence of prefixes w−1 ⊂ w−2 ⊂ . . . ∈Wg such that the elements

gw
−1
−i form an orthogonal sequence and all ||w−i| − |w−i+1|| are bounded by

some number s, then for any natural number k the word w−1−k−1 satisfies

conditions (1) and (2) of Lemma 1.3: take wi := w−1−k−1wi−k−1 for i ≤ k.
Then by Lemma 1.3 the growth of G is exponential.

2. The property that Wg in Theorem 1.4 is infinite is a consequence of
the fact that H is normal in G of infinite index. Notice that this condition
entails that the words from Wg not having subwords of finite conjugacy
classes form an infinite set. To see this observe that H · FC(G) is a normal
subgroup of infinite index. Indeed, if the index is finite, then H ·FC(G) is a
finitely generated group. We may assume that G = H · FC(G). Then G/H
is a homomorphic image of the locally finite group FC(G). So G/H cannot
be infinite and finitely generated. Now apply the argument of Theorem 1.4
to the group G/(H · FC(G)).

2. The ascending chain condition. In this section we study what
happens when G does not have an infinite ascending chain of subgroups.

Proposition 2.1. Let G have a threading tuple. If G satisfies the as-
cending chain condition for subgroups then G is periodic.

P r o o f. Suppose G has an element g of infinite order. Choose m as
in Lemma 0.5. Let m |n,m 6= n and h−1gnh = gm. Then G0 = 〈gm〉 is

a subgroup of the group G1 generated by g1 = h−1gmh (notice that g
n/m
1

= gm). Take g2 = h−1g1h and note that it generates a group G2 containing
G1. By the ascending chain condition we have G0 = G1, a contradiction to
the choice of m and n.

As we have already noted there is an example of a group having a thread-
ing tuple and satisfying the a.c.c. for subgroups (S. V. Ivanov). All elements
of this group have the same prime order greater than 2. Our next result
together with Proposition 2.1 shows that this example is not casual.

Theorem 2.2. Let G be periodic, have a threading tuple and satisfy the
a.c.c. for subgroups. Then there is an infinite G1 < G having a threading
tuple such that the set of involutions of G1 is a finite subset of the center.
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P r o o f. Most of the arguments that we use are standard (for example,
see [1]).

Assume that G has involutions: 2 ∈ π(G). For p ∈ π(G) we define a
p-Sylow subgroup to be a maximal locally finite p-subgroup. By the a.c.c.
we deduce that any p-Sylow subgroup is finite.

We now prove that all 2-Sylow subgroups are conjugate. Suppose S is a
conjugacy class of 2-Sylow subgroups and S ∈ S and T are non-conjugate
2-Sylow subgroups with |S ∩ T | maximal. First observe that |S ∩ T | 6= 1.
Suppose |S ∩ T | = 1. Since S and T are nilpotent there are two involutions
s ∈ Z(S) and t ∈ Z(T ). If sh = t then t ∈ Sh ∩ T contradicting the
maximality of |S ∩ T |. Since v = st is of finite order and s and t are not
conjugate, the order of v is even and the corresponding involution u ∈ 〈v〉
commutes with both s and t. Let S1 be a 2-Sylow subgroup containing 〈u, s〉
and let T1 be a 2-Sylow subgroup containing 〈u, t〉. By maximality, S and
S1 (and then S1 and T1) are conjugate. So, T1 and T are conjugate and S
and T are conjugate, a contradiction.

Let I = S∩T . By nilpotency, I is self-normalizing neither in S nor in T .
Let i ∈ S ∩ NG(I) and j ∈ T ∩ NG(I) be involutory modulo I. Since the
order of ij is finite in NG(I)/I we can conjugate T by an element of NG(I)
such that i and j generate a 2-group in NG(I). Then a 2-Sylow subgroup
containing I, i, j is conjugate to S. By the choice of S and T that 2-Sylow
subgroup is conjugate to T , a contradiction.

Note that the argument above uses only the a.c.c. and thus it works in
any subgroup of G. Let S be a 2-Sylow subgroup, Z = ZG(S), N = NG(S).
We want to show that Z works as G1 in the statement of the theorem (it is
clear that all involutions of Z belong to S). If for x, y ∈ Z we have xg = y
then S, Sg < ZG(y) and there is g1 ∈ ZG(y) such that S = Sgg1 . This
implies that x and y are conjugate in N (by gg1). So Z has a threading
tuple with respect to the action of N . Since S is finite, Z is of finite index
in N and each N -orbit splits into a finite number of conjugacy classes in Z.
As a result Z has a threading tuple.

It remains to show that Z is infinite. First note that a centralizer of any
involution in G is infinite. Otherwise by a well-known theorem of Shunkov
[15] the group G contains an infinite locally finite subgroup. Let A be a max-
imal subgroup of S with ZG(A) infinite. If A 6= S then there is B < NG(A)
such that [B : A] = 2 and B/A defines an involution with finite central-
izer in NG(A)/A. Then by Shunkov’s theorem NG(A)/A (and then NG(A))
contains an infinite locally finite subgroup, contradicting the a.c.c.

3. Remarks. The ascending chain condition. 1. Let G be an infinite
group having a threading tuple, satisfying the a.c.c. and having a minimal
number of infinite conjugacy classes of elements of prime order. Then by
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Proposition 2.1 and Theorem 2.2, G is periodic with finite FC(G) and finitely
many involutions. Let p ∈ π(G) witness an infinite conjugacy class. Then
p 6= 2. Moreover, the argument of Theorem 2.2 shows that if a p-Sylow
subgroup S has infinite centralizer Z, then there is y ∈ Z such that ZG(y)
has p-Sylow subgroups non-conjugate in ZG(y).

2. The ascending chain condition implies the descending chain condition
for centralizers of tuples. This shows that G has an infinite subgroup each of
whose elements has finite centralizer. This implies the existence of g ∈ G of
prime order such that g together with some conjugate generates an infinite
subgroup (and the number of such conjugates is infinite, [16]).

BN-pairs. We start this remark with the definition of Λ-trees (see [2]).
Let Λ be a totally ordered abelian group. A Λ-metric space (X, d) is called
a Λ-tree if:

(1) (X, d) is geodesically linear : for any x, y ∈ X there exists a unique
metric morphism α : [0, d(x, y)]→ X such that α(0) = x and α(d(x, y)) = y
(then [x, y] := α([0, d(x, y)])).

(2) ∀x, y, z∃!w([x, y] ∩ [x, z] = [x,w]).
(3) ∀x, y, z ∈ X([x, y] ∩ [y, z] = {y} → [x, y] ∪ [y, z] = [x, z]).

An isometry s of X is called an inversion if s2 has a fixed point but s
does not. If s is not an inversion, the characteristic set As is defined to be
{p ∈ X : [p, sp]∩[p, s−1p] = {p}}. Then one can define the hyperbolic length:
l(s) = min{d(x, sx) : x ∈ X}. In this case As = {p ∈ X : d(p, sp) = l(s)}.

Proposition 3.1. Let G have a threading tuple. Then any action of G
on a Λ-tree is trivial : if g ∈ G is not an inversion, then 0 = l(g). If G
is finitely generated , then G has property (FA): whenever G acts without
inversions on a Z-tree, then there exists a vertex fixed by all elements of G.

P r o o f. Let w1, . . . , wk be a threading tuple. Suppose 0 < l(g) for some
g ∈ G. By Corollary 6.13 of [2], l(g2) = 2l(g); therefore we may assume that
for each wi if l(wi) is defined then l(wi) < l(g). Let m ∈ ω and h ∈ G satisfy
h−1gmh = wi. Then again by [2], Corollary 6.13, we have |m|l(g) = l(gm) =
l(wi), a contradiction.

To see the second statement of the lemma apply Theorem 15 of [14]:
G is not a non-trivial free product with amalgamation (by the previous
paragraph) and Z is not a homomorphic image of G (by Corollary 0.6).

Corollary 3.2. If a BN-pair (G,B,N, S) has a threading tuple then its
rank (that is, |S|) equals 1: G is doubly transitive.

P r o o f. A theorem of Tits (Theorem II.1.8 in [14]) states that G is the
sum of N and the standard parabolic subgroups Gs, s ∈ S, amalgamated
along their intersections (recall that for H = B ∩ N the set S is a set of
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involutions generating W = N/H and the map X → GX = B〈X〉B, where
X ⊂ S, is a bijection onto the set of all subgroups containing B).

Suppose |S| > 1. Notice that for any si ∈ S the set Gsi \ (GS\{si} ∪N)
is not empty. Indeed, since si ⊆ N and B 6⊆ N , there exists b ∈ B such that
bsi ∩N = ∅. It is clear that bsi 6⊂ GS\{si}.

We now see (by [14]) that G has a non-trivial action on a Z-tree, con-
tradicting Proposition 3.1.

The following question looks very interesting: Does there exist a finitely
generated doubly transitive permutation group having a threading tuple?

REFERENCES

[1] I. Aguzarov, R. E. Farey and J. B. Goode, An infinite superstable group has
infinitely many conjugacy classes, J. Symbolic Logic 56 (1991), 618–623.

[2] C. Alper in and H. Bass, Length functions of groups actions on Λ-trees, in: Com-
binatorial Group Theory and Topology, S. M. Gersten and J. R. Stallings (eds.),
Ann. of Math. Stud. 111, Princeton Univ. Press, 1987, 265–378.

[3] V. V. Be lyaev, Locally finite groups with a finite non-separable subgroup, Sibirsk.
Mat. Zh. 34 (1993), 23–41 (in Russian).

[4] T. Ceccher in i -S i lberste in, R. Gr igorchuk and P. de la Harpe, Amenability
and paradoxes for pseudogroups and for metric spaces, preprint, Geneve 1997, 33 pp.
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