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REAL REPRESENTATIONS OF QUIVERS

BY

LIDIA ANGELERI H Ü G E L (MÜNCHEN) AND

SVERRE O. S M A L Ø (TRONDHEIM)

Abstract. The Dynkin and the extended Dynkin graphs are characterized by repre-
sentations over the real numbers.

The aim of this note is to put together some old results on representa-
tions of quivers without oriented cycles with some simple considerations on
representations of quivers which contain oriented cycles, to obtain a char-
acterization of the Dynkin and the extended Dynkin quivers in terms of
representations over the real numbers. For a quiver Q let fd(Q,R) denote
the category of finite-dimensional representations of Q over R, the real num-
bers. For a representation (V, f) in fd(Q,R) we denote by End(V, f) the ring
End(V, f)/rad End(V, f), the endomorphism ring of (V, f) modulo its radi-
cal. With this notation the result reads as follows:

Theorem. Let Q be a connected quiver. Then:

(I) Q is a Dynkin quiver if and only if End(V, f) ' R for all indecom-
posable objects (V, f) in fd(Q,R).

(II) Q is an extended Dynkin quiver if and only if End(V, f) ' R or C
for all indecomposable objects in fd(Q,R), and both cases do occur.

(III) Q is neither Dynkin nor extended Dynkin if and only if there is an
indecomposable object (V, f) in fd(Q,R) such that End(V, f) ' H.

P r o o f. First we take care of the situation where Q does not contain any
oriented cycles. The proof is then obtained by putting together old results
of Brenner, Dlab and Ringel. If Q has no oriented cycles, then fd(Q,R)
is equivalent to the category of finitely generated modules over the path
algebra RQ of Q over R. We then have the following:

(1) If N is an indecomposable preprojective module, then N ' (TrD)nP
for some n ∈ N0 and some indecomposable projective module P , and EndN
' EndP by [ARS, VIII, 1.5], hence EndN ' R.

(2) If N is preinjective, then EndN ' R by duality.
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(3) If N is regular, then there is a chain of irreducible monomorphisms
N1 ⊂ . . . ⊂ Nn−1 ⊂ Nn = N such that N1 is quasi-simple [ARS, VIII,
4.15], [R2], and since the valuation in the Auslander–Reiten quiver is (1, 1)
we have EndN ' EndNn−1 ' . . . ' EndN1. So, it suffices to consider
quasi-simple regular representations N .

(4) If Q is an extended Dynkin quiver, then we can use the classification
of the regular modules given in [DR]. By [DR, 5.1] there is a bimodule

FMG of type Ã11 or Ã12 with a full exact embedding T of the category
of all homogeneous representations of FMG into the category of all regular
representations of Q, and for every (simple) homogeneous representation
(S, f) of Q there is a (simple) homogeneous representation (Y, g) of FMG

such that (S, f) = T (Y, g) and thus End(S, f) ' End(Y, g). Now, Q is one

of Ã12, Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8. Looking at the tables in [DR, §6], we see

that in all these cases F = G = R and FMG is of type Ã12. Then by [DR,
Addendum (case (2) with F = R)] we know that End (Y, g) ' R or C, and
both cases do occur.

Assume now (S, f) is quasi-simple non-homogeneous. Then by [DR, 3.5]
we have (S, f) ' C+j E(t) for some j ∈ N and 1 ≤ t ≤ m, where C+ denotes
the Coxeter functor and E(1), . . . , E(m) is a generating set in the sense of
[DR, §3]. But then End(S, f) ' EndE(t) ' R by [DR, 2.5 and 3.4].

(5) If Q is neither Dynkin nor extended Dynkin, then the quadratic form
q is indefinite [DR, 1.2], and we know by [R1, Theorem 2] that there is a full
exact embedding T : w(R)→ fd(Q,R), where w(R) denotes the category of
all finite-dimensional modules over the wild algebra R〈x, y〉.

By [B] we know that every finite-dimensional R-algebra occurs as the
endomorphism ring of some object in w(R), thus there is some Y ∈ w(R)
such that H ' EndY ' EndT (Y ).

Now the proof of the Theorem in case there are no oriented cycles follows
readily:

(A) If Q is Dynkin, then fd(Q,R) consists of the preprojectives, and
(1) yields End(V, f) ' R for all indecomposable representations (V, f) in
fd(Q,R).

(B) If Q is extended Dynkin, then (4) yields End(V, f) ' R or C for all
indecomposable representations (V, f) in fd(Q,R), and both cases do occur.

(C) If Q is neither Dynkin nor extended Dynkin, then by (5) there is an
indecomposable representation (V, f) ∈ fd(Q,R) such that End(V, f) ' H.

Now we turn to the situation where Q contains an oriented cycle.

Since no Dynkin quiver contains cycles, one implication in (I) is proven.

We consider the quiver Ãn with cyclic orientation. Then the category
fd(Q,R) is a coproduct of uniserial finite length hereditary abelian categories
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Cg, indexed by the monic irreducible polynomials g in R[X], where for each
monic irreducible polynomial g except X there is one simple representation
in Cg and for X there are n+ 1 simple representations in CX (see [S]). Now
End(V, f) is isomorphic to R[X]/(g) for each indecomposable (V, f) in Cg
and thus for Ãn with cyclic orientation, both R and C occur this way. That
completes the proof of (I) and gives one implication in (II).

To prove the rest, it is enough to produce a representation in fd(Q,R)

with H as endomorphism ring if Q contains Ãn with cyclic orientation as
a proper subquiver. To do this, fix a copy of Ãn in Q with cyclic orien-
tation. Take two simple representations (S, g) and (T, h) of this subquiver
which are not isomorphic and with endomorphism ring C. This can be done
by taking the fixed two-dimensional R-space C at each vertex of Ãn, with
the identity map for all arrows in Ãn except one which is an R-map with
characteristic polynomial equal to g and h respectively, where g and h are
different irreducible monic polynomials of degree two in R[X]. Since Ãn is
a proper subquiver of the connected quiver Q, there is at least one addi-
tional arrow α starting or ending at one of the vertices of the fixed sub-
quiver Ãn.

Consider the case where α ends at a vertex q of Ãn, and let p be the start
of α. Suppose first p is not a vertex of Ãn. Take the real representation
of Q obtained by taking two copies of each of the simple representations
(S, g) and (T, h) on the subquiver Ãn, the vector space R4 at the vertex p,
and the zero space at all other vertices. Then the space at q is C2 q C2

where the first two C, come from the direct sum of the two copies (S, g) and
the last two C’s come from the two copies of (T, h). Let the maps for the

arrows in Ãn be as those in the direct sum of the four simple representa-
tions. Further, let the map corresponding to α be given by the 8 × 4 real
matrix

M =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


relative to the standard basis of R4 and the ordered real basis (1 0 0 0),
(i 0 0 0), (0 1 0 0), (0 i 0 0), (0 0 1 0), (0 0 i 0), (0 0 0 1), (0 0 0 i) in
C2qC2. Then since the endomorphism rings of (S, g)2 and (T, h)2 are both
the 2× 2 matrix ring over the complex numbers, and there are no non-zero
maps between (S, g) and (T, h), the endomorphism ring of the constructed
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representation consists of pairs
((

A 0
0 B

)
, C
)

where

A =


a b c d
−b a −d c
e f g h
−f e −h g

 and B =


i j k l
−j i −l k
m n s t
−n m −t s


are 2×2 “complex” matrices and C is a 4×4 real matrix such that

(
A 0
0 B

)
M =

MC. This is the same as the set of triples (A,B,C) of matrices such that
AI = IC and BJ = JC, where I (the 4 × 4 identity matrix) is the first 4
rows of M and

J =


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1


is the last 4 rows of M . Solving these equations, one ends up with

A = C =


a b c d
−b a −d c
−c d a −b
−d −c b a

 and B =


a −c b d
c a −d b
−b d a c
−d −b −c a

 ,

and the set of these matrices is one representation of H as a ring of matrices.

Now consider the case where p is one of the vertices in Ãn. Then we
add 4 copies of the simple representation (U, p) which is given by a one-
dimensional space at the vertex p and with all maps being zero. We consider
the representation of Ãn consisting of the direct sum (S, g)2q(T, h)2q(U, p)4.

If p 6= q, let the maps corresponding to the arrows of Ãn be given by the
maps of the eight simple representations. Let the map corresponding to the
arrow α be given by the 8× 12 matrix

(
0 0 I
0 0 J

)
relative to the decomposition

of the space at p as C2 qC2 qR4 and at q as C2 qC2 where I and J are as
before. The endomorphism ring of this representation consists of pairs(A 0

0 B

)
,

A 0 0
0 B 0
0 0 C


where A and B are “complex” matrices and C is a real matrix such that(

A 0
0 B

)(
0 0 I
0 0 J

)
=

(
0 0 I
0 0 J

)A 0 0
0 B 0
0 0 C

 .

Then one finds that the relations between the matrices A, B and C have to
be as before, giving again H as endomorphism ring.

If p and q are the same vertex, let the maps corresponding to the arrows
of Ãn be given by the maps as before. Write the space at p as C2qC2qR4
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and let the matrix associated with the arrow α be the 12× 12 matrix 0 0 I
0 0 J
0 0 0


where I and J are as before. Then the same result is obtained.

We now leave it to the reader to consider the case where the additional
arrow α starts at a vertex of Ãn.

This shows that if the quiver Q contains Ãn with cyclic orientation as
a proper subquiver then there exists an indecomposable representation in
fd(Q,R) with endomorphism ring H. This finishes the proof of the Theorem.
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