ON PEAKS IN CARRYING SIMPLICES

BY

JANUSZ MIERCZYŃSKI (WROCIW)

Dedicated to my teacher, Professor Andrzej Krzywicki,
on the occasion of his retirement

Abstract. A necessary and sufficient condition is given for the carrying simplex of
da dissipative totally competitive system of three ordinary differential equations to have a
peak singularity at an axial equilibrium. For systems of Lotka–Volterra type that result
translates into a simple condition on the coefficients.

1. Introduction. An n-dimensional system of C^1 ordinary differential
 equations (ODEs)
 \[(S_n) \dot{x}[i] = x[i] f[i](x),\]
 where $f = (f[1], \ldots, f[n]) : K \to \mathbb{R}^n$, $K := \{x = (x[1], \ldots, x[n]) \in \mathbb{R}^n : x[i] \geq 0 \text{ for } i = 1, \ldots, n\}$ is called totally competitive if
 \[
 \frac{\partial f[i]}{\partial x[j]}(x) < 0
 \]
 for all $x \in K$, $i, j = 1, \ldots, n$. We write $F = (F[1], \ldots, F[n])$ with $F[i](x) = x[i] f[i](x)$. The symbol $DF(x)$ denotes the Jacobian matrix of the vector
 field F at $x \in K$, $DF(x) = [\frac{\partial F[i]}{\partial x[j]}(x)]_{i,j=1}^n$. Let K^0 stand for the
 interior of K in \mathbb{R}^n, $K^0 = \{x \in K : x[i] > 0 \text{ for all } i = 1, \ldots, n\}$.

 We say that system (S_n) is dissipative if there is a compact invariant set $\Gamma \subset K$ attracting all bounded subsets of K. A compact invariant set $A \subset K$ is a repeller if $\alpha(B) \subset A$ for some neighborhood B of A in K.
 (For the definitions of concepts from the theory of dynamical systems see
 Hale [5].)

 M. W. Hirsch proved in [6] the following result.

 Theorem 1.1. Assume that (S_n) is a dissipative n-dimensional totally
 competitive system of ODEs having $\{0\}$ as a repeller. Then there exists a
 compact invariant set Σ with the following properties:

 1991 Mathematics Subject Classification: Primary 34C30.
(i) Σ is homeomorphic via radial projection to the standard $(n-1)$-dimensional probability simplex $\{ x \in K : \sum_{i=1}^{n} x[i] = 1 \}$.

(ii) For each $v \in V$ with positive components the restriction $P_v|_\Sigma$ of the orthogonal projection P_v along v is a Lipeomorphism onto its image.

(iii) For each $x \in K \setminus \{0\}$, $\omega(x) \subset \Sigma$.

We call Σ the carrying simplex for (S_n) (after M. L. Zeeman [13]).

In the aforementioned paper Hirsch asked about smoothness of Σ. The problem for $\Sigma \cap K^o$ was considered by P. Brunovský [3], I. Tereščák [12] and M. Benaïm [2]. The present author in [8], [9] gave criteria for the whole of Σ to be a neatly embedded C^1 manifold-with-corners, whereas in [10] he presented (for $n = 3$) an example of a carrying simplex which is not of class C^1 on a part of its boundary. On the other hand, for $n = 2$ the carrying simplex is always a C^1 manifold-with-boundary, diffeomorphic to the real interval $[0,1]$ (Mierczyński [11]).

In this paper we investigate the situation (for the system (S_3)) when at some point the carrying simplex has a peak, which means that the tangent cone of Σ is a halfline.

2. Preliminaries. We specialize to $n = 3$. For the remainder of the paper the standing assumption is:

(S_3) is a dissipative three-dimensional totally competitive system of ODEs having $\{0\}$ as a repeller.

The symbol $V := \{ v = (v[1], v[2], v[3]) \}$ stands for the vector space of all three-vectors, with the Euclidean norm $\| \cdot \|$. For $I \subset \{1,2,3\}$ we write $V_I := \{ v \in V : v[i] = 0 \text{ for } i \in I \}$, and $K_I := \{ x \in K : x[i] = 0 \text{ for } i \in I \}$. We also use a dual notation: V_I means $V_{\{1,2,3\}\setminus I}$. Denote the ith vector of the standard basis of V by e_i. Further, $\Sigma' := \Sigma \cap K' \setminus \{0\}$, $\Sigma_I := \Sigma \cap K_I$, $\Sigma^o := \Sigma \cap K^o$.

For a closed set $A \subset \mathbb{R}^3$ and $x \in A$, $C_x(A)$ denotes the tangent cone of A at x, $C_x(A) := \{ \alpha v : \alpha \geq 0 \text{, there is a sequence } \{x_k\} \subset A \setminus \{x\}, x_k \to x \text{ as } k \to \infty \}$, such that $(x_k - x)/\|x_k - x\| \to v$. The cone $C_x(A)$ is closed, and if x is not isolated in A then $C_x(A) \neq \emptyset$.

For further reference we restate Hirsch’s result:

Theorem 2.1. There exists a compact invariant set Σ with the following properties:

(a) Σ is homeomorphic via radial projection to the standard two-dimensional probability simplex $\{ x \in K : \sum_{i=1}^{3} x[i] = 1 \}$.

(b) For each $v \in V$ with positive components the mapping $P_v|_\Sigma$ is a Lipeomorphism onto its image.
(c) Let \(v \in V^i \) with \(v[i] > 0 \) for both \(j \neq i \). Then the mapping \(P_v|_{\Sigma \cap K^i} \) is a Lipeomorphism onto its image.

(d) For each \(x \in K^i \setminus \{0\} \), \(\omega(x) \subset \Sigma \).

An equilibrium is called axial if only one of its coordinates is positive. By Theorem 2.1(a) there are precisely three axial equilibria \(y_i \in K_i \), and \(\Sigma_i = \{y_i\} \).

We say \(\Sigma \) has a peak singularity at \(y \in \Sigma \) if there is a nonzero vector \(p \in V \) such that \(C_y(\Sigma) = \{\alpha p : \alpha \geq 0\} \).

Proposition 2.2. If \(\Sigma \) has a peak singularity at \(y \) then \(y \) is an axial equilibrium.

Proof. Suppose first that \(y \in \Sigma^0 \), that is, all three coordinates of \(y \) are positive. Denote by \(P \) the orthogonal projection along \(v = (1,1,1) \) on \(S := \{x \in \mathbb{R}^3 : x[1] + x[2] + x[3] = 0\} \). Theorem 2.1(b) states that \(P|_\Sigma \) is a Lipeomorphism (hence a homeomorphism) onto its image. Put \(P \Sigma \) be a Lipschitz constant of the inverse \((P|_\Sigma)^{-1}\). The projection \(P \) takes the set \(\Sigma \cap K^0 \) onto the interior of \(P \Sigma \) in \(S \). Consequently, the tangent cone \(C_{Py}(P \Sigma) \) is the (two-dimensional) tangent space of \(S \) at \(Py \), that is, \(C_{Py}(P \Sigma) = \{v \in V : v[1] + v[2] + v[3] = 0\} \).

Take a unit vector \(r \in C_{Py}(P \Sigma) \). There is a sequence \(\{x_k\} \subset \Sigma^0 \setminus \{y\} \) such that \(\lim_{k \to \infty} x_k = y \) and \(\lim_{k \to \infty}(Px_k - Py)/\|Px_k - Py\| = r \). By choosing a subsequence if necessary, we can assume \(\lim_{k \to \infty}(x_k - y)/\|x_k - y\| = q \). As the derivative of \(P \) at \(y \) is equal to \(P \), one has \(Pq = \beta r \). We claim that \(\beta \neq 0 \). Indeed,

\[
\|Pq\| = \lim_{k \to \infty} \left\| P \frac{x_k - y}{\|x_k - y\|} \right\| = \lim_{k \to \infty} \frac{\|Px_k - Py\|}{\|x_k - y\|} \geq \frac{1}{L}.
\]

We have thus proved that \(P \) takes \(C_y(\Sigma) \) onto \(C_{Py}(P \Sigma) \). Therefore \(C_y(\Sigma) \) contains two noncollinear vectors, so \(\Sigma \) cannot have a peak singularity at \(y \).

Suppose now that only one of the coordinates of \(y \) is zero, say \(y \in \Sigma^3 \setminus (\Sigma_1 \cup \Sigma_2) \). Thm. 1 in Mierczyński [11] yields that \(\Sigma^3 \) is a \(C^1 \) one-dimensional manifold-with-boundary containing \(y \) in its (manifold) interior \(\Sigma^3 \setminus (\Sigma_1 \cup \Sigma_2) \). Hence \(C_y(\Sigma^3) \subset C_y(\Sigma^3) \) is a one-dimensional vector space. Therefore \(\Sigma \) does not have a peak singularity at \(y \).

For an axial equilibrium \(y_i \), the Jacobian matrix \(DF(y_i) \) leaves both the two-dimensional vector subspaces \(V^j \), \(j \neq i \), as well as their one-dimensional intersection \(V_i \), invariant. As \(V_i = \text{span } e_i \), \(e_i \) is an eigenvector of \(DF(y_i) \). Adapting the terminology from Mierczyński [9] we will call the eigenvalue of \(DF(y_i) \) corresponding to \(e_i \) the internal eigenvalue at \(y_i \). By the external eigenvalue at \(y_i \) in \(K^j \), \(j \neq i \), we mean the (unique) eigenvalue of the quotient linear mapping \((DF(y_i)|_{V^j})/V_i \). An eigenvector for \(DF(y_i) \) belonging to an
external eigenvalue is called an external eigenvector (such an eigenvector need not exist, see Lemma 3.1(iii)).

We are now ready to formulate our principal result.

Main Theorem. The carrying simplex Σ has a peak singularity at an axial equilibrium y_i if and only if the internal eigenvalue at y_i is larger than or equal to the maximum external eigenvalue at y_i. In that case, $C_{y_i}(\Sigma) = \{-\alpha e_i : \alpha \geq 0\}$.

3. **Proof of the Main Theorem.** To streamline the argument and limit the number of indices we assume in the present section that the axial equilibrium under consideration is $y = y_1$. Similarly, we write $e = e_1$.

Lemma 3.1. (i) If the internal eigenvalue at y is larger than the external eigenvalue at y in K^3 [resp. in K^2] then there is an external eigenvector in V^3 [resp. in V^2] of the form $(1, a_2, 0)$ with $a_2 > 0$ [resp. of the form $(1, 0, a_3)$ with $a_3 > 0$].

(ii) If the internal eigenvalue at y is smaller than the external eigenvalue at y in K^3 [resp. in K^2] then there is an external eigenvector in V^3 [resp. in V^2] of the form $(1, -b_2, 0)$ with $b_2 > 0$ [resp. of the form $(1, 0, -b_3)$ with $b_3 > 0$].

(iii) If the internal eigenvalue at y is equal to the external eigenvalue at y in K^3 [resp. in K^2] then there are no external eigenvectors in V^3 [resp. in V^2].

Proof. It suffices to observe that the matrix of the restriction of $DF(y)$ to K^j, $j = 2, 3$, has the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with $a < 0$ and $b < 0$, and compute eigenvectors (compare Lemma 2 in [11]).

3.1. **Necessity.** Suppose by way of contradiction that the internal eigenvalue at y is smaller than the external eigenvalue at y in, say, K^3. By Mierczyński [11], $\Sigma = \Sigma \cap K^3$ is a C^1 one-dimensional manifold-with-boundary. By the theory of invariant manifolds (see e.g. Hirsch, Pugh and Shub [7]) any locally invariant C^1 one-dimensional submanifold passing through y is tangent either to e or to another eigenvector of $DF(y)|_{V^3}$ (not collinear with e); moreover, in the former case the submanifold is locally unique. As K_1 is an invariant one-dimensional submanifold tangent at y to e, Σ^3 cannot be locally equal to it, since otherwise the radial projection of Σ would not be injective (Theorem 2.1(a)). Consequently, Σ^3 is tangent at y to the vector $(1, -b_2, 0)$ with nonzero second component (by Lemma 3.1(ii)). Hence $C_{y}(\Sigma) \supset C_{y}(\Sigma^3)$ contains $(1, -b_2, 0)$. On the other hand, any vector in $C_{y}(\Sigma^3) \subset C_{y}(\Sigma)$ has zero second component (and $C_{y}(\Sigma^3) \neq \{0\}$). Therefore $C_{y}(\Sigma)$ contains two noncollinear vectors, so Σ does not have a peak singularity at y.
3.2. Sufficiency. Put $C := C_y(\Sigma)$. We write A for the linear operator $DF(y)$. In the standard basis, A has the matrix

$$
\begin{bmatrix}
d_{11} & d_{12} & d_{13} \\
d_{12} & d_{22} & 0 \\
d_{13} & 0 & d_{33}
\end{bmatrix}
$$

with

$$
d_{11} = y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[1]}}(y) < 0, \quad d_{12} = y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[2]}}(y) < 0, \quad d_{13} = y^{[1]} \frac{\partial f^{[1]}}{\partial x^{[3]}}(y) < 0, \\
d_{22} = f^{[2]}(y), \quad d_{33} = f^{[3]}(y).
$$

We will prove sufficiency by carefully analyzing the action of the group $\{e^{tA}\}_{t \in \mathbb{R}}$ on the tangent cone C.

As $y \in \Sigma$ is an equilibrium and Σ is invariant, each of the linear operators e^{tA} leaves C invariant.

Put $C^N := C \cap S$, where $S := \{v \in V : \|v\| = 1\}$ is the unit sphere in V.

For $t \in \mathbb{R}$ define the mapping $\psi_t : S \to S$ as

$$
\psi_t v := \frac{e^{tA} v}{\|e^{tA} v\|}.
$$

The family $\psi = \{\psi_t\}_{t \in \mathbb{R}}$ is the solution flow of the system of ODEs

$$
\dot{v} = Av - \langle Av, v \rangle v,
$$

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^3. The flow ψ leaves C^N invariant.

Lemma 3.2. For any nonzero $v \in C$ we have $v^{[1]} < 0$, $v^{[2]} \geq 0$, $v^{[3]} \geq 0$.

Proof. The last two inequalities follow by the definition of C and the fact that $(x - y)^{[2]} \geq 0$ and $(x - y)^{[3]} \geq 0$ for any $x \in K$. Suppose first that there is $v \in C$ with $v^{[1]} > 0$. As a consequence of the definition of C there is a point $x \in \Sigma$ such that $x^{[1]} > y^{[1]}$, $x^{[2]} \geq y^{[2]}$ and $x^{[3]} \geq y^{[3]}$. If $x^{[2]} > y^{[2]}$ and $x^{[3]} > y^{[3]}$ then the restriction $P_{x-y}|\Sigma$ of the orthogonal projection along $x - y \in \Sigma$ is not injective, which contradicts Theorem 2.1(b). If $x^{[2]} > y^{[2]}$ and $x^{[3]} = y^{[3]}$ then $x \in \Sigma^3 \subset K^3$ and $P_{x-y}|\Sigma^3$ is not injective, which is in contradiction with Theorem 2.1(c). The case $x^{[2]} = y^{[2]}$ and $x^{[3]} > y^{[3]}$ is treated in an analogous way. If $x^{[2]} = y^{[2]}$ and $x^{[3]} = y^{[3]}$ then $y \in \Sigma_1$ and the radial projection of Σ is not injective, contrary to Theorem 2.1(a).

Suppose now that there is a nonzero $v \in C$ with $v^{[1]} = 0$. Then at least one of the remaining components of v is positive. We have

$$
\left. \frac{d}{dt} (e^{tA} v)^{[1]} \right|_{t=0} = (Av)^{[1]} = d_{12} v^{[2]} + d_{13} v^{[3]} < 0,
$$

from which it follows that $(e^{-tA} v)^{[1]} > 0$ for $t > 0$ sufficiently close to 0. As $e^{-tA} v \in C$ for all $t \in \mathbb{R}$, this is in contradiction to the above paragraph. \blacksquare
Denote by λ_1 the internal eigenvalue at v, and by λ_2 [resp. λ_3] the external eigenvalue at v in K^2 [resp. in K^3]. The symbol w_j, $j = 2, 3$, stands for the unit external eigenvector corresponding to λ_j (provided it exists) having positive first component.

Suppose that $u \in C^N \setminus \text{span } e$. The idea of the proof is to find a vector in C with first component positive, contradicting Lemma 3.2.

We consider four cases (up to relabeling).

Case I: $\lambda_1 > \lambda_2 > \lambda_3$. For the flow ψ the set $\{w_3, -w_3\}$ is a repeller, its dual attractor being $V^2 \cap S$. The flow ψ restricted to $V^2 \cap S$ has repeller $\{w_2, -w_2\}$ with $\{e, -e\}$ as its dual attractor (for those concepts see Conley [4] or Akin [1]).

Therefore, if $u \notin V^2$ (notice that in such a case $u^{[2]} > 0$) then $\psi_{-t} u$ converges, as $t \to \infty$, to either w_3 or $-w_3$. The latter case is impossible, since as $u^{[2]} > 0$ and $(-w_3)^{[2]} < 0$ (Lemma 3.1(i)), the image of the mapping $\mathbb{R} \ni t \mapsto \psi_t u$ would meet $V^2 \cap S = \{v \in S : v^{[2]} = 0\}$, which is invariant under ψ. By the closedness of the tangent cone we have $w_3 \in C^N$, which contradicts Lemma 3.2.

Similarly, if $u \in V^2$ (notice that in such a case $u^{[3]} > 0$) then $\psi_{-t} u$ converges, as $t \to \infty$, to either w_2 or $-w_2$. The latter case is impossible, since as $u^{[3]} > 0$ and $(-w_2)^{[3]} < 0$ (Lemma 3.1(i)), the image of the mapping $\mathbb{R} \ni t \mapsto \psi_t u$ would meet $V^3 \cap S = \{v \in S : v^{[3]} = 0\}$, which is invariant under ψ. By the closedness of the tangent cone, $w_2 \in C^N$, contradicting Lemma 3.2.

Case II: $\lambda_1 = \lambda_2 > \lambda_3$. The set $\{w_3, -w_3\}$ is a repeller, with dual attractor $V^2 \cap S$. If $u \notin V^2$ the proof goes along the lines of Case I.

On $V^2 \cap S$, $\{e, -e\}$ is the set of equilibria, and for $u \in V^2$ we have $\psi_t u \to e$ or $\psi_{-t} u \to e$ as $t \to \infty$ (compare the proof of Lemma 2 in [11]). By the closedness of the tangent cone, $e \in C$, which is impossible.

Case III: $\lambda_1 > \lambda_2 = \lambda_3$. The flow ψ has a repeller, $\text{span}\{w_2, w_3\} \cap S$, consisting of fixed points. Its dual attractor is $\{e, -e\}$.

We write u as $\alpha e + \beta \tilde{u}$, where \tilde{u} is a unit vector in $\text{span}\{w_2, w_3\}$ such that $\tilde{u}^{[2]} \geq 0$ and $\tilde{u}^{[3]} \geq 0$ (at least one of these components must be positive). Such a \tilde{u} is unique. Writing $\tilde{u} = \gamma w_2 + \delta w_3$ and observing that w_2 has sign pattern $(+, 0, +)$ and w_3 has sign pattern $(+, +, 0)$ (Lemma 3.1(i)) we have $\tilde{u}^{[1]} > 0$. The vector subspace $U := \text{span}\{e, \tilde{u}\}$ is invariant under A, hence $U \cap S$ is invariant under ψ. The flow ψ restricted to $U \cap S$ has repeller $\{\tilde{u}, -\tilde{u}\}$ with dual attractor $\{e, -e\}$. Consequently, $\psi_{-t} u \to \tilde{u}$ or $\psi_{-t} u \to -\tilde{u}$ as $t \to \infty$ (in fact, the former is the case, but we do not need it here). By Lemma 3.2 neither \tilde{u} nor $-\tilde{u}$ can belong to C, a contradiction.
CASE IV: $\lambda_1 = \lambda_2 = \lambda_3$. In this case we will investigate the action of e^{tA} on V rather than the action of ψ on S. The matrix of A can be written as

$$
\begin{bmatrix}
a & b & c \\
0 & a & 0 \\
0 & 0 & a
\end{bmatrix}
$$

with $a < 0$, $b < 0$ and $c < 0$. Consequently,

$$
e^{tA}u = e^{at} \begin{bmatrix} 1 & bt & ct \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u[1] \\ u[2] \\ u[3] \end{bmatrix} = e^{at} \begin{bmatrix} u[1] + btu[2] + ctu[3] \\ u[2] \\ u[3] \end{bmatrix}.
$$

As, by Lemma 3.2, $u[2] \geq 0$ and $u[3] \geq 0$, and by hypothesis, one of these components is positive (recall that $u \not\in \text{span } e$), one has $(e^{-tA}u)[1] > 0$ for t sufficiently large, which contradicts Lemma 3.2.

It would be perhaps interesting to look at the action of ψ in the last case. There is a two-dimensional vector subspace $W = \text{span}\{e, \bar{w}\}$, $\bar{w} = (0, 1, -b/c)$, such that $W \cap S$ consists of the fixed points for the flow ψ. For any $v \in S \setminus W$ one finds that ψ_tv converges to e (or $-e$) as $t \to \infty$ (and similarly as $t \to -\infty$, with changed sign).

4. Lotka–Volterra systems. Now we apply our Main Theorem to three-dimensional systems (S_3) of Lotka–Volterra type, that is, to systems

$$(4.1) \quad \dot{x}[i] = b_ix[i]\left(1 - \sum_{j=1}^{3} a_{ij}x[j]\right)$$

where $a_{ij} > 0$ and $b_i > 0$.

It is straightforward that for system (4.1),

$$y_1 = (1/a_{11}, 0, 0), \quad y_1 = (0, 1/a_{22}, 0), \quad y_1 = (0, 0, 1/a_{33}).$$

At y_i the internal eigenvalue equals $-b_i$, whereas the external eigenvalue in V^j is equal to $b_k(1 - a_{ki}/a_{ii})$, with $k \neq i$, $k \neq j$. As a consequence of the Main Theorem we obtain the following.

Theorem 4.1. For system (4.1) the carrying simplex Σ has a peak singularity at y_i if and only if

$$a_{ii}(b_i + b_j) \leq b_j a_{ji}$$

for both $j \neq i$.
REFERENCES

Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: mierczyn@banach.im.pwr.wroc.pl
Web: http://www.im.pwr.wroc.pl/~mierczyn/

Received 8 March 1999