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ON A GAP SERIES OF MARK KAC

BY

KATUSI FUKUYAMA (KOBE)

Abstract. Mark Kac gave an example of a function f on the unit interval such that
f cannot be written as f(t) = g(2t)− g(t) with an integrable function g, but the limiting

variance of n−1/2
∑n−1

k=0
f(2kt) vanishes. It is proved that there is no measurable g such

that f(t) = g(2t)− g(t). It is also proved that there is a non-measurable g which satisfies
this equality.

1. Introduction. Let us recall the following result of Kac [3], which
yields the central limit theorem for dyadic transformations.

Theorem A. Let f be a real-valued function with period 1 satisfying

(1.1)

1\
0

f(t) dt = 0 and

1\
0

f2(t) dt = 1.

(1) If f is of bounded variation or α-Hölder continuous for some α > 0,
then

(1.2) m

{
t ∈ [0, 1]

∣∣∣∣
1√
n

n−1∑

k=0

f(2kt) ≤ x

}
→ Φσ2(x),

where m denotes the Lebesgue measure and Φσ2 denotes the distribution

function of the normal distribution with mean 0 and variance σ2, i.e. Φσ2(x)

=
Tx
−∞

e−u2/(2σ2) du/
√
2πσ2. Here, the limiting variance σ2 is given by

(1.3) σ2 = 1 + 2
∞∑

k=1

1\
0

f(t)f(2kt) dt < ∞.

(2) If f is of bounded variation or α-Hölder continuous for some α > 1/2,
then σ2 = 0 if and only if f is of the form

(1.4) f(t) = g(2t) − g(t) a.e.

for some g which has period 1 and is square integrable on [0, 1].
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Earlier, Fortet [1] announced this result, but the proof was not complete.
Kac succeeded in giving a rigorous proof, but he failed to prove part (2) for
all α > 0. Instead of completing the proof, he gave the example below to
show that part (2) does not hold without assuming any condition on f .

Example B. Put c1 = 1 and cj = 1/
√
j− 1/

√
j − 1 for j ≥ 2. Then the

function f(t) =
∑∞

j=1 cj cos 2
jπt satisfies (1.2) with σ2 = 0, but there is no

integrable g satisfying (1.4).

Having given the above example, Kac [3; p. 43] stated: “The question
whether the representation (1.4) can be achieved in this case by means of a
g which is not integrable remains open”.

In this paper, we give an answer to this question by showing the following
theorem, which implies that there is no measurable g satisfying (1.4) for the
function of Example B.

Theorem 1. Suppose that the Fourier coefficients f̂(n) of f are abso-

lutely summable in n and that f̂(n) = 0 if n 6= ±2k (k = 0, 1, . . .). If

there is no square integrable g satisfying (1.4), then there is no measurable

g satisfying (1.4).

On the other hand, for any given function f , it is always possible to
construct g satisfying (1.4), by using the Axiom of Choice. Of course this g
is not measurable in our case.

2. Proof of Theorem 1. First we prove a lemma and a proposition.

Set Sn(t) =
∑n−1

k=0 f(2
kt) and ‖h‖2 =

(T1
0
|h(t)|2 dt

)1/2
.

Lemma 1. Let f be a square integrable function. Then there exists a

square integrable g satisfying (1.4) if and only if

(2.1) lim inf
n→∞

‖Sn‖2 < ∞.

P r o o f. If we assume (1.4), then (2.1) is trivial. We prove the converse.
By (2.1) we can take a sequence {nj} of integers such that supj∈N

‖Snj
‖2 <

∞. Let g be the weak limit of−Snj
as j→∞. We see that g(2t)−g(t) is the

weak limit of f(t) − f(2nj t) as j→∞. By the Riemann–Lebesgue lemma,
f(2nj t) converges weakly to 0 as j → ∞. Since the weak limit is unique, we
have f(t) = g(2t)− g(t).

The following proposition plays the key role in the proof of the theorem.

Proposition 1. Assume the same conditions on f as in Theorem 1. If

there is no square integrable g satisfying (1.4), then

(2.2) ‖Sn‖2 → ∞ and m{t ∈ [0, 1] | Sn(t)/‖Sn‖2 ≤ x} → Φ1(x).
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P r o o f. Since there is no square integrableg satisfying (1.4), the first part
of (2.2) follows from Lemma 1. The second part follows from the following
theorem by Salem–Zygmund [4].

Theorem C. Suppose that a sequence {νj} of positive integers satisfies

the Hadamard gap condition:

νj+1/νj > q > 1 for all j ∈ N,

and that arrays {an,j}j≤jn,n∈N and {bn,j}j≤jn,n∈N of real numbers satisfy

An =

(
1

2

jn∑

j=1

(a2n,j + b2n,j)

)1/2

→ ∞ and max
j≤jn

(|an,j |, |bn,j |) = o(An).

Then

m

{
t ∈ [0, 1]

∣∣∣∣
1

An

jn∑

j=1

(an,j cos 2πνjt+ bn,j sin 2πνjt) ≤ x

}
→ Φ1(x).

Let an,j and −bn,j be the real and imaginary parts of 2(f̂((j−n+1)∨0)

+ . . .+ f̂(j)) respectively. It is clear that

Sn(t) =

∞∑

j=0

(an,j cos 2π2
jt+ bn,j sin 2π2

jt)

and ‖Sn‖2 =
(
1
2

∑∞

j=0(a
2
n,j + b2n,j)

)1/2 → ∞. Clearly, |an,j | and |bn,j | are
bounded by

∑
|f̂(n)| < ∞. Take {jn} satisfying

∑jn
j=0(a

2
n,j + b2n,j)/‖Sn‖22

→ 1, and divide Sn into two parts:

Sn(t) =
( ∑

j≤jn

+
∑

j>jn

)
(an,j cos 2π2

jt+ bn,j sin 2π2
jt).

If we normalize by dividing by ‖Sn‖2, thanks to Theorem C, the first part
converges in law to the normal distribution. The second part converges to 0
in L2-sense. Combining these, we have the conclusion.

Proof of Theorem 1. By Proposition 1, we have ‖Sn‖2 → ∞. Suppose
that f is represented by a measurable g in the form (1.4). Then Sn(t) =
g(2nt)− g(t) and therefore, for ε > 0, we have

m{|Sn|/‖Sn‖2 > ε} ≤ m{|g(2nt)| > ε‖Sn‖2/2}+m{|g(t)| > ε‖Sn‖2/2}
= 2m{|g(t)| > ε‖Sn‖2/2} → 0,

which contradicts the second formula of (2.2).

3. Construction of g. Let us first introduce an equivalence relation ∼
on [ 0, 1) by s ∼ t if and only if there exist n,m ≥ 0 such that 2ns ≡ 2mt
(mod 1). It is clear that each equivalence class E satisfies E ⊂ Q or E ⊂ Qc.
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If we regard each element of E as a vertex, and if we consider that we have
an edge connecting t and s if 2t ≡ s (mod 1), then E has the structure of a
graph. Since t 6∈ Q implies 2nt 6≡ t (mod 1), if E ⊂ Qc then E has no cycle
and is a binary graph.

Now we are in a position to construct g. Take a representative t0 ∈ E
and put g(t0) arbitrary. Set

g(t) =

{
g(t0) + Sn(t0) if t = 2nt0 (mod 1),

g(t0)− Sn(t) if 2nt = t0 (mod 1),

where n ∈ N. Since E has no cycle, the function g is well defined on E and
it satisfies f(t) = g(2t)− g(t) for any t ∈ E. Thus we can define g such that
f(t) = g(2t) − g(t) for any t ∈ Qc. If we define g(t) = 0 for t ∈ Q, we have
g satisfying (1.4).
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