COLLOQUIUM MATHEMATICUM

VOL. 81

1999

NO. 2

ON A GAP SERIES OF MARK KAC

BY

KATUSI FUKUYAMA (KOBE)

Abstract. Mark Kac gave an example of a function f on the unit interval such that f cannot be written as f(t) = g(2t) - g(t) with an integrable function g, but the limiting variance of $n^{-1/2} \sum_{k=0}^{n-1} f(2^k t)$ vanishes. It is proved that there is no measurable g such that f(t) = g(2t) - g(t). It is also proved that there is a non-measurable g which satisfies this equality.

1. Introduction. Let us recall the following result of Kac [3], which yields the central limit theorem for dyadic transformations.

THEOREM A. Let f be a real-valued function with period 1 satisfying

(1.1)
$$\int_{0}^{1} f(t) dt = 0 \quad and \quad \int_{0}^{1} f^{2}(t) dt = 1.$$

(1) If f is of bounded variation or α -Hölder continuous for some $\alpha > 0$, then

(1.2)
$$m\left\{t \in [0,1] \; \middle| \; \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f(2^k t) \le x\right\} \to \Phi_{\sigma^2}(x),$$

where *m* denotes the Lebesgue measure and Φ_{σ^2} denotes the distribution function of the normal distribution with mean 0 and variance σ^2 , i.e. $\Phi_{\sigma^2}(x) = \int_{-\infty}^x e^{-u^2/(2\sigma^2)} du/\sqrt{2\pi\sigma^2}$. Here, the limiting variance σ^2 is given by

(1.3)
$$\sigma^2 = 1 + 2\sum_{k=1}^{\infty} \int_{0}^{1} f(t) f(2^k t) dt < \infty$$

(2) If f is of bounded variation or α -Hölder continuous for some $\alpha > 1/2$, then $\sigma^2 = 0$ if and only if f is of the form

(1.4)
$$f(t) = g(2t) - g(t)$$
 a.e.

for some g which has period 1 and is square integrable on [0,1].

¹⁹⁹¹ Mathematics Subject Classification: 60F15, 42C15.

Key words and phrases: central limit theorem, gap theorem, cocycles.

^[157]

K. FUKUYAMA

Earlier, Fortet [1] announced this result, but the proof was not complete. Kac succeeded in giving a rigorous proof, but he failed to prove part (2) for all $\alpha > 0$. Instead of completing the proof, he gave the example below to show that part (2) does not hold without assuming any condition on f.

EXAMPLE B. Put $c_1 = 1$ and $c_j = 1/\sqrt{j} - 1/\sqrt{j-1}$ for $j \ge 2$. Then the function $f(t) = \sum_{j=1}^{\infty} c_j \cos 2^j \pi t$ satisfies (1.2) with $\sigma^2 = 0$, but there is no integrable g satisfying (1.4).

Having given the above example, Kac [3; p. 43] stated: "The question whether the representation (1.4) can be achieved in this case by means of a g which is not integrable remains open".

In this paper, we give an answer to this question by showing the following theorem, which implies that there is no measurable g satisfying (1.4) for the function of Example B.

THEOREM 1. Suppose that the Fourier coefficients $\widehat{f}(n)$ of f are absolutely summable in n and that $\widehat{f}(n) = 0$ if $n \neq \pm 2^k$ (k = 0, 1, ...). If there is no square integrable g satisfying (1.4), then there is no measurable g satisfying (1.4).

On the other hand, for any given function f, it is always possible to construct g satisfying (1.4), by using the Axiom of Choice. Of course this g is not measurable in our case.

2. Proof of Theorem 1. First we prove a lemma and a proposition. Set $S_n(t) = \sum_{k=0}^{n-1} f(2^k t)$ and $||h||_2 = (\int_0^1 |h(t)|^2 dt)^{1/2}$.

LEMMA 1. Let f be a square integrable function. Then there exists a square integrable g satisfying (1.4) if and only if

(2.1)
$$\liminf_{n \to \infty} \|S_n\|_2 < \infty.$$

Proof. If we assume (1.4), then (2.1) is trivial. We prove the converse. By (2.1) we can take a sequence $\{n_j\}$ of integers such that $\sup_{j\in\mathbb{N}} \|S_{n_j}\|_2 < \infty$. Let g be the weak limit of $-S_{n_j}$ as $j \to \infty$. We see that g(2t) - g(t) is the weak limit of $f(t) - f(2^{n_j}t)$ as $j \to \infty$. By the Riemann–Lebesgue lemma, $f(2^{n_j}t)$ converges weakly to 0 as $j \to \infty$. Since the weak limit is unique, we have f(t) = g(2t) - g(t).

The following proposition plays the key role in the proof of the theorem.

PROPOSITION 1. Assume the same conditions on f as in Theorem 1. If there is no square integrable g satisfying (1.4), then

(2.2) $||S_n||_2 \to \infty \quad and \quad m\{t \in [0,1] \mid S_n(t)/||S_n||_2 \le x\} \to \Phi_1(x).$

A GAP SERIES

Proof. Since there is no square integrable g satisfying (1.4), the first part of (2.2) follows from Lemma 1. The second part follows from the following theorem by Salem–Zygmund [4].

THEOREM C. Suppose that a sequence $\{\nu_j\}$ of positive integers satisfies the Hadamard gap condition:

$$\nu_{j+1}/\nu_j > q > 1$$
 for all $j \in \mathbb{N}$,

and that arrays $\{a_{n,j}\}_{j \leq j_n, n \in \mathbb{N}}$ and $\{b_{n,j}\}_{j \leq j_n, n \in \mathbb{N}}$ of real numbers satisfy

$$A_n = \left(\frac{1}{2}\sum_{j=1}^{j_n} (a_{n,j}^2 + b_{n,j}^2)\right)^{1/2} \to \infty \quad and \quad \max_{j \le j_n} (|a_{n,j}|, |b_{n,j}|) = o(A_n).$$

Then

$$m\left\{t \in [0,1] \ \left| \ \frac{1}{A_n} \sum_{j=1}^{j_n} (a_{n,j} \cos 2\pi\nu_j t + b_{n,j} \sin 2\pi\nu_j t) \le x\right\} \to \Phi_1(x).$$

Let $a_{n,j}$ and $-b_{n,j}$ be the real and imaginary parts of $2(\hat{f}((j-n+1)\vee 0) + \ldots + \hat{f}(j))$ respectively. It is clear that

$$S_n(t) = \sum_{j=0}^{\infty} (a_{n,j} \cos 2\pi 2^j t + b_{n,j} \sin 2\pi 2^j t)$$

and $||S_n||_2 = \left(\frac{1}{2}\sum_{j=0}^{\infty}(a_{n,j}^2+b_{n,j}^2)\right)^{1/2} \to \infty$. Clearly, $|a_{n,j}|$ and $|b_{n,j}|$ are bounded by $\sum |\widehat{f}(n)| < \infty$. Take $\{j_n\}$ satisfying $\sum_{j=0}^{j_n}(a_{n,j}^2+b_{n,j}^2)/||S_n||_2^2 \to 1$, and divide S_n into two parts:

$$S_n(t) = \left(\sum_{j \le j_n} + \sum_{j > j_n}\right) (a_{n,j} \cos 2\pi 2^j t + b_{n,j} \sin 2\pi 2^j t).$$

If we normalize by dividing by $||S_n||_2$, thanks to Theorem C, the first part converges in law to the normal distribution. The second part converges to 0 in L^2 -sense. Combining these, we have the conclusion.

Proof of Theorem 1. By Proposition 1, we have $||S_n||_2 \to \infty$. Suppose that f is represented by a measurable g in the form (1.4). Then $S_n(t) = g(2^n t) - g(t)$ and therefore, for $\varepsilon > 0$, we have

$$m\{|S_n|/||S_n||_2 > \varepsilon\} \le m\{|g(2^n t)| > \varepsilon ||S_n||_2/2\} + m\{|g(t)| > \varepsilon ||S_n||_2/2\} = 2m\{|g(t)| > \varepsilon ||S_n||_2/2\} \to 0,$$

which contradicts the second formula of (2.2).

3. Construction of g. Let us first introduce an equivalence relation \sim on [0,1) by $s \sim t$ if and only if there exist $n, m \geq 0$ such that $2^n s \equiv 2^m t \pmod{1}$. It is clear that each equivalence class E satisfies $E \subset \mathbb{Q}$ or $E \subset \mathbb{Q}^c$.

If we regard each element of E as a vertex, and if we consider that we have an edge connecting t and s if $2t \equiv s \pmod{1}$, then E has the structure of a graph. Since $t \notin \mathbb{Q}$ implies $2^n t \not\equiv t \pmod{1}$, if $E \subset \mathbb{Q}^c$ then E has no cycle and is a binary graph.

Now we are in a position to construct g. Take a representative $t_0 \in E$ and put $g(t_0)$ arbitrary. Set

$$g(t) = \begin{cases} g(t_0) + S_n(t_0) & \text{if } t = 2^n t_0 \pmod{1}, \\ g(t_0) - S_n(t) & \text{if } 2^n t = t_0 \pmod{1}, \end{cases}$$

where $n \in \mathbb{N}$. Since *E* has no cycle, the function *g* is well defined on *E* and it satisfies f(t) = g(2t) - g(t) for any $t \in E$. Thus we can define *g* such that f(t) = g(2t) - g(t) for any $t \in \mathbb{Q}^c$. If we define g(t) = 0 for $t \in \mathbb{Q}$, we have *g* satisfying (1.4).

REFERENCES

- [1] R. Fortet, Sur une suite également répartie, Studia Math. 9 (1940), 54-69.
- [2] K. Fukuyama, *The central limit theorem for Riesz-Raikov sums*, Probab. Theory Related Fields 100 (1994), 57–75.
- [3] M. Kac, On the distribution of values of sums of the type $\sum f(2^k t)$, Ann. of Math. 47 (1946), 33-49.
- R. Salem and A. Zygmund, On lacunary trigonometric series II, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 54–62.

Department of Mathematics Kobe University Rokko, Kobe, 657-8501 Japan E-mail: fukuyama@math.kobe-u.ac.jp

Received 1 July 1998