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INVERSE LIMITS ON INTERVALS USING UNIMODAL

BONDING MAPS HAVING ONLY PERIODIC POINTS

WHOSE PERIODS ARE ALL THE POWERS OF TWO

BY

W. T. INGRAM AND ROBERT ROE (ROLLA, MO)

Abstract. We derive several properties of unimodal maps having only periodic points
whose period is a power of 2. We then consider inverse limits on intervals using a single
strongly unimodal bonding map having periodic points whose only periods are all the
powers of 2. One such mapping is the logistic map, fλ(x) = 4λx(1 − x) on [f(λ), λ], at
the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily
decomposable inverse limit with only three topologically different subcontinua. Other ex-
amples of such maps are given and it is shown that any two strongly unimodal maps with
periodic point whose only periods are all the powers of 2 produce homeomorphic inverse
limits whenever each map has the additional property that the critical point lies in the
closure of the orbit of the right endpoint of the interval.

0. Introduction. In [1], Barge and Ingram investigated inverse lim-
its on [0, 1] using a single bonding map chosen from the family of logistic
mappings. Theorem 7 of that paper yielded that at the Feigenbaum limit,
the inverse limit is hereditarily decomposable. In the present paper, that
theorem is reproved, but with a different argument. The process involves
deducing several elementary properties of unimodal maps of the interval
which have only periodic points whose period is a power of 2. Since the lo-
gistic map at the Feigenbaum limit has periodic points of periods all powers
of 2 and no others, these results apply to this map. Most of these properties
are well known for the logistic family (many can be calculated directly), but
the authors know of no reference for these theorems in this more general
setting. We then apply these properties along with a theorem of Collet and
Eckmann [2, Theorem II.5.4, p. 116] to achieve our alternate proof that the
inverse limit at the Feigenbaum limit is hereditarily decomposable.

The main advantage of this approach is that the theorem of Collet and
Eckmann is more accessible (and its proof is easier to understand) than the
theorem cited in the proof of Theorem 7 given in [1].
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In Section 3, we give an additional example of a unimodal map on [0, 1]
which, like the logistic map at the Feigenbaum limit, has periodic points
whose periods are all the powers of 2 and it has periodic points of no other
periods. Then we prove the main theorem of this paper showing that, un-
der certain conditions, any two strongly unimodal maps of intervals having
periodic points whose periods are all the powers of 2 and having periodic
points of no other period produce homeomorphic inverse limits.

The paper includes some combinatorial observations in Section 2 which
the authors cannot locate in print in the form presented. These results are
useful in deciding the nature of the kneading sequence for the logistic map
at the Feigenbaum limit. Although the kneading sequence for the logistic
map at the Feigenbaum limit is well understood, the approach using the
results of this paper is simple to follow.

The logistic family of maps is given by fλ(x) = 4λx(1− x) where 0 ≤ x
≤ 1 and 0 ≤ λ ≤ 1. For λ > 0, each of these maps has a critical point at 1/2
while for λ > 1/4 each one has a non-zero fixed point at 1−1/(4λ). It is easy
to see that, if fλ is any member of this family, then fλ(x) ≤ λ for each x in
[0, 1]. Moreover, for λ ≥ (1 +

√
5)/4, the interval [fλ(λ), λ] is mapped onto

itself by fλ. Let λ0 = 1/4 and let λ1 = 3/4, λ2, λ3, . . . denote the sequence
of parameter values where the logistic family undergoes its first sequence
of period-doubling bifurcations, and let λc (herein called the Feigenbaum

limit , λc ≈ 0.892486) denote the limit point of this increasing sequence of
positive numbers. Thus, if i is a positive integer and λi−1 ≤ λ < λi, then
fλ has periodic points of period 1, 2, 4, . . . , 2i−1.

By a continuum we mean a compact, connected subset of a metric space.
A mapping is a continuous function. If X1,X2,X3, . . . is a sequence of met-
ric spaces and f1, f2, f3, . . . is a sequence of mappings (called bonding maps)
such that fi : Xi+1 → Xi for each positive integer i, then by the inverse

limit of the inverse limit sequence {Xi, fi} is meant the subset of the product
space,

∏
i>0

Xi, to which the point (x1, x2, x3, . . .) belongs if and only if
fi(xi+1) = xi. The inverse limit of the inverse limit sequence {Xi, fi} is
denoted by lim←−{Xi, fi}. Here, the product space is metrizable with the
metric d(x, y) =

∑
i>0

di(xi, yi)/2
i where, for each i, di is a metric for Xi

bounded by one. It is well known that, when the spaces Xi are continua
and the bonding mappings are continuous, the inverse limit exists and is a
continuum. In the case when, for each i, Xi = X and fi = f , we denote the
inverse limit by lim←−{X, f}.

The shift homeomorphism of lim←−{X, f}, denoted by f̂ , is defined as

f̂(x) = (f(x1), x1, x2, . . .). A point x is said to be a periodic point for a
mapping f provided there is a positive integer n such that fn(x) = x. If
n is the least positive integer k such that fk(x) = x then we say that x
is periodic of period n. A mapping of a continuum is monotone provided
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each point-inverse is a continuum. A mapping f of an interval [a, b] onto
itself is called unimodal on [a, b] provided f is not monotone and there is a
point c of (a, b) such that f(c) belongs to the set {a, b} and f is monotone
on [a, c] and [c, b]. We call a map strongly unimodal provided it is unimodal
and is a homeomorphism on [a, c] and [c, b]. (Strongly unimodal maps are
often called unimodal, see e.g. [2, p. 63].) Throughout this paper, if f is a
unimodal map of the interval [a, b] onto itself with f(a) = a, we denote the
fixed point for f in [c, b] by p.

The authors thank the referee for the careful reading of this paper and
for the suggestions which improved it.

1. Properties of unimodal maps

Theorem 1. If f is a unimodal mapping of the interval [a, b], f(a) = a
and f has a periodic point of period 4, then f(b) < c.

P r o o f. It is clear that if f has a periodic point which is not a fixed point,
then the orbit of that point must intersect [c, b] since f is non-decreasing
on [a, c]. Suppose f(b) ≥ c. Then f [c, b] is a subset of [c, b] and f2|[c, b]
is non-decreasing. Suppose x is a point of [c, b] such that f2(x) 6= x. If
f2(x) > x then f4(x) ≥ f2(x) > x so f4(x) 6= x. Similarly, if f2(x) < x
then f4(x) 6= x. Thus, f does not have a periodic point of period 4.

Corollary. For λ > λ2, fλ(λ) < 1/2. In particular , for λ = λc,
fλ(λ) < 1/2.

P r o o f. For λ > λ2, fλ : [0, λ] →→ [0, λ] is unimodal and has a periodic
point of period 4.

Theorem 2 [4, Theorem 6, p. 1911]. If f : [a, b] →→ [a, b] is a unimodal

map and q is the first fixed point for f2 between c and b, then f has a periodic

point of odd period if and only if f2(b) < q.

Corollary. For λ2 < λ ≤ λc, f2
λ(λ) > 1− 1/(4λ) > 1/2.

P r o o f. Note that for λ2<λ≤λc, fλ has no period 2 points between 1/2
and 1−1/(4λ) (the non-zero fixed point for fλ) and no periodic points other
than those whose period is a power of 2. Thus, the point q of Theorem 2 is
the fixed point 1−1/(4λ). If f2

λ(λ) = 1−1/(4λ) then f2
λ has periodic points

of every period so fλ has a periodic point whose period is not a power of 2.

Theorem 3. Suppose f is a unimodal map of [a, b] onto itself such that

f(a) = a, f(b) < c and q is the first fixed point for f2 between c and b. If f
has only periodic points whose period is a power of 2, then f2(b) > f(q).

P r o o f. Theorem 2 implies that f2(b) ≥ q. If f2(b) = b, the conclusion
follows. Thus, since f is monotone on [q, b] and f(b) < c, f2 is unimodal on
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[q, b]. Denote by r the fixed point between f(q) and b. If f2(b) ≤ f(q) then
f4(b) ≤ f3(q) = f(q) < r so by Theorem 2, f2 has a periodic point of odd
period. This contradicts the assumption that the only periodic points of f
are those whose period is a power of 2.

Theorem 4. Suppose f is a unimodal map of [a, b] onto itself such that

f(a) = a and f has a periodic point of period 4. If f has only periodic points

whose period is a power of 2, then f(b) < f3(b) < f2(b) < b.

P r o o f. Denote by q the first fixed point for f2 between c and b. By
Theorem 3, f2(b) > f(q). Since c < q ≤ f(q) < f2(b) < b and f is non-
increasing on [c, b], we have f(b) ≤ f3(b) ≤ q. If f3(b) = f(b), then, since
f2(b) is in [c, b], f is constant on [f2(b), b]. Thus, f2 is constant on [f2(b), b]
so f2(b) is a fixed point for f2. Since f2 is unimodal on [p, b] and f2(b) is
the last fixed point for f2 in [p, b], f2 has no period 2 point. This involves a
contradiction since f has a periodic point of period 4.

Corollary. For λ2 < λ ≤ λc, fλ(λ) < f3
λ(λ) < f2

λ(λ) < λ.

P r o o f. For λ2 < λ ≤ λc, fλ is unimodal, has a periodic point of period
4 and has only periodic points whose period is a power of 2.

Theorem 5. Suppose f is a unimodal map of [a, b] onto itself such that

f(a) = a and n is a non-negative integer such that f has a periodic point

of period 2n+2. If f has only periodic points whose period is a power of 2,
then f2

n

(b) < f3·2n(b) < f2
n+1

(b) < b.

P r o o f. We proceed by induction. Observe that the case of n = 0 is
Theorem 4. Assume the theorem is true for n = k and that f has a periodic
point of period 2k+3. By Sharkovskĭı’s Theorem [3, Theorem 10.2, p. 62],
f has a periodic point of period 4. Thus, f(b) < c. Since f has only periodic
points whose period is a power of 2, by Theorem 3 we have f2(b) > f(q),
therefore f2(b)>p where p is the fixed point of f between c and b. Then f2

is a unimodal mapping of [p, b] onto itself, f2|[p, b] has a periodic point of
period 2k+2 and f2 has only periodic points whose period is a power of 2.
The conclusion follows by applying the inductive hypothesis to f2 on [p, b].

Corollary. For λn+2 < λ ≤ λc, f2
n

λ (λ) < f3·2n

λ (λ) < f2
n+1

λ (λ) < λ.

P r o o f. For λn+2 < λ ≤ λc, fλ is unimodal, fλ(0) = 0, fλ has a periodic
point of period 2n+2 and fλ has only periodic points whose period is a power
of 2.

The following is also an immediate consequence of Theorem 5.

Theorem 6. If f is a mapping of [a, b] onto itself and f has periodic

points whose periods are all the powers of 2 and no others, then f(b) <
f2(b) < f4(b) < f8(b) < . . . < b.
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2. Properties of fλc
. The key notion external to this paper but used

in this section is that of a homterval [2, p. 107]. A homterval for a mapping
f is an open interval J such that fn|J is a homeomorphism of J onto its
image for all n ≥ 1. As noted in the introduction, the key theorem we use
is Theorem II.5.4 of [2, p. 116]:

Let f be S-unimodal and suppose f has no stable periodic orbits. Then

f has no homterval.

A map is S-unimodal on [a, b] provided f is strictly increasing on [a, c]
and strictly decreasing on [c, b], f ′(x) 6= 0 if x 6= c, f ′′(c) < 0, f ′′′ is continu-
ous, f maps [f(b), b] into itself and f has negative Schwarzian derivative. At
λ = λc, fλ satisfies the hypothesis of the quoted theorem and, consequently,
has no homterval.

Before we state and prove our next theorems, we make some observations
based on the results we have demonstrated thus far. Suppose f is a unimodal
map of [a, b] onto itself with critical point c, a < c < b, such that f(c) = b
and f(a) = a, which has only periodic points whose periods are powers of 2.
Such maps include members fλ of the logistic family for λ ≤ λc. There are,
in addition, piecewise linear maps with this property as well. In Section 3
we will indicate one way such maps can be constructed.

We first make some combinatorial observations which allow one to write
the order (in the reals) of the orbit of b under f for as many iterations as one
wishes (but, in general, only up to 2n iterations in case f has a periodic point
of period 2n+1 but none of period 2n+2). The notation 〈〈n1 n2 . . . nk〉〉 will
be used in this section as an abbreviation for fn1(b) < fn2(b) < . . . < fnk(b).
In this context, the Corollary to Theorem 4 would read that if λ2 < λ ≤ λc
and f = fλ then 〈〈1 3 2 0〉〉 (where f0 denotes the identity) and Theorem 6
would read that for λ = λc and f = fλ, 〈〈1 2 4 8 . . . 0〉〉.

If f has a periodic point of period 8 (recall that we assume all of its
periodic points have periods which are powers of 2), using Theorem 5 with
n = 1 we observe that 〈〈2 6 4 0〉〉. Since f decreases on [c, b] and f2(b) > c,
applying f to 〈〈2 6 4 0〉〉 yields 〈〈1 5 7 3〉〉. Recalling that f3(b)<f2(b) allows
us to conclude that 〈〈1 5 7 3 2 6 4 0〉〉 is true. Reasoning similarly, if f has a
periodic point of period 16, then we can conclude that 〈〈1 5 7 3 2 6 4 0〉〉 must
be true for f2, i.e. 〈〈2 10 14 6 4 12 8 0〉〉. Because f decreases on [c, b] it follows
that 〈〈1 9 13 5 7 15 11 3〉〉 and finally 〈〈1 9 13 5 7 15 11 3 2 10 14 6 4 12 8 0〉〉.

This process may be formalized by defining three operations on se-
quences. If s = 〈〈n1 n2 n3 . . . nk〉〉, the doubling operation D is defined
by Ds = 〈〈2n1 2n2 2n3 . . . 2nk〉〉, the reverse and add one operation R is
defined by Rs = 〈〈nk+1 nk−1+1 . . . n1+1〉〉 and, if t = 〈〈m1 m2 . . . mj〉〉,
the merge two sequences operation M is defined by M(s, t) = 〈〈n1 n2 . . . nk

m1 m2 . . . mj〉〉. Then defining the sequence s0, s1, s2, . . . inductively by
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s0 = 〈〈1 0〉〉 and sn =M(RDsn−1,Dsn−1) for a mapping f having periodic
points whose periods are all the powers of 2 completely determines the se-
quences. Under this scheme, the last sequence determined in the previous
paragraph was s3.

Remark. We can also mark the location of c in these sequences, which is
helpful in calculating the kneading sequence for a mapping f having periodic
points whose periods are all the powers of 2 and which is strictly increasing
on [a, c] and strictly decreasing on [c, b]. We know that f(b) < c. If f3(b) ≤ c
then the fact that f increases on [0, c] and 〈〈1 5 7 3 2 6 4 0〉〉 (in particular,
f7(b) < f3(b)) yield f8(b) < f4(b), a contradiction to Theorem 6. If c ≤
f7(b) then 〈〈1 9 13 5 7 15 11 3 2 10 14 6 4 12 8 0〉〉 (in particular, f7(b) <
f15(b)) and the fact that f decreases on [c, b] yield that f16(b) < f8(b), again
a contradiction to Theorem 6. Without proof we observe that it follows that
f2

n−1(b) < c if n is odd and f2
n−1(b) > c if n is even.

The remaining theorems in this section are concerned with fλc
.

Theorem 7. The sequence {f2
n

λc
(λc)}n≥0 converges to λc.

P r o o f. Denote λc by λ. Since the sequence f2
n

(λ) is increasing, if it
does not converge to λ, then it must converge to some number s < λ. Let
J = (s, λ). We show that J is a homterval for f by showing that if n is a
positive integer then 1/2 is not in fn(J). To this end, note that there is a

positive integer j such that n < 2j−1. Since J is a subset of (f2
j

(λ), λ) and

f i[(f2
j

(λ), λ)] does not contain 1/2 for 1 ≤ i ≤ n, it follows that fn(J) does
not contain 1/2. Thus, J is a homterval, contrary to [2, Theorem II.5.4].

Remark. The techniques used in the proof of Theorem 7 could be
slightly modified to argue that the sequence {f2

n
−1

λc
(λc)}n≥0 converges to

1/2, by considering separately the cases where n is odd and n is even. We
make use of this observation in the proof of our main theorem, Theorem 11.

Theorem 8. Mλc
= lim←−{[0, 1], fλc

} is hereditarily decomposable.

P r o o f. Denote λc by λ and fλ by f . The map f has periodic points
of period 2n for n = 0, 1, 2, . . . and periodic points of no other period
[2, p. 54]. We observe that, by Bennett’s Theorem [4, Theorem 1],Mλ is the
union of a ray R and a continuum K such that K = R− R and hence Mλ

is decomposable. If H is a subcontinuum of Mλ and i is a positive integer,
denote by Hi the projection of H onto the ith factor space. Suppose H is
a subcontinuum of Mλ. We show that H is an arc, homeomorphic to Mλ

or to the union of two copies of Mλ intersecting at a common endpoint of
a ray.

Suppose that, for some positive integer i, Hi = πiH intersects [0, f(λ)).
If j > i, then Hj intersects [0, f(λ)) because a point of [0, f(λ)) only has a
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point-inverse in [0, f(λ)); see Figure 1. If there is a positive integer N such
that if n ≥ N , then Hn is a subset of [0, f(λ)), then H is an arc. On the
other hand, if for infinitely many integers j, Hj intersects [f(λ), λ] then Hk

contains [f(λ), λ] for k = 1, 2, 3, . . . Thus, in this case, H is homeomorphic
to Mλ.

0

λ

f(λ)

λ

π Hi

point of π   Hi+1

Fig. 1. Graph of fλc on [0, λc]

f(λ)

λ

p

p

f (λ)2

f (λ)3

Fig. 2. Graph of f2
λc
on [fλc (λc), λc]
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If, for each i, Hi lies in [f(λ), λ], and for some i, Hi intersects (f3(λ),
f2(λ)), then H is an arc, homeomorphic toMλ or to the union of two copies
of Mλ intersecting at a common endpoint of a ray. This can be seen by
looking at f2 on [f(λ), λ] and applying the previous argument to the interval
[f(λ), p] or the interval [p, λ] where p is the non-zero fixed point of f (see

Figure 2). If, for each i, Hi lies in [f(λ), f3(λ)] then πif̂ [H] lies in [f2(λ), λ]

so either πiH or πif̂ [H] lies in [f2(λ), λ]. Since f̂ is a homeomorphism, we
may assume Hi lies in [f2(λ), λ].

Proceeding inductively, suppose there is a positive integer n such that for
each i, Hi (or πif̂

2
n−1j [H] for some j) lies in [f2

n

(λ), λ] and, for some i, Hi

intersects (f3·2
n

(λ), f2·2
n

(λ)). Then H is an arc, homeomorphic toMλ or to
the union of two copies ofMλ. If for each n and each i, Hi (or the projection
of an appropriate shift of H) lies in [f2

n

(λ), λ] then H is degenerate.
Thus, each non-degenerate subcontinuum of Mλ is decomposable and

the proof is complete.

Theorem 9. Mλc
= lim←−{[0, 1], fλc

} is the union of a ray R and a con-

tinuum C such that R − R = C and C is the union of two copies of Mλc

intersecting at a common endpoint of the ray.

P r o o f. Use Bennett’s Theorem [4] and the techniques of the proof of
Theorem 8.

Theorem 10. Mλc
=lim←−{[0, 1], fλc

} has only three topologically different

subcontinua: arcs, copies of Mλc
and unions of two copies of Mλc

inter-

secting at a common endpoint of a ray.

Remark. Although the theorems in this paper are stated for unimodal
maps for which f(a) = a, they hold for unimodal maps for which f(b) = a
since such a map can be “embedded” in a unimodal map for which f(a) = a.
Thus, by conjugacy, these theorems hold for all unimodal maps of intervals
having only periodic points whose periods are powers of 2 (with an appro-
priate change of endpoint of the interval in question along with the sense of
the inequalities).

3. Other examples and main theorem. Other examples of maps of
intervals which exhibit periodic points whose periods are all the powers of
2 and no others include the map gµ defined on [−1, 1] by gµ(x) = 1 − µx2
for µ ≈ 1.401155 (see [2, p. 36]) and the map sλ defined on [0, 1] by sλ(x) =
sin(λπx) for λ ≈ 0.86526 as well as at appropriate parameter values in
any other full family such as the one-parameter family of quadratic maps
x2 + c. In this section we construct another example of a unimodal map
having periodic points whose periods are all the powers of 2 and no others.
We discovered this map independently although we subsequently found it
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mentioned in a paper of Nitecki [5, p. 50]. He includes no proof that it
is such an example so we provide the example and a proof for the sake of
completeness.

Example. Suppose f is a mapping of [0, 1] into itself. Denote by D(f)
the map of [0, 1] into itself defined by

D(f)(x) =





2

3
+ 1

3
f(1− 3x), 0 ≤ x ≤ 1

3
,

1

3
− (1 + f(0))

(
x− 2

3

)
, 1

3
≤ x ≤ 2

3
,

1− x, 2

3
≤ x ≤ 1.

It is easy to show that if p is a periodic point of period n for f then (1− p)/3
is a periodic point of period 2n for D(f). Moreover, the only periodic points
for D(f) in [0, 1/3] arise in this manner from periodic points for f .

Now, define φ1 to be the identity on [0, 1] and, inductively, define φn+1

to be D(φn) for n = 1, 2, 3, . . . Then, for each j, φj has periodic points
whose periods are 1, 2, 4, . . . , 2j−1 and no others. The sequence φ1, φ2, φ3, . . .
converges uniformly to a function φ which is easily seen to have the property
that D(φ) = φ. From this it follows that φ has periodic points whose periods
are 1, 2, 4, . . . and no others.

Remark. We think it interesting to note that if one begins the process
described above with any function ψ1 from [0, 1] into [0, 1] (continuous or
not), then the resulting sequence ψ1, ψ2, ψ3, . . . will converge to φ.

Remark. The critical point for φ is 1/4 while the orbit of 1 under φ is
the set of endpoints of the deleted open intervals in the usual middle-thirds
Cantor set. Thus, the critical point for φ is a limit point of the orbit of 1
under φ and so φ satisfies the hypothesis of Theorem 11 (below).

An example which fails. Among our attempts to construct other exam-
ples of these functions with periodic points whose periods are all the powers
of 2 and no others, we hit upon an interesting scheme which appears to work
but fails. Let f1 be the mapping of [0, 1] onto itself defined by f1(x) = 1−x.
Starting from the point (1, 0), construct f2 from two linear pieces one of
which emanates from (1, 0) with slope −2 (i.e., twice the slope of f1) and
the other emanates from the point (1/2, 1) where the first piece strikes the
top of [0, 1] × [0, 1] and has slope 1/2 (i.e., half of the slope of f1 with a
change of sign). The mapping f2 has periodic points of periods 1, 2 and 4.
The endpoints of the interval lie in a period 4 orbit. Now, starting from
the point (0, 3/4), construct f3 from three linear pieces as follows: the first
piece emanates from the point (0, 3/4) with slope 1 (i.e., twice the slope of
the piece of f2 eminating from (0, 3/4)), the second piece emanates from the
point (1/4, 1) where the first piece strikes the top of [0, 1] × [0, 1] and has
slope −1/4 (i.e., half of the slope of the piece of f2 which is being replaced
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along with a change of sign), the third piece consists of the portion of 2(1−x)
emanating from the point of intersection of the second piece of f3 and this
piece of f2. Then f3 has periodic points of period 1, 2, 4, 8 and no others
and the endpoints of the interval lie in a period 8 orbit. Continuing this
process of “pivoting” on points on alternating sides along with doubling and
halving slopes continues to produce mappings fj with appropriate periods
and having the endpoints of the interval in a period 2j orbit for j = 4, 5 but
fails for j = 6.

We now proceed with the main theorem of this paper. We denote by
Of (x) the set {x, f(x), f2(x), f3(x), . . .} and we use cl(M) to denote the
closure of the set M . As we have noted earlier, the core of the logistic
map at the Feigenbaum limit and the mapping φ constructed in this section
satisfy the hypothesis of Theorem 11. The cores of the mappings gµ and
sλ mentioned at the beginning of this section also satisfy the hypothesis of
Theorem 11.

Theorem 11. Suppose f : [a, b] → [a, b] and g : [a′, b′] → [a′, b′] are
strongly unimodal maps with critical points c and c′, respectively , such that

f(b) = a, g(b′) = a′ and f and g have periodic points whose periods are

all the powers of 2 and each has no other periodic points. If c belongs to

cl(Of (b)) and c′ belongs to cl(Og(b
′)), then lim←−{[a, b], f} and lim←−{[a

′, b′], g}
are homeomorphic.

P r o o f. Using Theorem 5, the remark preceding Theorem 7 and the
assumption that c belongs to cl(Of (b)) and c

′ belongs to cl(Og(b
′)), it follows

that cl(Of (b)) and cl(Og(b
′)) are Cantor sets. Also, from the observations in

Section 2 about the orbit of the right endpoint, we note that fn(b) < fm(b)
if and only if gn(b′) < gm(b′). Thus, there is a homeomorphism h from [a, b]
onto [a′, b′] such that h(fn(b)) = gn(b) for each n. We define a sequence
φ1, φ2, φ3, . . . of maps from [a, b] onto [a′, b′] which induces a homeomorphism
between the inverse limits as follows. Let φ1 = h. Then let

φi+1 =

{
(g|[a′, c′])−1φif(x), x ∈ [a, c],
(g|[c′, b′])−1φif(x), x ∈ [c, b].

It is easy to see that the induced mapping is a homeomorphism.

Corollary. lim←−{[0, 1], φ} and lim←−{[fλc
(λc), λc], fλc

|[fλc
(λc), λc]} are

homeomorphic.
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