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INVARIANTS AND FLOW GEOMETRY

BY

J. C. G O N Z Á L E Z - D Á V I L A (LA LAGUNA) AND

L. V A N H E C K E (LEUVEN)

Abstract. We continue the study of Riemannian manifolds (M, g) equipped with an
isometric flow Fξ generated by a unit Killing vector field ξ. We derive some new results
for normal and contact flows and use invariants with respect to the group of ξ-preserving
isometries to charaterize special (M, g,Fξ), in particular Einstein, η-Einstein, η-parallel
and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature
homogeneous flows and flow model spaces and derive an algebraic characterization of
Killing-transversally symmetric spaces by using the curvature tensor of special flow model
spaces. All these results extend the corresponding theory in Sasakian geometry to flow
geometry.

1. Introduction. Scalar curvature invariants have been used at many
places to characterize special Riemannian manifolds. Characterizations of
Einstein spaces and real, complex and quaternionic space forms by using
quadratic scalar curvature invariants are well-known. They may be derived
by means of the decomposition of spaces of (curvature) tensors into irre-
ducible factors under the action of appropriate groups. We refer to [8], [14],
[24], [25] where examples, applications and more references are given. Simi-
lar results are also known in Sasakian and almost contact metric geometry.
See, for example, [5], [15], [18], [19]. Furthermore, scalar curvature invariants
have also been used to derive the interesting result that a Riemannian man-
ifold having the same curvature tensor as that of an irreducible symmetric
space is itself locally symmetric, and hence locally isometric to that model
space [26]. A similar theory has been developed for almost contact metric
spaces, and in particular, for Sasakian manifolds [5], [6], [7]. These results
belong to the study of curvature homogeneous spaces [20] and of manifolds
having a homogeneous model (see [4] for a survey).
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The main purpose of this paper is to treat similar problems in flow ge-
ometry. This is the study of the geometry of Riemannian manifolds (M, g)
equipped with an isometric flow Fξ generated by a unit Killing vector field ξ.
It generalizes Sasakian geometry and has been developed in several papers.
See Section 2 for some references. We introduce several scalar invariants
with respect to the group of ξ-preserving isometries. In Section 2, we be-
gin by collecting some basic material. In Section 3, we derive some useful
new results for the special case of contact and normal flows, and which are
mainly related to the problem of the local irreducibility or reducibility of
the spaces equipped with such flows and of the base spaces of the local sub-
mersions determined by the isometric flows. In Section 4, we derive several
inequalities for the introduced invariants and use them to prove charac-
terizations for classes of special manifolds such as Einstein, η-Einstein and
η-parallel spaces, and in particular, locally Killing-transversally symmetric
spaces. This last class of manifolds consists of those spaces such that the
reflections with respect to the flow lines of ξ are local isometries. They gen-
eralize the locally ϕ-symmetric spaces introduced in Sasakian geometry by
T. Takahashi [21]. There they play a role which is very similar to that of the
Hermitian symmetric spaces in complex geometry. Finally, in Section 5, we
first introduce the notions of curvature homogeneous flows and flow model
spaces and then prove a result concerning the Killing-transversally symmet-
ric spaces by comparing the curvature tensor with that of an appropriate
flow model space and by using the introduced invariants.

2. Preliminaries. Let (M, g) be an n-dimensional, connected, smooth
Riemannian manifold with n ≥ 2. Furthermore, let ∇ denote its Levi-Civita
connection and R the corresponding Riemannian curvature tensor defined
by RUV = ∇[U,V ] − [∇U ,∇V ] for U, V ∈ X(M), the Lie algebra of smooth
vector fields on M. Further, % and τ denote the Ricci tensor and the scalar
curvature, respectively.

A tangentially oriented foliation of dimension one on (M, g) is called a
flow . The leaves of this foliation are the integral curves of a non-singular
vector field on M and hence, after normalization, a flow is also given by a
unit vector field. In particular, a non-singular Killing vector field defines a
Riemannian flow also called an isometric flow [22].

In this paper, we consider and denote by Fξ an isometric flow generated
by a unit Killing vector field ξ. This flow determines locally a Riemannian
submersion. For each m ∈ (M, g), let U be a small open neighborhood of

m such that ξ is regular on U . Then the mapping π : U → Ũ = U/ξ is a

submersion. Furthermore, let g̃ denote the induced metric on Ũ given by

(g̃(X̃, Ỹ ))∗ = g(X̃∗, Ỹ ∗)
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for X̃, Ỹ ∈ X(Ũ), where X̃∗, Ỹ ∗ denote the horizontal lifts of X̃, Ỹ with
respect to the (n− 1)-dimensional horizontal distribution on U determined
by η = 0, η being the dual one-form of ξ with respect to g. Then π : (U , g)→
(Ũ , g̃) is a Riemannian submersion. Using O’Neill’s integrability tensor A
([17]; see also [1]), we have

AUξ = ∇Uξ, AξU = 0,

AXY = (∇XY )V = −AYX, g(AXY, ξ) = −g(AXξ, Y )

for U ∈ X(M) and for horizontal vector fields X, Y (that is, η(X) = η(Y )
= 0). Here, V denotes the vertical component.

Next, we define the operator H by

(1) HU = −AUξ
and its (0, 2)-version h by h(U, V ) = g(HU, V ), U, V ∈ X(M). Since ξ is a
Killing vector field, h is skew-symmetric and h = −dη. Note that A = 0, or
equivalently h = 0, if and only if the horizontal distribution is integrable. In
this case, since the flow lines are geodesics, (M, g) is locally a product of an
(n− 1)-dimensional manifold and a curve.

The Levi-Civita connection ∇̃ on (Ũ , g̃) is determined by

(2) ∇
X̃∗
Ỹ ∗ = (∇̃

X̃
Ỹ )∗ + h(X̃∗, Ỹ ∗)ξ

for X̃, Ỹ ∈ X(Ũ) and the curvature tensor R of (M, g) satisfies

(3) R(X, ξ, Y, ξ) = g(HX,HY ) = −g(H2X,Y )

for all horizontal X,Y. Here, we use the notation R(X,Y, Z,W ) =
g(RXY Z,W ). This shows that the ξ-sectional curvature K(X, ξ) of the two-
plane spanned by X and ξ is non-negative for all horizontal X. Since Hξ = 0,
K(X, ξ) = 0 holds for all horizontal X if and only if h = 0. Further, K(X, ξ)
is strictly positive for all X if and only if H is of maximal rank n − 1, in
which case n is necessarily odd. Then η is a contact form and the flow Fξ is
called a contact flow .

Normal flows also appear naturally in this framework. Fξ is said to be
a normal flow [9] if, for horizontal X,Y, the curvature transformations
RXY leave the horizontal subspaces invariant, or equivalently, R(X,Y,X, ξ)
= 0. Note that a Sasakian manifold is a Riemannian manifold equipped
with a normal flow Fξ such that the ξ-sectional curvature is equal to 1
(see [2] for more details). Moreover, if the ξ-sectional curvature is a non-
vanishing constant k = c2, then H2X = −kX for horizontal vectors X and
(M, c2g, c−1ξ, cη, c−1H) is a Sasakian manifold. Nevertheless, there exist
Riemannian manifolds equipped with a normal contact flow which cannot
have any Sasakian structure. This is the case for the compact nilmani-
folds M(1, r) formed by the right cosets Γ (1, r)\H(1, r), where r is even
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or r = 4s + 1, s ≥ 1, and Γ (1, r) is the subgroup of the matrices in the
generalized Heisenberg group H(1, r) with integer entries [9].

The flow Fξ is normal if and only if

(4) (∇UH)V = g(HU,HV )ξ + η(V )H2U

for all U, V ∈ X(M). In this case, we have [9]

(5)
RUV ξ = η(V )H2U − η(U)H2V,

RUξV = g(HU,HV )ξ + η(V )H2U

for all U, V ∈ X(M). Using also (2), it follows that the curvature tensors of

∇ and ∇̃ are related by

(R̃
X̃Ỹ

Z̃)∗ = R
X̃∗Ỹ ∗

Z̃∗ − g(HỸ ∗, Z̃∗)HX̃∗(6)

+ g(HX̃∗, Z̃∗)HỸ ∗ + 2g(HX̃∗, Ỹ ∗)HZ̃∗

for all X̃, Ỹ , Z̃ ∈ X(Ũ). This yields

(%̃(X̃, Ỹ ))∗ = %(X̃∗, Ỹ ∗) + 2g(HX̃∗, HỸ ∗),(7)

τ̃∗ = τ − trH2.(8)

Moreover, %(U, ξ) = −η(U) trH2. Furthermore, using (7), we get

(9) ((∇̃
X̃
%̃)(Ỹ , Z̃))∗ = (∇

X̃∗
%)(Ỹ ∗, Z̃∗).

% is said to be η-parallel , or (M, g,Fξ) is called η-parallel , if it satisfies
(∇X%)(Y,Z) = 0 for all horizontal X,Y, Z. It follows from (9) that % is

η-parallel if and only if %̃ is parallel for each base space (Ũ , g̃). Similarly, we

say that (M, g,Fξ) is η-Einsteinian if each (Ũ , g̃) is Einsteinian. From (7),
(8) it follows that this is the case if and only if

%(X,Y ) = λg(X,Y )− 2g(HX,HY )

for all horizontal X,Y , where λ = (τ − trH2)(n − 1)−1. In particular, a
Sasakian manifold M2n+1 is η-Einsteinian if and only if

%(U, V ) = ag(U, V ) + bη(U)η(V )

where a, b are constants. In this case, a+ b = 2n and a = (τ − 2n)(2n)−1.

Next, from [9] we have the following formulas:

RHUVW +RUHVW = g(HV,W )H2U − g(HU,W )H2V(10)

− g(H2U,W )HV + g(H2V,W )HU

+ η(V )RHUξW − η(U)RHV ξW
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for all U, V,W ∈ X(M), and

(11) (∇ξR)XY Z = 0

for all horizontal X,Y, Z. Hence, applying (5) and (10), we obtain

(∇WR)UV ξ = g(W,H2U)HV − g(W,H2V )HU(12)

+ η(W ){η(U)H3V − η(V )H3U}+HRUVW

for all tangent vectors U, V,W to M.
Next, let H̃ be the (1, 1)-tensor field on Ũ defined by H̃X̃ = π∗HX̃

∗.

Then Fξ is normal if and only if ∇̃H̃ = 0. Furthermore, in that case, (6)
and (10) yield the useful relation

(13) R̃
H̃X̃Ỹ

+ R̃
X̃H̃Ỹ

= 0

(see also [12]).
Finally, (M, g,Fξ) is called a locally Killing-transversally symmetric space

(briefly, a locally KTS-space) if the reflections with respect to the flow lines
are local isometries. Then the flow Fξ is automotically normal and (M, g,Fξ)
is called a globally Killing-transversally symmetric space (briefly, a KTS-
space) if ξ is complete and the local reflections can be extended to global
isometries. Complete, simply connected locally KTS-spaces are KTS-spaces
and then (M, g,Fξ) is a naturally reductive space. See [9], [10] for more
details and further information.

The following two propositions provide useful characterizations for lo-
cally KTS-spaces.

Proposition 2.1 [9]. (M, g,Fξ) is a locally KTS-space if and only if Fξ
is normal and

(∇XR)(X,Y,X, Y ) = 0

for all horizontal X,Y.

Proposition 2.2 [9]. Let Fξ be a normal flow on (M, g). Then the space

is a locally KTS-space if and only if each base space (Ũ , g̃) of a local Rie-

mannian submersion π : U → Ũ = U/ξ is a locally symmetric space.

So, according to the terminology used in [23], (M, g,Fξ) is a locally
KTS-space if and only if Fξ is a normal transversally symmetric foliation.
As already mentioned in the introduction, in Sasakian geometry the locally
KTS-spaces coincide with the locally ϕ-symmetric spaces introduced in [21].
See also [3], [5] for more details and further references.

3. Normal and contact flows. In this section we give some more
information about normal and contact flows and derive some new results.
We begin with
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Lemma 3.1 [13]. For all k ≥ 1, trH2k is constant on a Riemannian
manifold (M, g) equipped with a normal flow Fξ.

This implies

Proposition 3.2. The eigenvalues of H2 are constant on a Riemannian
manifold equipped with a normal flow.

Corollary 3.3. Let (M, g) be a Riemannian manifold and Fξ a nor-
mal flow on it. If the ξ-sectional curvature is pointwise constant , then it is
globally constant.

In what follows we denote by −c2i , i = 1, . . . , r, the different eigenval-
ues of H2

|H restricted to the horizontal distribution H. The corresponding

eigenspaces at m ∈M are denoted by Hc2i
(m), i = 1, . . . , r. Then, using (3),

we have

Hc2i
(m) = {X ∈ H(m) | K(X, ξ) = c2i }.

Now, we prove

Proposition 3.4. Let Fξ be a normal flow on (M, g). Then:

(i) Hc2i
, i = 1, . . . , r, determines a differentiable distribution on M and

for each m ∈M, H(m) = Hc21
(m)⊕ . . .⊕Hc2r

(m) is an H-invariant orthog-
onal decomposition of the horizontal subspace H(m);

(ii) the distribution Dc2i
: m → Hc2i

(m) ⊕ ξ(m) is differentiable and
involutive. Moreover , its integral manifolds are totally geodesic submanifolds
of M.

P r o o f. Since H2 is symmetric, the differentiability of Hc2i
and Dc2i

follows at once. Next, we prove that Dc2i
is involutive. In fact, we will prove

more: if U, V ∈ Dc2i
, then also ∇UV ∈ Dc2i

. Hence, its integral manifolds
are totally geodesic.

First, note that U ∈ Dc2i
if and only if H2U = c2i (η(U)ξ − U). Then,

using (4), it follows that

H∇UV = ∇U (HV ) + c2i (η(V )U − g(U, V )ξ)

and so, from (1) we get

H2∇UV = c2i (η(∇UV )ξ −∇UV ),

which proves the required result.

Furthermore, we also obtain distributions H̃c2i
, i = 1, . . . , r, on each base

space Ũ of a local submersion which assign to each point m̃ = π(m) of Ũ the

subspace H̃c2i
(m̃) = π∗mHc2i

(m) of Tm̃Ũ . Note that H̃c2i
(m̃) is well-defined

because Hc2i
is ξ-invariant, or equivalently, Hc2i

is obtained locally as the

horizontal lift of H̃c2i
. Here, we have
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Proposition 3.5. For normal flows Fξ on (M, g) we have:

(i) the distributions H̃c2i
, i = 1, . . . , r, are differentiable and involutive;

(ii) let Ũi be the maximal integral manifold of H̃c2i
through a point of Ũ .

Then Ũi is a totally geodesic submanifold of Ũ and Ũ = Ũ1 × . . .× Ũr.

P r o o f. The differentiability is clear. Furthermore, taking into account
that H̃c2i

(m̃) is the eigenspace of H̃(m̃) on Tm̃(Ũ) corresponding to the

eigenvalue −c2i and that ∇̃H̃ = 0, we get H̃2∇̃
X̃
Ỹ = −c2i ∇̃X̃ Ỹ for all

X̃, Ỹ ∈ H̃c2i
. This again implies the required result. The last part of (ii)

follows from the uniqueness property of totally geodesic submanifolds.

Now, we turn to the consideration of normal contact flows. In this case
dimM is odd and we put dimM = 2n+ 1. First, we recall

Proposition 3.6 [29]. A Riemannian manifold equipped with a normal
contact flow is locally irreducible with the group SO(2n+ 1) of all rotations
as homogeneous holonomy group.

Next, we prove

Proposition 3.7. Let (M, g) be a Riemannian manifold equipped with
a normal flow Fξ. If rankH = 2k < 2n, then (M, g) is locally a product of
a (2k+ 1)-dimensional Riemannian manifold , with Fξ as a contact flow on
it , and a Riemannian manifold.

P r o o f. In this case, H2
|H has a zero eigenvalue and the corresponding

eigenspace H0(m) coincides, for each m, with KerH|H at m since h is skew-
symmetric. Hence, using (4), we have ∇XY ∈ H0 for all X,Y ∈ H0. So, the
distribution H0 is involutive and its integral manifolds are totally geodesic.

Furthermore, let H⊥0 denote the distribution which assigns to each m ∈
M the orthogonal complement H⊥0 (m) of H0(m) in TmM. Then H⊥0 is
differentiable, and moreover, H⊥0 (m) = ImH(m)⊕Rξ(m). From (4) we get,
for all X ∈ H, U ∈ H⊥0 and A ∈ H0,

g(∇UHX,A) = g(H∇UX,A) = −g(∇UX,HA) = 0,

g(∇Uξ, A) = −g(HU,A) = g(U,HA) = 0

and so, H⊥0 is involutive with totally geodesic integral manifolds. Then,
for each m ∈ M, there exists a small open neighborhood U of m such that
U = U0 × U⊥0 where U0 and U⊥0 are integral manifolds through m of H0

and H⊥0 , respectively. U⊥0 is equipped with a contact normal flow generated
by ξ.

From Proposition 3.6 we obtain at once
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Corollary 3.8. A Riemannian manifold equipped with a normal contact
flow and with parallel Ricci tensor is an Einstein space, and moreover , τ =
−(2n+ 1) trH2.

Finally, we have

Proposition 3.9. Let Fξ be a normal contact flow on a Riemannian
manifold (M, g). Then:

(i) Fξ fibers locally over a Kähler manifold ;

(ii) if Ũ = Ũ1 × . . . × Ũr is a base space of a local submersion, then
each integral manifold Ui of Dc2i

, i = 1, . . . , r, is homothetic to a Sasakian

manifold fibering over the Kähler submanifold Ũi of Ũ .

P r o o f. Since Fξ is a contact flow, all c2i are non-zero. Then

J = c−11 H̃1 × . . .× c−1r H̃r,

where H̃i = H̃◦pi (pi being the projection pi : Ũ → Ũi) is an almost complex

structure on Ũ and g̃ is a Hermitian metric. Moreover, (Ũ , g̃, J) is a Kähler

manifold because ∇̃H̃ = 0.

The second part of the proposition follows at once.

We note that this result implies that for a contact locally KTS-space,
each Ũ is a Riemannian product of Hermitian symmetric spaces Ũi, i =
1, . . . , r.

In what follows for normal contact flows, we put dimHc2i
(m) = 2ni, i =

1, . . . , r. Then n =
∑r
i=1 ni. We denote such a manifold by M2n+1(c21, . . . , c

2
r;

n1, . . . , nr), 1 ≤ r ≤ n, when necessary. Then a Sasakian manifold may be
denoted by M2n+1(1;n).

4. Invariants and inequalities. In this section we use some classical
scalar curvature invariants together with some new invariants to characterize
some special Riemannian manifolds. We first introduce these new invariants.
Let (M, g) be a Riemannian manifold equipped with an isometric flow Fξ
and consider the following real-valued functions on M :

‖RH‖2 =
∑
i,j,k,l

R2
ijkHl, ‖%H‖2 =

∑
i,j

%2iHj ,

〈h2, %〉 =
∑
i

%H2eiei , 〈h4, %〉 =
∑
i

%H4eiei ,

trH2, trH4

where {ei | i = 1, . . . , n} is an arbitrary orthonormal basis for each TmM ,
m ∈M , and where we adopt the usual notational convention. From (1) it is



INVARIANTS AND FLOW GEOMETRY 41

easily seen that these functions are invariant for any ξ-preserving isometry
of (M, g,Fξ).

Now, we derive some inequalities and characterizations. In [9], the fol-
lowing result is proved:

Lemma 4.1. A Riemannian manifold (M, g) equipped with a normal flow
Fξ is a locally KTS-space if and only if for all vector fields X,Y, Z, V,W we
have

(∇VR)XY ZW

= η(W ){−g(H2X,V )g(HY,Z) + g(H2Y, V )g(HX,Z) +RXY VHZ}

+ η(X){g(HV,Z)g(H2Y,W )− g(H2Y, Z)g(HV,W )−RY HV ZW }

+ η(Y ){g(V,HZ)g(H2X,W ) + g(H2X,Z)g(HV,W ) +RXHV ZW }

+ η(Z){g(V,H2X)g(HY,W )− g(V,H2Y )g(HX,W )−RXY VHW }

+ η(V )η(W ){η(Y )g(H3X,Z)− η(X)g(H3Y, Z)}

+ η(V )η(Z){η(X)g(H3Y,W )− η(Y )g(H3X,W )}.
From this we get

Theorem 4.2. Let (M, g) be a Riemannian manifold equipped with a
normal flow Fξ. Then

(14) ‖∇R‖2 ≥ 4{‖RH‖2 − 2 trH4 trH2 − 4〈h4, %〉}
and equality holds if and only if (M, g,Fξ) is a locally KTS-space.

P r o o f. Denote by A the right-hand side of the expression for ∇R given
in Lemma 4.1 and define the (0, 5)-tensor T by

T (V,X, Y, Z,W ) = (∇VR)(X,Y, Z,W )−A(V,X, Y, Z,W ).

Then by using (5) and (12), we obtain

‖T‖2 = ‖∇R‖2 − 4‖RH‖2 + 8 trH4 trH2 − 16 trH6

+ 8
∑
i,j

(RH2ijiH2j +RiHjHjH2i).

Furthermore, applying (10), we get∑
i,j

RH2ijiH2j =
∑
i,j

RiHjHjH2i = 〈h4, %〉+ trH6.

The required result then follows easily.

Next, from (12) we obtain

(∇W %)(U, ξ) = %(U,HW ) + g(U,HW ) trH2

and hence, by using (11), we get
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Lemma 4.3. A Riemannian manifold equipped with a normal flow Fξ is
η-parallel if and only if for all vector fields U, V,W we have

(∇W %)(U, V ) = η(U){%(V,HW ) + g(V,HW ) trH2}(15)

+ η(V ){%(U,HW ) + g(U,HW ) trH2}.

Proceeding now as in the proof of Theorem 4.2, we obtain

Theorem 4.4. On a Riemannian manifold (M, g) equipped with a nor-
mal flow Fξ we have

‖∇%‖2 ≥ 2{‖%H‖2 − (trH2)3 − 2〈h2, %〉 trH2}

and equality holds if and only if (M, g,Fξ) is η-parallel.

Now, we derive a similar characterization for η-Einstein manifolds. We
have

Theorem 4.5. On a Riemannian manifold (M, g) equipped with a normal
flow Fξ we have

‖%‖2 ≥ 1

n− 1
(τ − trH2)2 + (trH2)2 + 4〈h2, %〉 − 4 trH4

and equality holds if and only if (M, g,Fξ) is η-Einsteinian.

P r o o f. As is well-known, for an m-dimensional Riemannian manifold
we always have m‖%‖2 ≥ τ2 and equality holds if and only if the manifold
is an Einstein space. Now,

‖%̃‖2 = ‖%‖2 − (trH2)2 + 4 trH4 − 4〈h2, %〉.

Then the result follows from (n− 1)‖%̃‖2 ≥ τ̃2, (7), (8) and the definition of
an η-Einstein space.

Furthermore, it is easy to check the following

Lemma 4.6. Let (M2n+1, g) be a Riemannian manifold equipped with a
normal contact flow. Then (M, g) is an Einstein space if and only if

%H = −(trH2)h

where %H is given by %H(U, V ) = %(HU, V ) for all tangent vectors U, V.

A similar procedure as above then yields, by taking T = %H + (trH2)h,

Theorem 4.7. Let (M2n+1, g) be a Riemannian manifold equipped with
a normal contact flow. Then

‖%H‖2 ≥ (trH2)3 + 2〈h2, %〉 trH2

where equality holds if and only if (M, g) is an Einstein space.
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When (M2n+1, g,Fξ) is of type M(1;n) (that is, the manifold has a
Sasakian structure (ξ, η, ϕ, g)), we have, putting H = ϕ,

‖Rϕ‖2 = ‖R‖2 − 4n, ‖%ϕ‖2 = ‖%‖2 − 4n2, 〈h2, %〉 = −〈h4, %〉 = 2n− τ.

So, as a corollary, we obtain the following already known results (see [18],
[19] and [5] for more details and applications):

Corollary 4.8. Let (M2n+1, ξ, η, ϕ, g) be a Sasakian manifold. Then:

(i) ‖∇R‖2 ≥ 4(‖R‖2 − 4τ + 8n2 + 4n) and equality holds if and only if
the manifold is locally ϕ-symmetric;

(ii) ‖∇%‖2 ≥ 2(‖%‖2− 4nτ + 4n2(2n+ 1)) and equality holds if and only
if the manifold is η-parallel ;

(iii) ‖%‖2 ≥ (1/(2n))(τ − 2n)2 + 4n2 and , for n > 1, equality holds if and
only if the manifold is an η-Einstein space;

(iv) ‖%‖2 ≥ 4n(τ−n(2n+1)) and equality holds if and only if the manifold
is an Einstein space.

We finish this section with a first application of Theorem 4.2 by providing
an alternative proof of a result given in [9].

Corollary 4.9. A locally symmetric space equipped with a normal con-
tact flow is a space form.

P r o o f. First, we prove that the ξ-sectional curvature is constant. From
(12) we obtain, for horizontal vectors U, V,

(∇HVR)(U,HV, ξ,HU) + (∇VR)(U, ξ,HV,H2U)

= g(HU,HU)g(H2V,H2V )− g(HV,HV )g(H2U,H2U).

Since ∇R = 0, we get

‖HU‖2‖H2V ‖2 = ‖HV ‖2‖H2U‖2.

So, let U ∈ Hc2i
and V ∈ Hc2j

for i 6= j. Then we get at once c2i = c2j .

This means that the ξ-sectional curvature is a pointwise, and hence global,
constant. We denote this constant by c2. Then we get

‖RH‖2 = c2(‖R‖2 − 4nc4), 〈h4, %〉 = c4(τ − 2nc2)

and so, (14) reduces to

0 ≥ ‖R‖2 + 4c2(n(2n+ 1)c2 − τ).

Furthermore, on a (2n+ 1)-dimensional manifold we always have

‖R‖2 ≥ τ2{n(2n+ 1)}−1

and equality holds if and only if the manifold is a space of constant curvature.
From this, we get
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0 ≥ ‖R‖2 + 4c2(n(2n+ 1)c2 − τ) ≥ (τ − 2n(2n+ 1)c2)2{n(2n+ 1)}−1 ≥ 0.

This implies ‖R‖2 = τ2{n(2n+ 1)}−1 and the result follows.

It also follows from the proof that

τ = 2n(2n+ 1)c2

and this means that the sectional curvature equals c2. Hence, for c2 = 1, we
obtain the well-known result that a locally symmetric Sasakian manifold is
a space of constant curvature +1.

Remark 4.10. Combining Theorems 4.4 and 4.7, we may also obtain an
alternative proof of Corollary 3.8.

5. Curvature homogeneous flows, flow model spaces and local-
ly KTS-spaces. A Riemannian manifold (M, g) is said to be curvature
homogeneous [20] if and only if, for each pair of points p and q in M, there
exists a linear isometry F : TpM → TqM such that F ∗Rq = Rp. This is
equivalent to the fact that, with respect to suitable orthonormal bases for the
tangent spaces TpM and TqM, Rp and Rq must have the same components.
Furthermore, given a homogeneous space (M ′ = G/H, g′) with G-invariant
metric g′ and curvature tensor R′, (M, g) is said to have the same curvature
tensor as (M ′, g′) if for every point p ∈ M and fixed point o ∈ M ′, there
exists a linear isometry F : TpM → ToM

′ such that F ∗R′o = Rp. In this
case (M, g) is curvature homogeneous and (M ′, g′) is called a model space of
(M, g). We refer to [4] for a survey about curvature homogeneity and model
spaces.

Now, let (M, g,Fξ) be a Riemannian manifold equipped with an isometric
flow Fξ and let A(M) denote the group of all isometries of (M, g) which leave
ξ invariant. Then Fξ is called a homogeneous flow if A(M) acts transitively
on M. Note that the flow on a KTS-space is necessarily a homogeneous
flow [10].

Furthermore, Fξ is said to be a curvature homogeneous flow if (M, g)
is curvature homogeneous and if in addition the linear isometries F pre-
serve ξ. So, a homogeneous flow is automatically a curvature homogeneous
flow. Next, let (M ′, g′) be equipped with a homogeneous flow Fξ′ . We call
(M ′, g′,Fξ′) a flow model space of (M, g,Fξ) if for every point p ∈ M and
a fixed point o ∈ M ′, there exists a linear isometry F : TpM → ToM

′ such
that F∗ξ = ξ′ and F ∗R′o = Rp.

Now, let (M ′, g′,Fξ′) be a flow model space of (M, g,Fξ). Clearly, if Fξ′

is normal, then so is Fξ. Furthermore, since the ξ-sectional curvatures are
preserved, it follows that rankH ′ = rankH and so, Fξ is a contact flow
if and only if Fξ′ is a contact flow, or equivalently, by using Propositions
3.6 and 3.7, (M, g) is locally irreducible if and only if (M ′, g′) is locally
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irreducible. Moreover, (M ′, g′,Fξ′) and (M, g,Fξ) have the same configura-
tion (c21, . . . , c

2
r;n1, . . . , nr) with FHc2i

= H′c2i , i = 1, . . . , r. Note that we do

not know if F preserves H (see also the particular cases at the end of this
section).

Now, we state the main theorem of this section.

Theorem 5.1. Let Fξ be a normal flow on a Riemannian manifold (M, g)
with η-parallel Ricci tensor. If (M, g,Fξ) has a KTS-space as a flow model
space, then it is a locally KTS-space.

Note that a locally KTS-space is necessarily η-parallel.

In the proof of this theorem we use the following lemma.

Lemma 5.2. Let Fξ be a normal flow on a Riemannian manifold (M, g)
and let (M ′, g′,Fξ′) be a flow model space of (M, g,Fξ). Then

‖R′H′‖2 = ‖RH‖2, ‖%′H′‖2 = ‖%H‖2,
〈h′2, %′〉 = 〈h2, %〉, 〈h′4, %′〉 = 〈h4, %〉.

P r o o f. Proposition 3.7 implies that it suffices to prove the lemma for
contact flows. So, we suppose that Fξ and Fξ′ are both contact flows.
Then (M, g,Fξ) and (M ′, g′,Fξ′) have the same configuration (c21, . . . , c

2
r;

n1, . . . , nr). Now, denote by τ̃i, τ̃
′
i , %̃i and %̃′i, i = 1, . . . , r, the corresponding

scalar curvatures and Ricci tensors of Ũi and Ũ ′i , respectively. Using (7), we
then get

τ̃i = 4nic
2
i +

2ni∑
α=1

%αα.

Hence, it follows at once that τ̃i = τ̃ ′i for i = 1, . . . , r. Furthermore applying
(7) again, we get

〈h2, %〉 = −
r∑
i=1

c2i τ̃i + 2 trH4, 〈h4, %〉 =

r∑
i=1

c4i τ̃i + 2 trH6

and this implies 〈h2, %〉 = 〈h′2, %′〉, 〈h4, %〉 = 〈h′4, %′〉. Next, a similar com-
putation yields

‖%H‖2 =

r∑
i=1

c2i (‖%̃i‖2 − 4c2i τ̃i)− 4 trH6

and moreover, we have

‖%̃i‖2 =

2ni∑
α,β=1

%2αβ + 4c2i (τ̃i − 2nic
2
i ).

So, we get ‖%̃i‖2 = ‖%̃′i‖2, and hence ‖%H‖2 = ‖%′H′‖2.
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Next, using (3), we obtain

‖RH‖2 =
2n∑

α,β,γ,δ=1

R2
αβγHδ − 2 trH6

and so, by using (6), we have

‖RH‖2 =
2n∑

α,β,γ,δ=1

R̃2
αβγH̃δ

− 6 trH4 trH2 − 8 trH6

+ 4

2n∑
α,β=1

(R̃
αH̃2βH̃αH̃β

+ R̃
αH̃αH̃2βH̃β

).

Using (13) and the first Bianchi identity, this may be written in the form

(16) ‖RH‖2 =

2n∑
α,β,γ,δ=1

R̃2
αβγH̃δ

− 12

r∑
i=1

c4i τ̃i − 6 trH4 trH2 − 8 trH6.

But

(17)
2n∑

α,β,γ,δ=1

R̃2
αβγH̃δ

=
r∑
i=1

c2i ‖R̃i‖2

and from (6) and (13) we get

‖R̃i‖2 =

2ni∑
α,β,γ,δ=1

R2
αβγδ + 12c2i {τ̃i − ni(2ni + 1)c2i }.

Hence, this yields ‖R̃i‖2 = ‖R̃′i‖2 and so, from this, (16) and (17) we obtain

‖RH‖2 =

r∑
i=1

c2i (‖R̃i‖2 − 12c2i τ̃i)− 6 trH4 trH2 − 8 trH6

from which we have ‖RH‖2 = ‖R′H′‖2. This completes the proof of the
lemma.

Remark 5.3. It follows from the proof of this lemma that if Fξ is a
curvature homogeneous normal flow, then the invariants ‖RH‖2, ‖%H‖2,
〈h2, %〉 and 〈h4, %〉 are constant.

Now, we turn to the

Proof of Theorem 5.1. Since (M ′, g′,Fξ′) is a KTS-space, it follows from
Theorem 4.2 that

‖∇′R′‖2 = 4(‖R′H′‖2 − 2 trH ′4 trH ′2 − 4〈h′4, %′〉)
and hence, using Lemma 5.2, we get

(18) ‖∇′R′‖2 = 4(‖RH‖2 − 2 trH4 trH2 − 4〈h4, %〉).
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Next, we prove that ‖∇R‖2 = ‖∇′R′‖2. The required result then follows
from (18) and Theorem 4.2. To prove this equality, we use the so-called Lich-
nerowicz formula, which, since ‖R‖2 = ‖R′‖2 is constant, may be written in
the form (see [14], in particular (2.18), for more details)

〈∇2%,R〉 =
∑

α,β,γ,δ

∇2
αβ%γδRαγβδ = −1

4
‖∇R‖2 − 1

2
〈%, Ṙ〉+ Ř+

1

4
Ř

where

Ř =
∑

α,β,γ,δ,λ,µ

RαβγδRγδλµRλµαβ ,

Ř =
∑

α,β,γ,δ,λ,µ

RαγβδRγλδµRλαµβ ,

〈%, Ṙ〉 =
∑

α,β,λ,µ,ν

%αβRαλµνRβλµν .

A detailed computation (long but straightforward, hence omitted here), us-
ing (3), (4) and (15), yields

〈∇2%,R〉 = 3〈h4, %〉+ 3 trH4 trH2(19)

− trH2
∑
α,β

(RαHαβHβ +RαHββHα)

−
∑
α,β,γ

(RαHαβγ%γHβ +RαγβHα%γHβ).

Furthermore, from (10) and the first Bianchi identity, we obtain∑
α,β

(RαHαβHβ +RαHββHα) = 3{2 trH4 − 〈h2, %〉 − (trH2)2}

and from (6), (7) and (13) we get∑
α,β,γ

RαγβHα%γHβ =
1

2

∑
α,β,γ

RαHαβγ%γHβ

=

r∑
i=1

c2i ‖%̃i‖2 − 3〈h4, %〉+ 4 trH6 − trH2〈h2, %〉.

Substituting these expressions in (19) yields

〈∇2%,R〉 = 3
{
−

r∑
i=1

c2i ‖%̃i‖2 + 4〈h4, %〉+ 2〈h2, %〉 trH2

− 4 trH6 − trH4 trH2 + (trH2)3
}
.

So, we get 〈∇2%,R〉 = 〈∇′2%′, R̄′〉 and then ‖∇R‖2 = ‖∇′R′‖2. This com-
pletes the proof of Theorem 5.1.
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In Theorem 5.1, we did not yet prove that (M, g,Fξ) is locally isometric
to the model space. Note that for the result in [26] mentioned in the in-
troduction, the local isometry followed immediately. Here, this seems to be
more difficult. In this respect, we state the following result [11]:

Proposition 5.4. Let (M1, g1,Fξ1) and (M2, g2,Fξ2) be locally KTS-
spaces and o1 ∈ M1, o2 ∈ M2. Further , let L : To1M1 → To2M2 be a linear
isometry satisfying

(i) Lξ1 = ξ2,
(ii) L ◦H1 = H2 ◦ L,

(iii) LR1UVW = R2LULV LW,

for all U, V,W ∈ To1M1. Then there exists an isometry f of a neighborhood
U1 of o1 onto a neighborhood U2 of o2 such that f(o1) = o2, f∗ξ1 = ξ2 and
f∗o1 = L.

From this we may conclude that if in Theorem 5.1 we also have F ◦H =
H ′ ◦F, then (M, g,Fξ) and (M ′, g′,Fξ′) are locally isometric. This situation
occurs in the following cases:

(i) Fξ is a normal contact flow and the configuration is of type (c21, . . . , c
2
r;

1, . . . , 1);
(ii) dimM = 3;

(iii) dimM = 5 and the ξ-sectional curvature is not pointwise constant,
that is, the manifold is not homothetic to a Sasakian manifold;

(iv) rankH ≤ 2 (in particular, dimM = 4).

Furthermore, using the fact that a 3-dimensional Sasakian manifold is a
locally ϕ-symmetric space if and only if the scalar curvature is constant [3],
[28], we immediately have

Theorem 5.5. Let (M, g, ϕ, ξ, η) be a three-dimensional Sasakian man-
ifold whose curvature tensor is the same as that of a ϕ-symmetric space
(M ′, ξ′, η′, ϕ′, g′). Then (M, ξ, η, ϕ, g) is locally ϕ-symmetric. If , moreover ,
(M ′, ξ′, η′, ϕ′, g′) is a flow model space of (M, ξ, η, ϕ, g), then both manifolds
are locally isometric.

Remark 5.6. In [6], Theorem 5.1 has also been proved for Sasakian
manifolds and a ϕ-symmetric space (M ′, g′) without imposing that (M ′, g′)
is a flow model space.

We finish with an application of Theorem 5.1 for two interesting classes
of manifolds. First, we recall that a D’Atri space is a Riemannian manifold
all of whose local geodesic symmetries are volume-preserving (up to sign).
Furthermore, a Riemannian manifold is said to be a C-space if all Jacobi
operators have constant eigenvalues along the corresponding geodesics. We
refer to [16], [27] for more details and further references. In particular, for
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both kinds of spaces the Ricci tensor is a Killing tensor (that is, ∇% is
cyclic-parallel). In [13] we considered such spaces when they are equipped
with a normal or a normal contact flow. In this last case, it turns out that
D’Atri and C-spaces are η-parallel. Hence, we have

Corollary 5.7. Any D’Atri or C-space which is equipped with a normal
contact flow and which has a KTS-space as flow model space is a locally
KTS-space.
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Lecture Notes in Math. 1410, Springer, Berlin, 1988, 77–86.

[7] —, —, Curvature characterizations in contact geometry , Riv. Mat. Univ. Parma 14
(1988), 303–313.

[8] B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine
Angew. Math. 325 (1981), 28–67.
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