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Abstract. Let R be a split extension of an artin algebra A by a nilpotent bimod-
ule AQA, and let M be an indecomposable non-projective A-module. We show that
the almost split sequences ending with M in modA and modR coincide if and only if
HomA(Q, τAM) = 0 and M ⊗A Q = 0.

Introduction. While studying the representation theory of the trivial
extension T (A) of an artin algebra A by its minimal injective cogenerator
bimodule DA, Tachikawa [12] and Yamagata [13] have shown that, if A
is hereditary, then the Auslander–Reiten quiver of A fully embeds in the
Auslander–Reiten quiver of T (A). This result was generalised by Hoshino
in[7]. He has shown that, ifA is an artin algebra andM is an indecomposable
non-projective A-module, then the almost split sequences ending with M in
modA and modT (A) coincide if and only if the projective dimension of M ,
and the injective dimension of the Auslander–Reiten translate τAM of M in
modA, do not exceed 1. This enabled him to prove that the trivial extension
of a tilted algebra of Dynkin type is representation-finite. A similar result
was obtained by Happel when considering the embedding of modA inside
the derived category of bounded complexes over modA (see [6], I.4.7, p. 38).

Our objective in this note is to try to understand the results of Hoshino,
Tachikawa and Yamagata in the following more general context. Let A and
R be two artin algebras such that there exists a split surjective algebra
morphism R→ A whose kernel Q is contained in the radical of R. We then
say that R is a split extension of A by the nilpotent bimodule Q, or simply
a split-by-nilpotent extension (see [2, 5, 9]). We ask when an almost split
sequence in modA embeds as an almost split sequence in modR, and show
the following generalisation of Hoshino’s result.
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Theorem. Let R be the split extension of an artin algebra A by a nilpo-
tent bimodule Q, and M be an indecomposable non-projective A-module.
The following conditions are equivalent :

(a) The almost split sequences ending with M in modA and modR co-
incide.

(b) τAM ∼= τRM .
(c) HomA(Q, τAM) = 0 and M ⊗A Q = 0.

The paper is organised as follows. In Section 1, we construct an ex-
act sequence relating the Auslander–Reiten translates of M in modA and
modR. In Section 2, we prove our theorem, from which we deduce several
consequences and end the paper with some examples.

1. Preliminary results. Throughout this note, we use freely and
without further reference properties of the module categories and the almost
split sequences as can be found, for instance, in [4, 10]. We assume that
A and R are two artin algebras such that R is a split extension of A by
a (nilpotent) bimodule AQA. This means that we have a split short exact
sequence of abelian groups

0→ Q
ι−→ R

π−→ A→ 0

where ι : q 7→ (0, q) is the inclusion of Q as a two-sided ideal of R = A⊕Q,
and the projection (algebra) morphism π : (a, q) 7→ a has as section the
inclusion morphism σ : a 7→ (a, 0). If M is an A-module, we have a canonical
R-linear epimorphism pM : M ⊗A R→M given by m⊗ (a, q) 7→ ma which
is minimal ([2], 1.1). Moreover, if P is a projective cover of the A-module
M , then P ⊗A R is a projective cover of M when the latter is viewed as
an R-module. In particular, the indecomposable projective R-modules are
all induced modules of the form P ⊗A R, where P is an indecomposable
projective A-module (see [2]).

Proposition 1.1. Let M be an indecomposable A-module, P0 be its
projective cover in modA, P be the projective cover of P0 ⊗A Q in modA,
and pM : M ⊗A R → M be the canonical epimorphism. Then there exists
an exact sequence of A-modules

0→ τAM ⊕HomA(Q, τAM)
u−→ τRM → P ′ ⊗A DR→ Ker(pM ⊗DR)→ 0

where P ′ is a summand of P .

P r o o f. We start with a minimal projective presentation of M in modA

P1
f1−→ P0

f0−→M → 0,

which yields, by [2], 1.3, a minimal projective presentation in modR

P1 ⊗A R
f1⊗R−−−→ P0 ⊗A R

f0⊗R−−−→M ⊗A R→ 0.
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Applying the Nakayama functor −⊗R DR, we obtain the following commu-
tative diagram with exact rows:

0 τR(M⊗AR) P1⊗AR⊗RDR P0⊗AR⊗RDR M⊗AR⊗RDR 0

0 τR(M⊗AR) P1⊗ADR P0⊗ADR M⊗ADR 0

//

1

��

//

∼=
��

//

∼=
��

//

∼=
��

//

// // // // //

We need to compute τRM and, for this purpose, we need a minimal
projective presentation of M in modR

P 1 → P 0 →M → 0.

It is clear that P 0
∼= P0 ⊗A R and that we have a commutative diagram

with exact rows in modR

P1 ⊗A R P0 ⊗A R M ⊗A R 0

P 1 P 0 M 0
��

f1⊗R //

1

��

f0⊗R //

pM

��

//

// pM (f0⊗R) // //

In order to compute P 1, we consider the short exact sequence of R-
modules

0→ Ω1
RM → P0 ⊗A R

pM (f0⊗R)−−−−−−→M → 0

as an exact sequence of A-modules. We have an isomorphism of A-modules
P0 ⊗A R ∼= P0 ⊕ (P0 ⊗A Q) and, as A-linear maps, we have pM = [1 0] and

f0 ⊗R =

[
f0 0
0 f0 ⊗Q

]
: P0 ⊕ (P0 ⊗A Q)→M ⊕ (M ⊗A Q).

Therefore pM (f0 ⊗Q) = [f0 0] and we have an isomorphism of A-modules

Ω1
RM = Ker[f0 0] ∼= Ω1

AM ⊕ (P0 ⊗A Q).

Let P be the projective cover of P0⊗AQ in modA. We have a projective
cover morphism in modR

P ⊗A R
p−→ P0 ⊗A Q.

Since P0 is projective and AQR is a subbimodule of ARR, then P0 ⊗A Q is
a submodule of P0 ⊗A R when viewed as R-modules. Let f be the R-linear

map defined by the composition P ⊗AR
p−→ P0⊗AQ ↪→ P0⊗AR. We thus

have a commutative diagram with exact rows in modR

P1 ⊗A R P0 ⊗A R M ⊗A R 0

(P1 ⊕ P )⊗A R P0 ⊗A R M 0

[ 1
0 ]

��

f1⊗R //

1

��

f0⊗R //

pM

��

//

[f1⊗R f ] // pM (f0⊗R) // //
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Applying −⊗RDR, we obtain a commutative diagram with exact rows in
modR

0 τR(M⊗AR) P1⊗ADR P0⊗ADR M⊗ADR 0

0 τRM (P1⊕P ′)⊗ADR P0⊗ADR M⊗RDR 0

//

u

��

j // f1⊗DR //

[ 1
0 ]

��

f0⊗DR //

1

��

//

pM⊗DR

��// // [f1⊗DR f′⊗DR] // (pM (f0⊗R))⊗DR// //

where P ′ is a summand of P , f ′ is the restriction of f to P ′, and u is induced
by passing to the kernels. Since the composition

[
1
0

]
j is a monomorphism,

so is u.

On the other hand, the above diagram induces the following two com-
mutative diagrams in modR, where the rows are short exact sequences:

0 τR(M ⊗A R) P1 ⊗A DR X 0

0 τRM (P1 ⊕ P ′)⊗A DR Y 0

//

u

��

j // //

[ 1
0 ]

��

//

u′

��
// // // //

where X = Im(f1 ⊗ DR), Y = Im[f1 ⊗ DR f ⊗ DR], and u′ is induced by
passing to the cokernels, and

0 X P0 ⊗A DR M ⊗A DR 0

0 Y P0 ⊗A DR M ⊗R DR 0

//

u′

��

// f0⊗DR//

1

��

//

pM⊗DR
��

// // // //

Applying the snake lemma to the second diagram yields that u′ is a mono-
morphism, and Cokeru′ ∼= Ker(pM ⊗ DR). Applying the snake lemma to
the first diagram yields a short exact sequence

0→ Cokeru→ P ′ ⊗A DR→ Cokeru′ → 0.

Hence, we have a short exact sequence of R-modules

0→ Cokeru→ P ′ ⊗A DR→ Ker(pM ⊗DR)→ 0.

On the other hand, [2], 2.1, gives

τR(M ⊗A R) ∼= HomA(R, τAM) ∼= τAM ⊕HomA(Q, τAM)

where the second isomorphism is an isomorphism of A-modules. Hence we
have a short exact sequence of A-modules

0→ τAM ⊕HomA(Q, τAM)
u−→ τRM → Cokeru→ 0.

The proposition follows at once.
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Remark. It follows from the proof of the proposition that we have a
short exact sequence of R-modules

0→ τR(M ⊗A R)→ τRM → Cokeru→ 0.

Corollary 1.2. For every indecomposable A-module M , the A-module
τAM is a submodule of τRM .

The above corollary was shown in a more general setting in [3], 4.2.
In fact, one can easily prove that, if A is a quotient of R and M is an
indecomposable A-module, then we have a commutative diagram in modR

0 τAM F M 0

0 τRM E M 0

// //
oO

f

��

//

��

//
�
�
�
�
�
�

�
�
�
�
�
�

// // // //

where the horizontal sequences are the almost split sequences ending with
M in modA and modR, respectively. It would be interesting to know
whether f , when considered as an A-linear map, coincides with our embed-
ding τAM → τRM.

Corollary 1.3. Assume M ⊗A Q = 0. Then we have

(a) P0 ⊗A Q = 0, and
(b) τRM ∼= τAM ⊕HomA(Q, τAM) as A-modules.

P r o o f. (a) If M ⊗A Q = 0, then M ⊗A R = M so

Ω1
R(M ⊗A R) = Ω1

RM = Ω1
AM ⊕ (P0 ⊗A Q).

Let P ′ be the projective cover of Ω1
R(M ⊗A R). By [2], 1.3, we have

P ′ ⊗A R ∼= P1 ⊗A R as R-modules, so P ′ ∼= P1 by [2], 1.2. Therefore
topΩ1

R(M ⊗A R) = topΩ1
AM in modA. Hence P0 ⊗A Q = 0.

(b) Clearly, P0 ⊗A Q = 0 implies P = 0. The result follows.

Corollary 1.4. Let e ∈ A be idempotent. The projective A-module eA
is projective in modR if and only if eQ = 0.

P r o o f. If M = eA is a projective R-module, then M ⊗A R = eR is a
projective R-module with the same top as eA. Consequently, eR = eA and
hence eQ = 0. Conversely, M ⊗A Q = eQ = 0 implies by 1.3 above that
τRM ∼= τAM⊕ HomA(Q, τAM) = 0.

We have the following interesting consequence of [2], 2.1.

Corollary 1.5. Let M be an indecomposable A-module such that pdM
= 1. Then

(a) HomA(Q, τAM) ∼= TorA1 (M,DQ) as A-modules.
(b) If QA is injective, then τR(M ⊗A R) ∼= τAM .
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P r o o f. (a) Let 0 → P1 → P0 → M → 0 be a minimal projective
resolution of M . The A-module decomposition DR = DA ⊕ DQ yields a
commutative diagram with exact rows and columns in modA

0 0 0 0

0 TorA1 (M,DQ) P1 ⊗A DQ P0 ⊗A DQ M ⊗A DQ 0

0 τR(M ⊗A R) P1 ⊗A DR P0 ⊗A DR M ⊗A DR 0

0 τAM P1 ⊗A DA P0 ⊗A DA M ⊗A DA 0

0 0 0 0

�� �� �� ��
// //

��

//

��

//

��

//

��
// //

��

//

��

//

��

//

��

//

��
// //

��

//

��

//

��

//

��

An easy calculation shows that the left column splits in modA. The result
follows from [2], 2.1.

(b) Since Q is injective, DQ is projective. Hence TorA1 (M,DQ) = 0 and
the statement follows.

2. The main result. In this section, we let CA denote the full subcate-
gory of modA consisting of all the indecomposable A-modules M having the
property that τAM ∼= τRM . Corollary 1.4 characterises the objects of CA
which are indecomposable projective A-modules. Our main theorem below
characterises those which are not projective.

Theorem 2.1. Let M be an indecomposable non-projective A-module.
The following conditions are equivalent :

(a) The almost split sequences ending with M in modA and in modR
coincide.

(b) M is in CA.
(c) HomA(Q, τAM) = 0 and M ⊗A Q = 0.
(d) HomA(Q, τAM) = 0 and HomA(M,DQ) = 0.
(e) M ⊗A Q = 0 and Q⊗A TrM = 0.
(f) HomA(M,DQ) = 0 and Q⊗A TrM = 0.

(g) If P1
f−→ P0 → M → 0 is a minimal projective presentation of M ,

then f ⊗Q and Q⊗ f t are epimorphisms.

P r o o f. (a)⇒(b). Trivial.

(b)⇒(a). Let 0 → τRM
f−→ E

g−→ M → 0 be an almost split sequence
in modR. We claim that it is almost split in modA. First, it does not split
in modA, since then we would have E ∼= M ⊕ τAM ∼= M ⊕ τRM implying
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that it splits in modR. If h : L → M is an A-linear map which is not a
retraction in modA, then h is also R-linear and it is not a retraction in
modR. Hence there exists an R-linear map h′ : L → E such that h = gh′.
Since h′ is R-linear, it is also A-linear.

(b)⇒(c). Let u : τAM⊕ HomA(Q, τAM) → τRM be as in 1.1. Since u
is injective and τAM ∼= τRM , it follows that HomA(Q, τAM) = 0 and that
u is an isomorphism between the R-modules τR(M ⊗A R) and τRM . But
τR(M ⊗A R) ∼= τRM means M ⊗A R = M , hence M ⊗A Q = 0.

(c)⇒(b). This follows from 1.3.
The equivalence of (c) with (d), (e) and (f) follows from the canonical iso-

morphisms M⊗AQ ∼= DHomA(M,DQ) and Q⊗ATrM ∼= D HomA(Q, τAM).
The equivalence of (e) and (g) follows from the facts that M ⊗A Q ∼=
Coker(f ⊗Q) and Q⊗A TrM ∼= Coker(Q⊗ f t).
Corollary 2.2. (a) If 0 → L → M → N → 0 is an exact sequence

in modA, with L and N in CA, then every indecomposable non-projective
summand of M is in CA.

(b) If f : M → N is irreducible in modA and if N is in CA, then f is
irreducible in modR.

(c) If M0
f1−→ M1

f2−→ . . .
ft−→ Mt is a sectional path in the Auslander–

Reiten quiver of A consisting of modules in CA, then it is a sectional path
in the Auslander–Reiten quiver of R.

P r o o f. (a) Applying − ⊗A Q to the given sequence yields an exact
sequence

L⊗A Q→M ⊗A Q→ N ⊗A Q→ 0,

which shows that M ⊗AQ = 0. On the other hand, there exists an injective
module IA such that we have a short exact sequence

0→ τAL→ τAM ⊕ I → τAN → 0.

Applying HomA(Q,−), we obtain an exact sequence

0→ HomA(Q, τAL)→ HomA(Q, τAM)⊕HomA(Q, I)→ HomA(Q, τAN)

hence HomA(Q, τAM) = 0.
(b) and (c) follow trivially from the theorem.

We now deduce (and generalise) Hoshino’s result. Let Â denote the repet-

itive algebra of A (as defined in [8]). Then there exist quotients of Â which
are split extensions of A by the bimodule Q =

⊕n
i=1(DA)⊗i for some n ≥ 1.

We have the following corollary.

Corollary 2.3. Assume that Q = (DA)n for some n ≥ 1 or that Q =⊕n
i=1(DA)⊗i for some n ≥ 1. Then

(a) M is in CA if and only if pdM ≤ 1 and id τAM ≤ 1.
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(b) If A is hereditary , then all the indecomposable non-projective A-
modules are in CA. Hence the Auslander–Reiten quiver of A fully embeds in
the Auslander–Reiten quiver of R.

(c) If A is tilted , and if MA is an indecomposable module lying on a
complete slice, then M lies in CA.

(d) If A is representation-infinite, then A is concealed if and only if all
but at most finitely many isomorphism classes of indecomposable A-modules
are in CA.

P r o o f. (a) We know by [10], p. 74, that pdM ≤ 1 if and only
if HomA(DA, τAM) = 0 while id τAM ≤ 1 if and only if M ⊗A DA ∼=
D HomA(M,A) = 0. If Q = (DA)n, the result follows at once. If Q =⊕n

i=1(DA)⊗i, thenM⊗ADA = 0 implies thatM⊗A(DA)⊗i = 0 for all i ≥ 1,
and the adjunction isomorphism implies that HomA((DA)⊗i, τAM) ∼=
HomA((DA)⊗(i−1), HomA(DA, τAM)) = 0 for all i ≥ 1.

(b) and (c) follow directly from (a).
(d) follows from (a) and [1], 3.4 (see also [11], 3.3).

Remark. It is worthwhile to observe that, if Q = DA, there exist split
extensions of A which are not trivial extensions, as is shown by the following
example due to K. Yamagata (private communication).

Let A be a symmetric algebra, and R = A ⊕ DA with multiplication
induced by the multiplication of A and the structural isomorphism AAA ∼=
ADAA.

Corollary 2.4. If M is an indecomposable non-projective A-module,
then τ

Â
M ∼= τAM if and only if pdM ≤ 1 and id τAM ≤ 1.

Clearly, if gl.dimA <∞, then the above corollary can also be understood
in terms of the derived category of bounded complexes over modA (see
[6], I.4.7, p. 38). We also deduce the following consequence (compare with
[13], 4.1).

Corollary 2.5. Assume that Q = (DA)n for some n ≥ 1 or that Q =⊕n
i=1(DA)⊗i for some n ≥ 1. The following conditions are equivalent :

(a) A is hereditary ,
(b) Every irreducible morphism in modA is irreducible in modR.
(c) Every almost split sequence in modA is almost split in modR.

P r o o f. (a)⇒(b). Let M → N be irreducible in modA. If N is not
projective, then we are done by 2.2(b). If N is projective, so is M and we
have an almost split sequence in modA

0→M → N ⊕ L→ τ−1A M → 0

since M is not injective. Thus τ−1A M is in CA and the statement follows.
(b)⇒(c). Trivial.
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(c)⇒(a). Every indecomposable non-projective A-module M is in CA,
hence HomA(Q, τAM) = 0. Consequently, HomA(DA, τAM) = 0, thus
pdM
≤ 1 and A is hereditary.

Remarks. (a) If Q is as in 2.3 and 2.5, no projective A-module is
projective in modR. Indeed, for any idempotent e ∈ A, we have eDA =
D(Ae) 6= 0, hence eQ 6= 0 and we apply 1.4.

(b) Assume Q = AAA. Then no indecomposable A-module lies in CA.
Indeed, if M lies in CA, then M ∼= M ⊗A A = 0.

We now turn our attention to one-point extensions. Let k be a commu-
tative field, B be a finite-dimensional basic k-algebra and R = B[X] be the
one-point extension of B by the B-module X. Let A = B × k and, letting
a denote the extension point, let Q be the R-R-bimodule generated by the
arrows from a to the quiver of B. It is easily seen that R is a split extension
of A by Q, that QA ∼= XA while D(AQ) ∼= S(a)t for some t ≥ 1, where
S(a) denotes the simple module corresponding to the point a. We have the
following corollary (compare [10], p. 88).

Corollary 2.6. Let R = B[X] and M be an indecomposable non-
projective B-module.

(a) τBM ∼= τRM if and only if HomB(X, τBM) = 0. In particular , if
every indecomposable summand of X is in CA, then Ext1B(X,X) = 0.

(b) If τBM is not a successor of X, then τBM ∼= τRM . In particular ,
if N is not a successor of X, then τBN ∼= τRN .

P r o o f. (a) We have M ⊗AQ ∼= D HomA(M,DQ) ∼= D HomA(M,S(a)t)
= 0. Therefore M is in CA if and only if HomB(X, τBM) = HomA(Q, τAM)
= 0. The second statement follows from the isomorphism Ext1B(X,X) ∼=
DHomB(X, τBX) = DHomA(Q, τAQ).

(b) If τBM 6∼= τRM , then HomB(X, τBM) 6= 0 so τBM is a successor of
X. The second statement follows from the fact that, if τBN is a successor
of X, then so is N .

Examples. (a) Let k be a commutative field, and A be the finite-
dimensional k-algebra given by the quiver

1◦ 2◦ 3◦βoo αoo

bound by αβ = 0. The algebra R given by the quiver

1◦ 2◦ 3◦βoo αoo

 !
γ

OO
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bound by αβ = 0, βγ = 0, γα = 0 is the split extension of A by the two-sided
ideal A generated by γ. A k-basis of Q is the set {γ} so that QA = S(3)
and D(AQ) = S(1).

Here, every irreducible morphism (or almost split sequence) in modA
remains irreducible (or almost split, respectively) in modR, even though A
is not hereditary.

(b) Let A be as in (a), and R be given by the quiver

1◦ 2◦ 3◦βoo
γ

//
αoo

bound by αβ = 0, γαγα = 0. Here R is the split extension of A by the two-
sided ideal Q generated by γ. A k-basis of Q is the set {γ, αγ, γα, αγα, γαγ,
αγαγ}. We have QA =

(
3
2

)2 ⊕ S(3)2 and D(AQ) =
(
3
2

)3
, where

(
3
2

)
denotes

the uniserial module of length two with top S(3) and socle S(2).
We claim that S(2) is not in CA. Indeed, consider the minimal projective

resolution of S(2)A

0→ e1A→ e2A→ S(2)→ 0.

Applying −⊗A Q, we obtain an exact sequence

e1Q→ e2Q→ S(2)⊗A Q→ 0.

Since e1Q = 0, we have S(2) ⊗A Q ∼= e2Q =
(
3
2

)
⊕ S(3) 6= 0. On the other

hand, S(3) lies in CA. Indeed, we have HomA(Q, τAS(3)) = HomA

((
3
2

)2 ⊕
S(3)2, S(2)

)
= 0 and also HomA(S(3),DQ) = HomA

(
S(3),

(
3
2

)3)
= 0.
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