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ON QUASITILTED ALGEBRAS WHICH ARE ONE-POINT
EXTENSIONS OF HEREDITARY ALGEBRAS

BY

DIETER H A P P E L (CHEMNITZ) AND

INGER HEIDI S L U N G Å R D (TRONDHEIM)

Abstract. Quasitilted algebras have been introduced as a proper generalization of
tilted algebras. In an earlier article we determined necessary conditions for one-point
extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and
not tilted. In this article we study algebras satisfying these necessary conditions in order
to investigate to what extent the conditions are sufficient.

1. Introduction. Let k be an algebraically closed field. By an algebra
we mean a finite-dimensional k-algebra. If Λ is such an algebra, we denote by
modΛ the category of finitely generated left Λ-modules. If X is a Λ-module,
we denote by pdΛX (resp. idΛX) the projective (resp. injective) dimension
of X.

Definition 1. A finite-dimensional algebra Λ is called quasitilted if
there exist a hereditary abelian category H which is locally finite, that is,
has finite-dimensional Hom and Ext spaces, and a tilting object T ∈ H such
that Λ = EndH(T )op.

Quasitilted algebras give a proper generalization of tilted algebras. For
example the canonical algebras (compare [Ri]), which are non-domestic, are
quasitilted but not tilted. If Λ is a quasitilted algebra arising from the hered-
itary category H, then the categories H and modΛ are derived equivalent.
Only two types of quasitilted algebras are known, those derived equivalent
to the module category of a hereditary algebra (for example the tilted al-
gebras) and those derived equivalent to the module category of a canonical
algebra. The latter will be called quasitilted algebras of canonical type (see
[LS] for a classification of this class of algebras). It has been conjectured
that these are the only quasitilted algebras. The conjecture has been proved
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in some cases (see [HR1], [HR2], [Sk]), and we will use the fact that it is
true if H has objects of finite length to get our main result in Section 3.

Since the quiver of a quasitilted algebra Λ has no oriented cycles, we can
always view Λ as a one-point extension Λ =

(
k
M

0
A

)
of a quasitilted algebra

A by the A-k-bimodule M . In many classes of examples, like for instance
the wild canonical algebras, the algebra A can be chosen to be hereditary.

In [HRS] the case of an indecomposable hereditary algebra was studied.
In the present article we investigate the case of one-point extensions of de-
composable finite-dimensional hereditary algebras. Necessary conditions for
such a one-point extension to be quasitilted and not tilted were determined
in [HS]. In the present article we investigate these conditions, and we will
see that they are not sufficient.

For further representation-theoretic terminology used here we refer to
[ARS] or [Ri], in particular for the classical tilting theory which is described
in [Ri].

2. One-point extensions of hereditary algebras. In this section
we recall some definitions and results from [HRS] and [HS].

Let H be a finite-dimensional hereditary algebra, and let M be an H-
module. The one-point extension H[M ] of H by M is then defined as the
triangular matrix ring

H[M ] =

[
k 0

HMk H

]
with the obvious multiplication.

Before we consider the case when the hereditary algebra H is decom-
posable, we recall some known results for indecomposable algebras. For
indecomposable finite-dimensional hereditary algebras a precise description
of when H[M ] is quasitilted is given in [HRS, Theorem III.2.13]. We will
not need the full information obtained there. We will only use the following
partial results from [HRS].

Lemma 2. Let H be an indecomposable finite-dimensional hereditary al-
gebra and let M be an H-module. Let M = M1 q . . . qMt, where all Mi

are indecomposable. Then we have the following :

(a) Suppose that all Mi are directing. Then H[M ] is quasitilted if and
only if M1, . . . ,Mt lie on a complete slice. Moreover , H[M ] is tilted in this
case.

(b) If some Mi is non-directing and H[M ] is quasitilted , then M is
quasisimple regular.

Another useful result when working with quasitilted algebras is the fol-
lowing result from [HRS].
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Lemma 3 [HRS, Proposition II. 1.15]. Let Λ be a quasitilted algebra
and let P be a finitely generated projective Λ-module. Then EndΛ(P )op is a
quasitilted algebra.

For n ≥ 1, let An be the graph

•
1

•
2

•
n− 1

•
n

� � � � � � � �

Let ~An be a quiver with An as underlying graph. We can then form the
hereditary path algebra k~An. For each vertex i of the quiver ~An, there is
a simple k~An-module Si concentrated at vertex i. Let Pi be the projective
cover of Si. We say that Pi corresponds to vertex i.

We now recall the necessary conditions we obtained in [HS] for the one-
point extension S[N ] of a decomposable hereditary algebra S to be qua-
sitilted but not tilted.

Theorem 4 [HS, Theorem 3.4]. Let S be a decomposable hereditary al-
gebra, and let N be a non-zero S-module. Assume that S[N ] is an in-
decomposable algebra. If S[N ] is quasitilted but not tilted , then S[N ] '
(H × k~An)[M q P ], where H is an indecomposable hereditary algebra of in-
finite representation type, M is a quasisimple regular H-module and P is
an indecomposable projective k~An-module isomorphic either to P1 or to Pn.

In the following section we study one-point extension algebras of the
form (H × k~An)[M q P ].

3. Algebras of the form Λn = (H × k~An)[M q P ]. Let H be an
indecomposable finite-dimensional hereditary k-algebra and let M be an
indecomposable H-module. For n ≥ 1, let k~An be the path algebra of the
quiver ~An. Let P be either the indecomposable projective k~An-module P1

corresponding to vertex 1 or the indecomposable projective k~An-module Pn
corresponding to vertex n. We will often, without loss of generality, assume
that P = P1.

We can now form the one-point extension Λn = (H × k~An)[M q P ] of

the hereditary algebra H × k~An by M q P . We denote H[M ] by Λ0.

Note that Λn, n ≥ 1, can be formed by rooting the quiver

~∆ : •
ω

•
1

•
2

•
n− 1

•
n

// � � � � � � � �

in the extension vertex ω of H[M ], where the orientation of ~∆ is determined

by the subquiver ~An. Since the quiver ~∆ is a branch (see [Ri] for definition),
Λn is a branch extension of H by M . See [LM] for more information about
this notion.
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We first prove that for given n, H and M , the orientation of the quiver of
type An does not matter when determining whether Λn is quasitilted or not.

Lemma 5. Let H be an indecomposable finite-dimensional hereditary
k-algebra and let M be an indecomposable H-module. For n ≥ 1, let k~An be
the path algebra of the quiver ~An. Let P be either the indecomposable projec-
tive k~An-module P1 corresponding to vertex 1 or the indecomposable projec-
tive k~An-module Pn corresponding to vertex n. If Λn = (H × k~An)[M qP ]
is quasitilted for one orientation of An, then Λn is quasitilted for any ori-
entation of An.

P r o o f. We index the vertices in An the following way:

•
1

•
2

•
n− 1

•
n

� � � � � � � �

where n ≥ 1. We can without loss of generality assume that P = P1.

If ~An contains a sink sdifferent from 1, then the modulePs is simple pro-
jective and not injective. Thus we have an almost split sequence 0→ Ps →
Q → Tr DPs → 0 with Q projective. This implies that idΛn Tr DPs = 1.
By assumption, Λn is quasitilted, so all projective Λn-modules are in LΛn

=
{X ∈ indΛn | pdΛn

Y ≤ 1 for all Y with Y  X} (see [HRS, Theorem II
1.14]). Let X ∈ indΛn and assume we have 0 6= f ∈Hom(X,Tr DPs). If X
is not isomorphic to Tr DPs then f factors through Q, thus X is a predeces-
sor of an indecomposable projective module in LΛn and hence pdΛn

X ≤ 1.
So all predecessors of Tr DPs are either a predeccesor of a module in LΛn

or isomorphic to Tr DPs. This shows that Tr DPs ∈ LΛn
.

Let PH be the direct sum of one module from each isomorphism class of
indecomposable projective Λn-modules that comes from the algebra H, and
let

T =
( n⊕
j=1
j 6=s

Pj

)
⊕ Tr DPs ⊕ Pω ⊕ PH .

Then T is an APR-tilting module in LΛn , hence Λ′n = EndΛn(T )op is qua-

sitilted [HRS, Proposition II 2.4]. Let ~A′n be the orientation of An corre-

sponding to Λ′n. In ~An the vertex s was a sink, but it will be a source in ~A′n.

Dually, assume that ~An contains a source r different from 1. Then the
simple module Ir is injective. Let IH be the direct sum of one module from
each isomorphism class of indecomposable injective Λn-modules that comes
from the algebra H, and let

T =
( n⊕
j=1
j 6=s

Ij

)
⊕D Tr Ir ⊕ Iω ⊕ IH .
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Then T is an APR-cotilting module in RΛn
= {X ∈ indΛn | idΛn

Y ≤ 1 for

all Y with X  Y }, so again Λ′n = EndΛn
(T )op is quasitilted. Let ~A′n be

the orientation of An corresponding to Λ′n. In ~An the vertex r was a source,

but it will be a sink in ~A′n.

This shows that we can pass from one orientation of An to any other
orientation by a sequence of APR-tilting and APR-cotilting modules. So if
the algebra Λn is quasitilted for one orientation of An, then Λn is quasitilted
for any orientation of An.

Because of Theorem 4 we will mainly be interested in knowing when Λn
is quasitilted if H is of infinite representation type and M is a quasisimple
regular H-module. It is, however, not difficult to answer this question in
other cases as well.

It is well known what happens when M is either preprojective or prein-
jective.

Proposition 6. Let M be an indecomposable preprojective (resp. prein-
jective) H-module. Then Λn is tilted for all n ≥ 0.

So Λn is tilted whenever H is of finite representation type. Hence from
now on we assume that the hereditary algebra H is of infinite representation
type and that M is an indecomposable regular H-module. It follows from
Lemma 3 that Λ0 is quasitilted whenever Λn, n ≥ 1, are quasitilted. So by
Lemma 2, we see that M must be a quasisimple regular H-module if Λn is
quasitilted.

Let us first investigate Λn when H of tame representation type. From
[LM, Proposition 3.6] we have the following easy consequence.

Proposition 7. Let H be of tame representation type and let M be a
quasisimple regular H-module. Then Λn is quasitilted for all n ≥ 1.

P r o o f. As we have seen, Λn can be viewed as a branch extension of
H by M with the branch ~∆. Since H is tame and M is simple regular, we
deduce from the dual result of [LM, Proposition 3.6] that Λn is quasitilted.

Example 8. Let H be the Kronecker algebra and let M be a simple
regular H-module with dimension vector dimM=(1 1). Let ~An have linear
orientation and let P = Pn be the indecomposable projective module of
length n. Hence Λn has the following quiver:

• •

•

•
1

•
2

•
n− 1

•
n

αoo

β
oo

��~~
~~

γ
__@@@@

oo � � � � � � � � oo
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with the relation αγ = βγ. In this case Λn is not only quasitilted, but also
tilted. This can be seen by viewing Λn as a one-point coextension of the
following algebra Γ of type An+2:

n+ 2•

•n+ 1

•
1

•
2

•
n− 1

•
n

������

^^>>>>

oo � � � � � � � � oo

We see that Λn = [In+2 q Sn+2]Γ . Since In+2 and Sn+2 are both directing
and they lie on a complete slice, we conclude by Lemma 2 that Λn is tilted.

The only situation left to investigate is when H is of wild representation
type and M is indecomposable regular. In this situation we have not been
able to determine exactly when Λn is quasitilted, but we have a partial
result.

We will prove the result by arguments on a locally finite hereditary
abelian category with a tilting object. Before we state the result, we recall
some definitions and basic results about such categories.

Let H be a locally finite hereditary abelian category with a tilting ob-
ject T . Let H0 be the subcategory of H consisting of the objects of finite
length and H∞ be the additive subcategory of H whose indecomposable
objects are of infinite length.

Given an object X in H, we can form the perpendicular category X⊥ =
{Y ∈ H | HomH(X,Y ) = 0 = Ext1H(X,Y )}. One can dually define ⊥X.

For objects X in H∞ which are torsion and exceptional, i.e. indecom-
posable with Ext1H(X,X) = 0 and Ext1H(T,X) = 0, we have the following
result.

Theorem 9 [HR2, Theorem 4.14]. Let H be a locally finite hereditary
abelian category with a tilting object T . If X is a torsion exceptional object
in H∞, then X⊥ is equivalent to modH ′ for some hereditary algebra H ′.

As mentioned in the Introduction, it has been conjectured that the tilted
algebras and the quasitilted algebras of canonical type are the only quasi-
tilted algebras. This has been proved by the first author and I. Reiten in
the following case.

Theorem 10 [HR2, Theorem 6.1]. Let H be a connected locally finite
hereditary abelian category with a tilting object. If H0 6=∅, then H is derived
equivalent to modA, where A is either a hereditary algebra or a canonical
algebra.

These two results are used in the proof of the following.
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Theorem 11. Let H be of wild representation type and let M be an
indecomposable regular H-module. For n ≥ 0, assume that Λn is quasitilted
but not tilted. Then Λn+1 is not quasitilted.

P r o o f. We may by Lemma 5 assume that ~An+1 has the following ori-
entation:

•
1

•
2

•
n

•
n+ 1

// � � � � � � � � //

We also assume that P = P1. If Λn+1 = (H×k~An+1)[M qP ] is quasitilted,
then there exist a locally finite hereditary abelian category H and a tilting
object T ∈ H such that Λn+1 = EndH(T )op. Let ω be the extension vertex
of Λn+1. We can write T as T = T ′qTωqT1q . . .qTn+1 where EndH(T ′)op

' H, EndH(T ′ q Tω)op ' H[M ] and EndH(T ′ q Tω q T1 q . . .q Ti)op ' Λi
for all 1 ≤ i ≤ n+ 1.

If Tn+1 ∈ H∞, we find by Theorem 9 that ⊥Tn+1 is equivalent to modH ′

for some hereditary algebra H ′. The module T ′qTωqT1q. . .qTn is a tilting
object in ⊥Tn+1 (see [HR2, Theorem 2.5]). This implies that EndH(T ′qTωq
T1 q . . . q Tn)op ' Λn is tilted. But Λn was assumed not to be tilted, so
Tn+1 has to be of finite length in H. Hence H0 6= ∅, so by Theorem 10 we
see that Λn+1 is either tilted or quasitilted of canonical type. Since Λn is
not tilted, Λn+1 cannot be tilted either. Hence Λn+1 has to be quasitilted
of canonical type.

Now we investigate the hereditary category T⊥ω . The module T ′ q T1 q
. . . q Tn+1 is a tilting object in T⊥ω (see [HR2, Theorem 2.5]). Since

EndH(T ′ q T1 q . . . q Tn+1)op ' H × k~An+1, we deduce that T⊥ω is de-
rived equivalent to the module category of a wild hereditary algebra. Hence
T⊥ω does not have tubes. Since Tn+1 is a direct summand of a tilting ob-
ject and is in H0, H must have tubes of rank greater than 1. If Tω ∈ H0,
this would imply that T⊥ω had tubes. Since this is not the case, we have
Tω ∈ H∞.

Let Pn+1 be the indecomposable projective Λn+1-module corresponding
to vertex n+1. Then the following exact sequence is the almost split sequence
starting at the simple projective Λn+1-module Sn+1 = Pn+1:

0→ Pn+1 → Pn → Tr DPn+1 → 0.

This shows in particular that pdΛn+1
Tr DPn+1 = 1, and it is easily seen

that idΛn+1
Pn+1 = 1. Then by [Ha, 4.7],

Pn+1 → Pn → Tr DPn+1 → Pn+1[1]

is an AR-triangle in Db(modΛn+1). Since Db(modΛn+1) and Db(H) are
derived equivalent, this means that we have an AR-triangle

Tn+1 → Tn → Zn+1 → Tn+1[1]
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in Db(H). So we have an irreducible map Tn+1 → Tn in H, and hence Tn+1

and Tn are in the same component of H.
The almost split sequence in modΛn+1 starting with Pi, 2 ≤ i ≤ n, is

the following:

0→ Pi → Tr DPi+1 q Pi−1 → Tr DPi → 0.

It is easily seen that pdΛn+1
Tr DPi = 1 and idΛn+1

Pi = 1. Just as above
this will give us an AR-triangle

Ti → Zi+1 q Ti−1 → Zi → Ti[1]

in Db(H). Hence we have an irreducible map Ti → Ti−1 in H, and therefore
Ti and Ti−1 are in the same component of H for 2 ≤ i ≤ n.

The almost split sequence in modΛn+1 starting with P1 is the following:

0→ P1 → Tr DP2 q Pω → Tr DP1 → 0.

As in the cases above, this gives us an irreducible map T1 → Tω in H, and
therefore T1 and Tω are in the same component of H.

This means that T1, . . . , Tn+1 and Tω all are in the same component of
H. But Tn+1 is of finite length and Tω is of infinite length, so this is not
possible. Hence Λn+1 is not quasitilted.

From this result we see that Λn can only be quasitilted and not tilted
for at most one n. Hence we have the following consequence of Theorem 11.

Corollary 12. Let H be hereditary of wild representation type and let
M be an indecomposable regular H-module. If Λn is quasitilted but not tilted
for n ≥ 1, then Λi is tilted for all 0 ≤ i ≤ n− 1.

4. Extensions of quasitilted algebras and examples. Before we
illustrate Theorem 11 by some examples, we prove a result which gives an
easy indication of whether an algebra is quasitilted or not.

Theorem 13. Let Λ be a quasitilted algebra which is not tilted , and
let Λ[M ] be the one-point extension of Λ by a Λ-module M . If Λ[M ] is
quasitilted , then Λ[M ] is quasitilted of canonical type.

P r o o f. If Λ[M ] is quasitilted, then there exist a locally finite hereditary
abelian categoryH and a tilting object T ∈ H such that EndH(T )op = Λ[M ].
Let ω be the extension vertex in Λ[M ]. We can write T as T = T ′ q Tω
where EndH(T ′)op ' Λ. If H0 = ∅, then Tω must be of infinite length.
By using Theorem 9 we see that T⊥ω is equivalent to modH ′ where H ′ is
a hereditary algebra. Since T ′ is a tilting object in T⊥ω , this would imply
that EndH(T ′)op ' Λ is tilted. Since Λ is not tilted, we must therefore have
H0 6= ∅. Also, Λ[M ] cannot be tilted, since Λ is not. So by Theorem 10, we
find that Λ[M ] has to be quasitilted of canonical type.
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The Coxeter polynomial of an algebra A is the characteristic polynomial
of the Coxeter transformation of A. It was shown in [LP, Proposition 4.2]
that the Coxeter polynomial of a canonical algebra C = C(p, λ) is of the
following form:

χ(x) = (x− 1)2
t∏
i=1

xpi − 1

x− 1
.

We say that a Coxeter polynomial of this form is of canonical type. Two
algebras derived equivalent to each other have the same Coxeter polynomial,
so all quasitilted algebras of canonical type have Coxeter polynomials of this
type. From Theorem 13 we now have the following easy consequence.

Corollary 14. Let Λ be a quasitilted algebra which is not tilted , and
let Λ[M ] be the one-point extension of Λ by a Λ-module M . If the Coxeter
polynomial of Λ[M ] is not of canonical type, then Λ[M ] is not quasitilted.

Example 15. Let H be given by the quiver

• • • • •

•

SSSSSSSSSS))

HHHH## �� {{vv
vv

uukkkk
kkkk

kk

and let M be an indecomposable regular H-module with dimension vector
dimM =

(
1 1 1 1 1

2

)
such that Λ0 = H[M ] is a wild canonical algebra. This

of course means that Λ0 is quasitilted and not tilted. So we find by using
Proposition 11 that Λ1 is not quasitilted. This can also be seen by using the
dual of Corollary 14. The Coxeter polynomial of Λ1 is χ(x) = (x4 − x3 +
x2 − x+ 1)(x+ 1)4, which is not of canonical type.

Example 16. In [Hü] it was shown that the algebra with quiver

ω•

1 • •

2 • • •

3 • • •

•

•








��

uukkkk
kkkk

kk �
�
�
�
�
�

GGGG##

�� ��

��
FFFF""

FFFF""||xx
xx

��

��

is quasitilted but not tilted. It is clearly of type Λ3. Proposition 11 tells us
that Λ4 is not quasitilted, and that the algebras Λ0, Λ1 and Λ2 are all tilted.

The Coxeter polynomial of Λ4 is χ(x) = x12 + x11− x9− x8 + x6− x4−
x3 + x + 1, so we can also see by the dual of Corollary 14 that Λ4 is not
quasitilted. For the algebras Λ0, Λ1 and Λ2 one can find a complete slice in
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the preinjective component of the corresponding AR-quiver, so this proves
that they are tilted. In fact, Λ0 is tilted from an algebra of type

•
•

• • • •
•

•

sss
s

sss
s

KKKK
KKKK

Λ1 is tilted from an algebra of type

•
• • • • •

•
•

•

KKKK
sss

s

KKKK
KKKK

Λ2 is tilted from an algebra of type

•
• • • • • • •

•
•

sss
s

KKKK
KKKK

The next example is one where we cannot use Proposition 11 or Corol-
lary 14 to decide if the algebra Λ1 is quasitilted. It is possible in this example
to decide whether Λ1 is quasitilted in another way.

Example 17. Let H be the hereditary algebra given by the quiver

• •

• •

• • •

• •

�� ��

��
HHHH## ��{{vv

vv

{{vv
vv

HHHH##

and let M be the indecomposable regular H-module with dimension vector

dimM =

(
1 1
1 1
1 1 1
1 1

)
.

We then look at the algebra Λ1 = (H × k~A1)[M qP ]. Hence Λ1 is given by
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the following quiver with the indicated commutativity relation:

ω•

1 • • •

• •

• •
α

•

• •

GGGG##{{ww
ww

uukkkk
kkkk

kk �
�
�
�
�
�

�� ��

��
HHHH## ��{{vv

vv

{{vv
vv

HHHH##

One can determine that Λ0 is tilted from an algebra of type

•
• • •

• • • •
• •

JJJJttt
t

ttt
t

ttt
t JJJJ

JJJJ

ttt
t JJJJ

The Coxeter polynomial of Λ1 is

χ(x) = (x− 1)2
(x8 − 1)

(x− 1)

(x2 − 1)

(x− 1)

(x2 − 1)

(x− 1)
,

so Corollary 14 does not tell us if Λ1 is quasitilted or not. By the following
argument one can however see that Λ1 is not quasitilted.

Inside Λ1 we have the following subalgebra H ′ of type Ẽ7:

•

• • •

• •

• •

FFFF ""||xx
xx

uullll
lll

ll

�� ��

�� ��

H ′ is tame hereditary, and hence especially tame concealed. Let M ′ be the
indecomposable H ′-module with dimension vector

dimM ′ =

(
1

0 1 1
1 1
0 0

)
.

This is a simple regular H ′-module in a tube of rank 3. Now Λ1 is obtained
by rooting the hereditary quiver

α•
• •

JJJJ%%yyttt
t

in the coextension vertex α of [M ′]H ′. From the dual result of [Sk, Lem-
ma 3.2] we then conclude that Λ1 is not quasitilted.
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