COLLOQUIUM MATHEMATICUM

VOL. 80

1999

THE CLASS NUMBER ONE PROBLEM FOR THE DIHEDRAL AND DICYCLIC CM-FIELDS

ΒY

STÉPHANE LOUBOUTIN (CAEN)

Abstract. We recall the determination of all the dihedral CM-fields with relative class number one, and prove that dicyclic CM-fields have relative class numbers greater than one.

1. Introduction. Whenever N is a CM-field, we let N^+ and h_{N}^- denote its maximal totally real subfield and its relative class number (see [Wa, Chapter 4]). A. Odlyzko [Odl] proved that there are only finitely many normal CM-fields with class number one, and J. Hoffstein [Hof] made this result more precise by proving that the degree of a normal CM-field with class number one is less than 436. (Note that K. Yamamura [Yam] solved the class number one problem for the abelian CM-fields.)

The aim of this paper is to provide the reader with the determination of all the non-abelian normal CM-fields with Galois group isomorphic either to any dihedral group (which we call a *dihedral CM-field*) or any dicyclic group (which we call a *dicyclic CM-field*) which have class number one.

Let us first recall the definition of these two non-abelian groups: the dihedral group of order 2m > 4 is

$$D_{2m} = \langle a, b : a^m = b^2 = 1, \ b^{-1}ab = a^{-1} \rangle,$$

for which $(a^i b)^2 = 1$, and the *dicyclic group* of order 4n > 4 is

$$Q_{4n} = \langle a, b : a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle,$$

for which $(a^i b)^2 = a^n$. Since the centre $Z(D_{2m})$ of a dihedral group of order 2m with m odd is trivial, the degree of a dihedral CM-field must be divisible by 4 (Proposition 2(i)) and its Galois group will be denoted by D_{4n} . Since $Z(D_{4n}) = Z(Q_{4n}) = \{1, a^n\}$ and since both the quotient groups $D_{4n}/Z(D_{4n})$ and $Q_{4n}/Z(Q_{4n})$ are isomorphic to D_{2n} , the dihedral group of order 2n, for any dihedral or dicyclic CM-field \mathbf{N} of degree 4n its maximal totally real subfield \mathbf{N}^+ is normal with Galois group D_{2n} .

¹⁹⁹¹ Mathematics Subject Classification: Primary 11R29, 11R21.

Key words and phrases: dihedral group, dicyclic group, CM-field, relative class number.

^[259]

S. LOUBOUTIN

The determination of all the dihedral CM-fields with relative class number and class number one has just been completed by a student of ours, Y. Lefeuvre, and his determination stems from the previous determination in [LO2] of all the dihedral CM-fields of 2-power degrees with relative class number one. Let us gather up all these results in the following Theorem:

THEOREM 1. (i) (see [LO2]) There are 24 dihedral CM-fields of 2-power degrees $4n = 2^r \ge 8$ with relative class number one. More precisely,

• There are 19 dihedral CM-fields of degree 8 with relative class number one: the narrow Hilbert 2-class fields of the 19 real quadratic number fields $\mathbb{Q}(\sqrt{pq})$ with $pq \in \{2 \cdot 17, 2 \cdot 73, 2 \cdot 89, 2 \cdot 233, 2 \cdot 281, 5 \cdot 41, 5 \cdot 61, 5 \cdot 109, 5 \cdot 149, 5 \cdot 269, 5 \cdot 389, 13 \cdot 17, 13 \cdot 29, 13 \cdot 157, 13 \cdot 181, 17 \cdot 137, 17 \cdot 257, 29 \cdot 53, 73 \cdot 97\}$. Moreover, the narrow Hilbert 2-class fields of $\mathbb{Q}(\sqrt{5 \cdot 269})$ and $\mathbb{Q}(\sqrt{17 \cdot 257})$ have class number 3, and the 17 remaining narrow Hilbert 2-class fields have class number one.

• There are 5 dihedral CM-fields of degree 16 with relative class number one: the narrow Hilbert 2-class fields of the 5 real quadratic number fields $\mathbb{Q}(\sqrt{pq})$ with $pq \in \{2 \cdot 257, 5 \cdot 101, 5 \cdot 181, 13 \cdot 53, 13 \cdot 61\}$. Moreover, the narrow Hilbert 2-class field of $\mathbb{Q}(\sqrt{2 \cdot 257})$ has class number 3, and the 4 remaining narrow Hilbert 2-class fields have class number one.

• Dihedral CM-fields of degree $2^r > 16$ have relative class numbers greater than one.

(ii) (see [LOO]) There are 16 non-abelian normal CM-fields of degree 12 with relative class number one. Moreover, nine of these fields have class number one.

(iii) (see [Lef] and [LL]) There are only 2 dihedral CM-fields of degree $4p \ge 20, p \ge 5$ a prime, with relative class number one. Only one of these has class number one. There is only one dihedral CM-field of degree $2^rp, r \ge 3$, with relative class number one, namely the narrow Hilbert class field of the real quadratic field $\mathbb{Q}(\sqrt{5\cdot 269})$, and it has degree 24 and class number one.

(iv) Apart from these 43 = 19 + 5 + 16 + 2 + 1 fields (respectively, these 32 = 17 + 4 + 9 + 1 + 1 fields), there is no other dihedral CM-field of degree 4n > 4 with relative class number one (respectively, with class number one).

2. Prerequisites. Let p be an odd prime. A pure real dihedral field is a normal field \mathbf{F} of degree 2p and Galois group D_{2p} such that p is totally ramified in \mathbf{F}/\mathbb{Q} and such that p is the only rational prime which is ramified in \mathbf{F}/\mathbb{Q} . Note that we must have $p \equiv 1 \pmod{4}$ and $\mathbb{Q}(\sqrt{p})$ must be the quadratic subfield of \mathbf{F} .

We now collect known results we will use to prove that there is no dicyclic CM-field with relative class number one:

260

PROPOSITION 2. (i) (see [LOO, Lemma 2]) Let \mathbf{N} be a normal CM-field with Galois group \mathbf{G} . Then the complex conjugation is in the centre $Z(\mathbf{G})$ of \mathbf{G} (and \mathbf{N}^+/\mathbb{Q} is therefore normal).

(ii) (see [LOO, Th. 5]) Let $\mathbf{k} \subseteq \mathbf{K}$ be two CM-fields. If the degree $[\mathbf{K} : \mathbf{k}]$ of the extension \mathbf{K}/\mathbf{k} is odd, then $h_{\mathbf{k}}^-$ divides $h_{\mathbf{K}}^-$.

(iii) (see [LO1]) If t prime ideals of **N** are ramified in the quadratic extension \mathbf{N}/\mathbf{N}^+ then 2^{t-1} divides $h_{\mathbf{N}}^-$.

(iv) (see [LOO, Prop. 8]) Let p be any odd prime and \mathbf{N}/\mathbf{M} be a cyclic extension of degree p of CM-fields. Assume that $\mathbf{N}^+/\mathbf{M}^+$ is a cyclic extension of degree p. Let T be the number of prime ideals of \mathbf{M}^+ which split in \mathbf{M}/\mathbf{M}^+ and are ramified in $\mathbf{N}^+/\mathbf{M}^+$. Then $p^{T-1}h_{\mathbf{M}}^-$ divides $h_{\mathbf{N}}^-$.

(v) (see [LOO, Prop. 9]) Let $p \equiv 1 \pmod{4}$ be a prime and let $\varepsilon_p = (u_p + v_p \sqrt{p})/2 > 1$ be the fundamental unit of $\mathbb{Q}(\sqrt{p})$. If p does not divide v_p , then there does not exist any pure real dihedral number field **F** of degree 2p.

(vi) (see [Mar]) Let \mathbf{F} be a dihedral field of degree 2p. Let \mathbf{L} denote its quadratic subfield, let $\chi_{\mathbf{L}}$ denote the primitive quadratic Dirichlet character associated with \mathbf{L} and let q denote a rational prime. If q is ramified in \mathbf{L}/\mathbb{Q} , say (q) = Q^2 in \mathbf{L} , then either Q splits completely in \mathbf{F}/\mathbf{L} or Q is totally ramified in \mathbf{F}/\mathbf{L} . In the latter case, q = p. Moreover, if the prime ideals of \mathbf{L} above a rational prime q different from p (¹) are ramified in \mathbf{F}/\mathbf{L} then $q \equiv \chi_{\mathbf{L}}(q) \pmod{p}$.

3. Relative class numbers of dicyclic CM-fields

Diagram 1

 $^(^{1})$ Note that we forgot to mention this restriction in [LOO, Lemma 4(ii)].

THEOREM 3. Let **N** be a dicyclic CM-field of degree $4n = 2^r \ge 8$. Then at least two distinct rational primes are ramified in **N**/**N**⁺. Hence, $h_{\mathbf{N}}^-$ is even (use Proposition 2(iii)).

Proof. Let **K** denote the subfield of **N** fixed by the cyclic subgroup $\mathbf{H} = \langle a^2 \rangle$ of $\mathbf{G} = \operatorname{Gal}(\mathbf{N}/\mathbb{Q}) = Q_{2^r} = \langle a, b : a^{2^{r-1}} = 1, a^{2^{r-2}} = b^2, b^{-1}ab = a^{-1} \rangle$ (see the incomplete lattice of subfields in Diagram 1). Since $\operatorname{Gal}(\mathbf{N}/\mathbf{N}^+) = \{1, a^{2^{r-2}}\} = Z(\mathbf{G})$ is the only subgroup of order two of **G**, any non-trivial subgroup of **G** contains $\operatorname{Gal}(\mathbf{N}/\mathbf{N}^+)$. Therefore, using inertia groups, we find that if a rational prime p is ramified in \mathbf{N}/\mathbb{Q} then all the prime ideals of \mathbf{N}^+ above p are ramified in \mathbf{N}/\mathbf{N}^+ . Since **K** is a real biquadratic bicyclic field, at least two distinct rational primes are ramified in \mathbf{N}/\mathbb{Q} , and hence at least two distinct prime ideals of \mathbf{N}^+ are ramified in \mathbf{N}/\mathbf{N}^+ . ■

COROLLARY 4 (Use Theorem 3 and Proposition 2(ii)). If **N** is a normal CM-field of degree 24 with Galois group isomorphic either to $Q_8 \times C_3$ or to Q_{24} , then $h_{\mathbf{N}}^-$ is always even.

The following result is more general than [LOO, Th. 6] and its statement and proof correct several slight mistakes made in [LOO, p. 3663]:

THEOREM 5. Let p be an odd prime and let $\mathbf{N} = \mathbf{FM}$ denote a nonabelian normal CM-field of degree $2^r p, r \ge 2$, which is a compositum of a real dihedral field \mathbf{F} of degree 2p and of an imaginary cyclic field \mathbf{M} of degree $2^r \ge 4$ and conductor $f_{\mathbf{M}}$, both \mathbf{F} and \mathbf{M} having the same real quadratic subfield \mathbf{L} (see the incomplete lattice of subfields in Diagram 2).

(i) If 2^{p-1} does not divide $h_{\mathbf{N}}^-$ then $p \equiv 1 \pmod{4}$, $\mathbf{L} = \mathbb{Q}(\sqrt{p})$ and p is totally ramified in \mathbf{F}/\mathbb{Q} (²).

(ii) If $h_{\mathbf{N}}^-$ is odd then $f_{\mathbf{M}} = p$. Hence, $p \equiv 1 + 2^r \pmod{2^{r+1}} \equiv 1 \pmod{4}$.

(iii) If $f_{\mathbf{M}} = p$ and if $p \equiv 1 \pmod{4}$, then any rational prime $q \neq p$ which is ramified in \mathbf{F}/\mathbf{L} satisfies $q \equiv 1 \pmod{p}$ and splits completely in \mathbf{M}/\mathbb{Q} .

(iv) If $h_{\mathbf{N}}^- = 1$ then **F** is a pure real dihedral field of degree 2p and $p \in \{5, 13, 17, 29, 37, 41, 53, 61\}$ (³).

(v) We always have $h_{\mathbf{N}}^- > 1$.

Proof. (i) If $p \equiv 1 \pmod{4}$ and $\mathbf{L} \neq \mathbb{Q}(\sqrt{p})$, or if $p \not\equiv 1 \pmod{4}$ and $\mathbf{L} = \mathbb{Q}(\sqrt{p})$, then there exists a prime q different from p which is ramified in \mathbf{L}/\mathbb{Q} , say $(q) = \mathcal{Q}^2$ in \mathbf{L} . According to Proposition 2(vi), this ideal \mathcal{Q} splits completely in \mathbf{F}/\mathbf{L} . Since \mathbf{M}/\mathbb{Q} is cyclic of 2-power degree, q is totally ramified in \mathbf{M}/\mathbb{Q} . Therefore, there are at least p prime ideals of $\mathbf{N}^+ = \mathbf{F}\mathbf{M}^+$

 $[\]binom{2}{1}$ Note that [LOO, Th. 6(i)] should have been so stated, and our proof of [LOO, Th. 6(i)] was incorrect.

 $[\]binom{3}{1}$ Note that the possibility p = 61 for which **M** is cyclic quartic was not taken care of in [LOO, Th. 6(iii)].

above q and they are all ramified in the quadratic extension N/N^+ , and according to Proposition 2(iii), we find that 2^{p-1} divides $h_{\mathbf{N}}^-$.

(ii) If $h_{\mathbf{N}}^-$ is odd then $h_{\mathbf{M}}^-$ is odd (Proposition 2(ii)) and at most one prime ideal of \mathbf{M}^+ is ramified in \mathbf{M}/\mathbf{M}^+ (Proposition 2(iii)). Since \mathbf{M}/\mathbb{Q} is cyclic of 2-power degree, at most one rational prime q is ramified in \mathbf{M}/\mathbb{Q} , hence $f_{\mathbf{M}} = q$ and according to the previous point, q = p.

(iii) According to Proposition 2(vi), we have $q \equiv \chi_{\mathbf{L}}(q) \pmod{p}$. Since our assumptions yield $\mathbf{L} = \mathbb{Q}(\sqrt{p})$ we have $\chi_{\mathbf{L}}(q) = \binom{q}{p} = (\frac{\pm 1}{p}) = +1$ and so $q \equiv 1 \pmod{p}$. Since \mathbf{M} is a subfield of the cyclotomic field $\mathbb{Q}(\zeta_p)$ and since $q \equiv 1 \pmod{p}$ implies that q splits completely in $\mathbb{Q}(\zeta_p)/\mathbb{Q}$, it follows that q splits completely in \mathbf{M}/\mathbb{Q} .

(iv) According to points (ii) and (iii) and to Proposition 2(iv), if **F** were not a pure real dihedral field then p^{T-1} with $T \ge [\mathbf{M}^+ : \mathbb{Q}] = 2^{r-1} \ge 2$ would divide $h_{\mathbf{N}}^-$. Now, according to Proposition 2(ii), if $h_{\mathbf{N}}^- = 1$ then $h_{\mathbf{M}}^- = 1$. But according to [Lou2] we have $h_{\mathbf{M}}^- = 1$ if and only if $f_{\mathbf{M}} \in \{16, 32, 5, 13, 17, 29, 37, 41, 53, 61\}$.

(v) According to Proposition 2(v), there does not exist any pure real dihedral field of degree 2p with $p \in \{5, 13, 17, 29, 37, 41, 53, 61\}$.

COROLLARY 6. The relative class numbers of dicyclic CM-fields of degree 4p (p any odd prime) are greater than one, as are the relative class numbers of non-abelian normal CM-fields of degree 24 with Galois group $C_3 \rtimes C_8 = \langle a, b : a^3 = b^8 = 1, b^{-1}ab = a^{-1} \rangle$.

THEOREM 7. Let **N** be a dicyclic CM-field of degree 4n > 4. If n is even then $h_{\mathbf{N}}^-$ is even and if n is odd then $h_{\mathbf{N}}^- > 1$.

Proof. Assume that n is even, write $4n = 2^r f$ with $f \ge 1$ odd and $r \ge 3$, and let **M** be the subfield of **N** fixed by the cyclic group $\langle a^{2n/f} \rangle$ of order f. Then **M** is a normal CM-subfield of **N**. Since $[\mathbf{N} : \mathbf{M}] = f$ is odd, $h_{\mathbf{M}}^-$ divides $h_{\mathbf{N}}^-$ (Proposition 2(ii)) and since **M** is a normal dicyclic CM-field of degree $2^r \ge 8$, we see that $h_{\mathbf{M}}^-$ is even (Theorem 3).

Now, assume that m is odd, let p denote any prime divisor of m, write 4m = 4pf with $f \ge 1$ odd and let \mathbf{M} be the subfield of \mathbf{N} fixed by the cyclic group $\langle a^{2n/f} \rangle$ of order f. Then \mathbf{M} is a normal CM-subfield of \mathbf{N} and $[\mathbf{N}:\mathbf{M}] = f$ is odd. Hence, $h_{\mathbf{M}}^-$ divides $h_{\mathbf{N}}^-$ and since \mathbf{M} is a normal dicyclic CM-field of degree 4p, we have $h_{\mathbf{M}}^- > 1$ (Corollary 6).

4. Remarks. There are 12 non-abelian groups of order 24, and 11 out of them have an element of order two in their centre (those different from the symmetric group S_4) and we have proved that any normal CM-field of degree 24 with Galois groups isomorphic to three out of these 11 groups, namely the groups $C_3 \rtimes C_8$, $C_3 \times Q_8$ and Q_{24} , has relative class number greater than one. Since we have also noticed that the relative class number one problem is solved for the dihedral CM-fields of degree 24, there remain seven Galois groups to look at. In this respect, we refer the reader to [LLO] for the determination of all the normal CM-fields of degree 24 with Galois groups $SL_2(F_3)$ and $A_4 \times C_2$ with class number one.

REFERENCES

- [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37–47.
- [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, preprint, Univ. Caen, 1998.
- [LL] Y. Lefeuvre and S. Louboutin, The class number one problem for the dihedral CM-fields, in: Proc. Conf. on Algebraic Number Theory and Diophantine Analysis, Graz, August-September 1998, to appear.
- [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux, to appear.
- [Lou1] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227–238.
- [Lou2] —, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory 67 (1997), 1–10.
- [LO1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47–62.

- [LO2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc. (3) 76 (1998), 523-548.
- [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657–3678.
- [Mar] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1, 1-80.
- [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275–286.
- [TW] A. D. Thomas and G. V. Wood, Group Tables, Shiva Publ. Kent, 1980.
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982; 2nd ed., 1997.
- [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 206 (1994), 899–921.

Département de Mathématiques Université de Caen, Campus 2 BP 5186 14032 Caen Cedex, France E-mail: loubouti@math.unicaen.fr

Received 14 December 1998