
COLLOQU IUM MATHEMAT ICUM
VOL. 80 1999 NO. 2

ON BOUNDED UNIVALENT FUNCTIONS
THAT OMIT TWO GIVEN VALUES

BY

DIMITRIOS B E T S A K O S (HELSINKI)

Abstract. Let a, b ∈ {z : 0 < |z| < 1} and let S(a, b) be the class of all univalent
functions f that map the unit disk D into D\{a, b} with f(0) = 0. We study the problem of
maximizing |f ′(0)| among all f ∈ S(a, b). Using the method of extremal metric we show
that there exists a unique extremal function which maps D onto a simply connnected
domain D0 bounded by the union of the closures of the critical trajectories of a certain
quadratic differential. If a < 0 < b, we show that D0 = D \ [−1, a] \ [b, 1].

1. Introduction. Let a, b be two distinct points in the unit disk D, and
assume that a 6= 0 6= b. Let S(a, b) be the class of univalent functions f that
map D into D\{a, b} and satisfy f(0) = 0. We study the following problem.

Problem 1.1. Find max{|f ′(0)| : f ∈ S(a, b)} and determine the func-
tions in S(a, b) for which the maximum is attained.

The existence of extremal functions is an easy consequence of a stan-
dard normal family argument. An equivalent formulation of the problem
involves the conformal (inner) radius R(0, D) at 0 of a domain D that con-
tains 0 and possesses Green’s function. R(0, D) is defined as follows (see
[2], p. 123): Let g(z, 0, D) be Green’s function of D with pole at 0 and let
c = limz→0[g(z, 0, D)+log |z|]. Then R(0, D) = ec. It is easy to see that if D
is simply connected then R(0, D) = |f ′(0)|, where f is a conformal mapping
of D onto D with f(0) = 0. Thus Problem 1.1 is equivalent to the following:

Let F1(a, b) be the class of all simply connected domains D ⊂ D \ {a, b}
with 0 ∈ D. Find max{R(0, D) : D ∈ F1(a, b)} and determine the extremal
domains.

A reflection in the unit circle gives a third equivalent formulation of
Problem 1.1:

Let F2(a, b) be the class of all continua K ⊂ C with D ∪ ∂D ∪ {1/a, 1/b}
⊂ K. Find min{capK : K ∈ F2(a, b)} and determine the extremal continua.
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For the definition of the (logarithmic) capacity capK of a continuum
K ⊂ C we refer to [1], p. 14. In this third formulation the problem is simi-
lar to the Chebotarev problem in which one tries to find a continuum that
contains given points and has minimal capacity (see [7], Ch. 1).

If we had one omitted value a ∈ (0, 1), the corresponding problem: Find
max{|f ′(0)| : f(0) = 0, f : D→ D \ {a}}, is easy: The extremal function is
unique and maps D onto D\ [a, 1]. This follows from the domain monotonic-
ity of conformal radius (Schwarz’s lemma) and the following symmetrization
result which is due to Pólya, Szegő, Hayman and Jenkins (see [2], p. 126;
[4], p. 136): Let D be a simply connected domain that contains 0. Let D∗

be the circular symmetrization of D with respect to the negative semiaxis.
Then R(0, D) ≤ R(0, D∗) with equality if and only if D = eiαD∗ for some
α ∈ R. A simple computation shows that

(1.1) R(0,D \ [a, 1]) =
4a

(1 + a)2
.

The above argument implies that if 0 < a < b < 1 in the context of
Problem 1.1, then max{R(0, D) : D ∈ F1(a, b)} = R(0,D \ [a, 1]).

In Section 2 we use the method of extremal metric (see [4]; [7], Ch. 0) to
give a qualitative solution of Problem 1.1: The extremal domain is unique
and is bounded by curves that lie on the closure of the union of the critical
trajectories of a certain quadratic differential. The formulae that describe
this quadratic differential contain unknown constants.

In the special case where a and b lie on a diameter of D we give a complete
solution of Problem 1.1:

Theorem 1.2. Let −1 < a < 0 < b < 1. Then

(1.2) max{|f ′(0)| : f ∈ S(a, b)} = 4(b+ b−1 − a− a−1)−1.

The maximum is attained only for the function f ∈ S(a, b) that maps D onto
D \ [−1, a] \ [b, 1].

A rescaling and a convergence argument show that Theorem 1.2 implies
a classical result due to Lavrent’ev [8]:

Corollary 1.3. Let b1 < 0 < b2 and f : D→ C \{b1, b2} be a univalent
function with f(0) = 0. Then

(1.3) |f ′(0)| ≤ 4b1b2(b1 − b2)−1.

Equality holds if f maps D onto C \ (−∞, b1] \ [b2,+∞).

Kuz’mina [6] generalized Lavrent’ev’s result to arbitrary b1, b2∈C.
The following generalizes Theorem 1.2.

Theorem 1.4. Let n be a positive integer , r ∈ (0, 1), s ∈ (0, 1) and
ξj = e2πij/(2n), j = 0, 1, . . . , 2n − 1. Let aj = rξj for j = 0, 2, . . . , 2n − 2
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and aj = sξj for j = 1, 3, . . . , 2n − 1. Consider the family F of all simply
connected domains in D \ {a0, a1, . . . , a2n−1} that contain 0. Then

(1.4) ∀D ∈ F, R(0, D) ≤ R(0, D∗),

where D∗ = D \
⋃2n−1
j=0 [aj , ξj ]. Equality holds if and only if D = D∗.

We also prove the following:

Theorem 1.5. Let −1 < a < 0 < b < 1. Let F3(a, b) be the class of all
domains D in D \ {a, b} such that 0 ∈ D and C \D has a component that
contains both a and b. Then

(1.5) ∀D ∈ F3(a, b), R(0, D) ≤ R(0, G),

where G = D\ [−1, a]\ [b, 1]. If equality holds in (1.5) for some D ∈ F3(a, b)
which is regular for the Dirichlet problem, then D = G.

Since F1(a, b) ⊂ F2(a, b), Theorem 1.5 also generalizes Theorem 1.2.
The proofs of the theorems are in Section 2.

2. Application of the method of extremal metric. It is well known
that there exists a relation between conformal radius and extremal length
(see [7], p. 30). Precisely,

(2.1) lim
r→0

[
λ(Dr, ∂D,D) +

log r

2π

]
=

1

2π
logR(0, D),

where Dr = {|z| < r}, D is a domain with Green function and λ(Dr, ∂D,D)
is the extremal distance between ∂D and Dr with respect to the domain
D\closDr. Thus Problem 1.1 is the problem for the extremal metric for the
family of the closed Jordan curves in D that separate 0 from a, b and from the
boundary of D. Therefore we may apply the theory of Jenkins (see [3]; [7],
Ch. 0, especially Th. 0.2). This theory implies that the maximal conformal
radius R(0, D) forD ∈ F1(a, b) is attained uniquely for an admissible domain
with respect to a quadratic differential which has the following form:

(2.2) Q(z)dz2 =
P (z)

z2(z − a)(1− az)(z − b)(1− bz)
dz2,

where P (z) is a polynomial which can only have zeros of even multiplicity
on ∂D (see Th. 0.2 in [7]).

Using the uniqueness of the extremal domain we can easily prove Theo-
rem 1.2:

Proof of Theorem 1.2. Let G denote the extremal domain. By symmetry
G = {z : z ∈ G} is also an extremal domain. By uniqueness, G = G. The
domain monotonicity of conformal radius implies G = D \ [−1, a] \ [b, 1]. An
easy calculation shows that R(0, G) = 4(b+ b−1 − a− a−1)−1.
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The critical trajectories of Q(z)dz2 divide the extended complex plane
C′ into two simply connected domains D0 and D∞, symmetric with respect
to ∂D and such that D0 ⊂ D and D∞ ⊂ C′ \ D. The unit circle ∂D is a
subset of the union Φ′ of the closures of the critical trajectories of Q(z)dz2.

D0 is the unique extremal domain for Problem 1.1. Since it is simply
connected there is a connected subset of Φ′ that joins a and ∂D ⊂ Φ′. So
P (z) has at least a (double) zero on ∂D. This also follows from Jenkins’s
Basic Structure Theorem ([4], Th. 3.5).

Because of symmetry, ∞ is a double pole of Q(z)dz2. Hence the degree
of P (z) must be exactly 4. We conclude that P (z) must have one of the
following three forms:

Case 1: P (z) = −B1(z − eiυ)2(z − eiφ)2, where B1 > 0, υ ∈ [0, 2π),
φ ∈ [0, 2π), φ 6= υ.
Case 2: P (z) = −B2(z − eiχ)2(z − reiθ)(z − eiθ/r), where B2 > 0,

χ ∈ [0, 2π), θ ∈ [0, 2π), 0 < r < 1.
Case 3: P (z) = −B3(z − eiξ)4, where B3 > 0 and ξ ∈ [0, 2π).

Note that if reiθ = a or if reiθ = b in Case 2, then this case reduces to
the case a = b which has been studied in the introduction. In the sequel we
assume that reiθ 6= a and reiθ 6= b.

Next we use the results of Jenkins ([4], Ch. 3) on the structure of the
trajectories of quadratic differentials:

In Case 1: Q(z)dz2 has two double zeros eiυ, eiφ on ∂D. So four critical
trajectories must meet at each of eiυ and eiφ. Two of them are arcs of the
unit circle, one lies in D and the last lies in C\D. Since a, b are simple poles,
a critical trajectory emanates from each one of them (see Th. 3.2 in [4]).
Thus the boundary of D0 consists of ∂D and two analytic arcs γ1,γ2. The
arc γ1 joins a to eiυ and γ2 joins b to eiφ. The arcs γ1 and γ2 meet the unit
circle at right angles.

In Case 2: Q(z)dz2 has a double zero at eiχ, a simple zero at reiθ and
simple poles at a, b. So four critical trajectories meet at eiχ, three meet at
reiθ and one emanates from each of a, b. Hence ∂D0 = ∂D ∪ δ1 ∪ δ2 ∪ δ3,
where δ1, δ2, δ3 are analytic arcs in D such that δ1 joins a to reiθ, δ2 joins b
to reiθ and δ3 joins reiθ to eiχ.

In Case 3: Q(z)dz2 has a zero of order four at eiξ and simple poles at
a, b. So six critical trajectories must meet at eiξ and one must emanate from
each of a, b. Hence ∂D0 = ∂D ∪ σ1 ∪ σ2, where σ1, σ2 are analytic arcs in D
such that σ1 joins a to eiξ and σ2 joins b to eiξ.

The solution of Problem 1.1 would be complete if we were able to express
the constants B1, B2, B3, υ, φ, χ, θ, ξ, r, R(0, D0) in terms of a, b. Of course,
there are interrelations between these constants but it seems difficult to use
them to determine the constants explicitly.
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We mention an interesting property of the extremal domain D0. Suppose
that Case 1 holds and let υ, φ, γ1, γ2 be as above. Each point of γ1 \{a} sup-
ports two prime ends of D0. So we can talk about the two “sides” of γ1 and
similarly for γ2. Let f map D0 conformally onto D with f(0) = 0. Let also
E be a Borel set of prime ends of D0. By definition, the harmonic measure
ω(0, E,D0) of E at 0 is the length of f(E) ⊂ ∂D divided by 2π.

Proposition 2.1. Let I be an open subarc of γ1 (or of γ2). Let I+, I−
be the two sides of I. Then ω(0, I+, D0) = ω(0, I−, D0).

P r o o f. We use a technique of Lavrent’ev [8]. Jenkins [5] also used this
technique.

Let D′ = D0 ∪ I. Then D′ is a doubly connected domain. Let f map D′

conformally onto the annulus A = {z : % < |z| < 1} with f(0) < 0, where %
is an appropriate positive constant. Because of the conformal invariance of
harmonic measure the assertion of the proposition follows at once from the
following claim.

Claim. f(I) = (%, 1).

To prove the claim let G0 = A \ f(I) and G1 = A \ (%, 1). By applying
a circular symmetrization with respect to the negative semiaxis we obtain

(2.3) R(f(0), G0) ≤ R(f(0), G1).

Let D1 = f−1(G1) and consider the Riemann mappings f0 and f1 that map
D conformally onto D0 and D1, respectively, with f0(0) = 0, f1(0) = 0,
f ′0(0) > 0, f ′1(0) > 0. Then

R(f(0), G0) = |(f ◦ f0)′(0)| = |f ′(0)|f ′0(0) = |f ′(0)|R(0, D0),

R(f(0), G1) = |(f ◦ f1)′(0)| = |f ′(0)|f ′1(0) = |f ′(0)|R(0, D1).

So (2.3) implies

(2.4) R(0, D0) ≤ R(0, D1).

Now, since D0 is the extremal domain for Problem 1.1, (2.4) implies D0 =D1

and the claim follows at once.

Remark 2.2. A similar proposition holds for Cases 2 and 3.

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.2. By
the method of extremal metric, there is a unique extremal domain Ω in F .
But Ω must be symmetric and therefore Ω = D∗.

Proof of Theorem 1.5. We use an equivalent formulation of the theorem.
By applying a reflection in the unit circle we see that we have to prove the
following statement:

Let a′ < −1 < 1 < b′. Let F4(a′, b′) be the class of all compact sets K in
C such that D ∪ ∂D ∪ {a′, b′} ⊂ K and a′, b′ belong to the same component
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of K. Then

(2.5) ∀K ∈ F4(a′, b′), capK ≥ capK∗,

where K∗ = D ∪ ∂D ∪ [a′,−1] ∪ [1, b′]. If equality holds in (2.5) for some
K ∈ F4(a′, b′) such that C′ \K is a regular domain then K = K∗.

To prove (2.5) let K ∈ F4(a′, b′). A Steiner symmetrization with respect
to the real axis shows that capK ≥ capK∗. If capK = capK∗ and C′ \K
is regular then by Jenkins’s uniqueness result for symmetrization ([4]) we
conclude that K = K∗ and the proof is complete.

Remark 2.3. It is interesting that the Steiner symmetrization result can
only be applied to the formulation of the theorem that involves capacity and
not to the original formulation that involves conformal radius.
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