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PSEUDO-BOCHNER CURVATURE TENSOR ON
HERMITIAN MANIFOLDS

BY

KOJI MATSUO (ICHINOSEKI)

Abstract. Our main purpose of this paper is to introduce a natural generalization By
of the Bochner curvature tensor on a Hermitian manifold M provided with the Hermitian
connection. We will call By the pseudo-Bochner curvature tensor. Firstly, we introduce
a unique tensor P, called the (Hermitian) pseudo-curvature tensor, which has the same
symmetries as the Riemannian curvature tensor on a Kahler manifold. By using P, we
derive a necessary and sufficient condition for a Hermitian manifold to be of pointwise con-
stant Hermitian holomorphic sectional curvature. Our pseudo-Bochner curvature tensor
By is naturally obtained from the conformal relation for the pseudo-curvature tensor P
and it is conformally invariant. Moreover we show that By is different from the Bochner
conformal tensor in the sense of Tricerri and Vanhecke.

1. Introduction. In [2], Bochner introduced a curvature tensor B on
a Kéhler manifold M as a formal analogue of the Weyl conformal curvature
tensor. Let J be the complex structure of M, g the Kéahler metric and
dim¢ M = m. Then the Bochner curvature tensor B (cf. [8]) is defined by

1 r
B=R———gA
i 2(m+2)g R1+8(m+1)(m+2

where R denotes the Riemannian curvature tensor (the curvature tensor of
the Levi-Civita connection) on M, R; the Ricci tensor, r the scalar curvature

and - A - is defined as follows: For any (0,2)-tensors a, b and for any vector
fields X,Y, Z, W on M, we set

(a ®b)(X,Y, Z, W) = a(X, Z)b(Y, W) — a(X, W)b(Y, Z)
(X, Z)a(Y, W) — b(X, W)a(Y, Z)

gAg,
)

and
a(X,Y)=a(X,JY).
Then we define
alAb=a@®b+aP®b+2a®b+2b®a.
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In [9], Tricerri and Vanhecke studied the decomposition of the space
R(V) of all curvature tensors on a Hermitian vector space V. They defined
the Bochner component Rp(V) of R(V) and called the projection B(A)
of A € R(V) on Rp(V) the Bochner conformal tensor associated with A.
As an application, they proved that the Bochner conformal tensor B(R)
associated with the Riemannian curvature tensor R on an almost Hermitian
manifold is conformally invariant. Of course, in the Kéahler case, B(R) = B.

In this paper, we introduce a natural generalization By of the Bochner
curvature tensor on a Hermitian manifold M provided with the Hermitian
connection and we will call By the pseudo-Bochner curvature tensor on M.
For this purpose, we discuss in §2 Hermitian holomorphic sectional curvature
of a Hermitian manifold and derive a necessary and sufficient condition for
a Hermitian manifold to be of pointwise constant Hermitian holomorphic
sectional curvature. Then we introduce a unique tensor P on a Hermitian
manifold M having the same symmetries as the Riemannian curvature tensor
on a Kéahler manifold. We will call this tensor P the (Hermitian) pseudo-
curvature tensor on M. In §3 our pseudo-Bochner curvature tensor By is
naturally obtained as a conformal invariant from the conformal relation for
the pseudo-curvature tensor P.

In §4, we give some examples of Hermitian manifolds with vanishing By
and we call such manifolds pseudo-Bochner-flat Hermitian manifolds. In
[7], we proved that the product of two Kenmotsu manifolds with constant
sectional curvature —1 is Hermitian-flat, that is, the Hermitian curvature
tensor (the curvature tensor of the Hermitian connection) vanishes. We show
that this product manifold is pseudo-Bochner-flat but not Bochner-flat in
the sense of Tricerri and Vanhecke.

Throughout this paper, we work in C'*°-category and deal with connected
complex manifolds of complex dimension > 2 without boundary only.

2. Hermitian holomorphic sectional curvature. Let M be a com-
plex m-dimensional Hermitian manifold with the complex structure J and
the Hermitian metric g, that is, g is a Riemannian metric on M such that
9(JX,JY) = g(X,Y) for all vector fields X,Y on M. The Hermitian con-
nection D of M is defined by the following equation (see [7]):

(2.1) 49(DxY, Z) = 2Xg(Y, Z) — 27 X g(JY. Z)

—I—Q(V(X,Y),Z) _g(V(Xa Z),Y)
for all vector fields X,Y,Z on M, where V(X,Y) = [JX,JY] + [X,Y] —
J[X,JY] + J[JX,Y]. The Hermitian connection D is a unique affine con-
nection such that both the metric tensor g and the complex structure J

are parallel and the torsion tensor 7" satisfies T'(JX,Y) = JT(X,Y) for all
vector fields X,Y on M. As is well known, a Hermitian manifold is Kéahler
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if and only if the Hermitian connection is torsion-free, that is, the Hermitian
connection coincides with the Levi-Civita connection.

Let H be the Hermitian curvature tensor (the curvature tensor of the
Hermitian connection D) on M, i.e.,

H(X,Y) = [Dx,Dy]| — Dixy
for all vector fields X,Y on M. Then we have

PROPOSITION 2.1 (cf. [7]). The Hermitian curvature tensor H has the
following properties: For all vector fields X,Y, Z,W on M,

H(X7Y727W) = _H(Y’X727W) = _H(X7Y7VV’Z)7
H(JX,JY,ZW)=H(X,Y,JZ,JW)=H(X,Y,Z, W),
Sxv,z{H(X,Y)Z -T(T(X,Y),Z) - (DxT)(Y,Z)} =0

(First Bianchi identity),

Sxyvz{(DxH)(Y,Z)+ H(T(X,Y),Z)} =0 (Second Bianchi identity),

where H(X,Y, Z, W) = g(H(Z, W)Y, X) and Sx y z denotes the cyclic sum
with respect to X,Y, Z.

Now, let us consider the Hermitian holomorphic sectional curvature
of M. For each unit vector X in the tangent space T,M, the Hermitian
holomorphic sectional curvature H(X) for the holomorphic plane spanned
by X and JX is given by

H(X)=H(X,JX, X, JX).

If H(X) is constant for all unit vectors X in T, M at each point x € M,
then M is said to be of pointwise constant Hermitian holomorphic sectional
curvature. Moreover, if H(X) is constant for all x € M, then M is said to
be of constant Hermitian holomorphic sectional curvature.

In [1], Balas studied Hermitian manifolds M of constant Hermitian holo-
morphic sectional curvature. Then he introduced a tensor K of type (0,4)
on M, called the Kdhler-symmetric part of the Hermitian curvature tensor
H. The tensor K is given by

K(X,Y,Z,W)=1{H(X,Y,Z W)+ H(Z,W,X,Y)
+HX,W,Z,Y)+ H(ZY,X,W)}

for all vector fields X, Y, Z, W on M. It has the following properties:
K(X,)Y,ZW)=K(Y,X,W,Z), KX, Y,Z,W)=K(ZW,X,Y),
Syzw KX, Y, ZW)=0, K(UX,JY,ZW)=K(X,Y,JZ JW),

KX,V X,)Y)=H(X,Y,X,Y).
From the algebraic discussion of local components of this tensor in complex
local coordinates, Balas derived a necessary and sufficient condition for M
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to be of constant Hermitian holomorphic sectional curvature. But the ten-
sor K does not satisfy the identities K(X,Y,Z, W) = —K(Y, X, Z, W) and
K(JX,JY,Z,W)=K(X,Y,Z,W).

We now introduce a tensor P of type (0,4) on M defined by
(2.2) PX,)Y,Z, W)= i[3{L(X, Y, Z, W)+ L(X,Y,JZ,JW)}

- H(X,)Y,Z,W)—-H(Z W, X,Y),
for all vector fields X,Y,Z, W on M, where L is the tensor introduced in
Appendix of [7] as follows:
L(X,Y,Z, W)= %{K(X,Y, ZW)—-K(Y,X,Z,W)}.

By (A.3)—(A.6) of [7] and Proposition 2.1, we can easily see that P has the
following properties:

(23) P(XaY7Z7W):_P(Y7X?Z7W):_P(X7Y7W7Z)7
(2.4) P(X.Y.Z,W) = P(Z,W,X,Y),
(2.5) Sy zw P(X,Y,2,W) =0,

(2.6) PJX,JY,ZW)=P(X,Y,JZ,JW)=P(X,Y,Z, W)
for all vector fields X, Y, Z, W on M, and in particular we have
(2.7) P(X,JX,X,JX)=H(X,JX, X, JX)

for all vector fields X on M. On the other hand, the tensor g /A g satisfies
all the identities (2.3)—(2.6) and

(2.8) (9 A g)(X,JX, X, JX) = 8g(X, X)2.

Therefore, from (2.7), (2.8) and Proposition 7.1 of Chapter IX in [5], we
conclude

THEOREM 2.1. A Hermitian manifold M is of pointwise constant Her-
mitian holomorphic sectional curvature ¢ if and only if P = %cg A g.

We call the tensor P defined by (2.2) the (Hermitian) pseudo-curvature
tensor of the Hermitian connection D. We define the (Hermitian) pseudo-
Ricci tensor Py and the (Hermitian) pseudo-scalar curvature p as follows:

Pi(X,Y)=t[Z = P(X,JY)JZ], p=trP,

where the tensor P of type (1,3) is defined by ¢(P(X,Y)Z, W) =
PW,Z,X,Y). P is symmetric and compatible with J, and so we can
associate with P; a 2-form o in the usual manner: o = P;. We call o the
(Hermitian) pseudo-Ricci form which is not closed in general.

If M has pointwise constant Hermitian holomorphic sectional curvature,
then we have
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THEOREM 2.2. Let M be a Hermitian manifold of pointwise constant
Hermitian holomorphic sectional curvature c. Then
(m+1)c
T
REMARK 2.1. We note that, on a Kéhler manifold, the pseudo-quantities
P, P;, o and p defined above coincide with the curvature tensor R, the Ricci

tensor Ry, the Ricci form ~ and the scalar curvature r of the Levi-Civita
connection respectively.

Py = p=m(m+1)c.

3. Pseudo-Bochner curvature tensor. Consider a conformal change
g’ = e 7g of the Hermitian metric g on M, where o is a function on M. For
every object related to ¢’ we shall add the symbol . Then the Hermitian
connections D’, D are connected by the following equation:

(3.1) DY = DxY — %da(X)Y - % d°o(X)JY,

where d°c(X) = —do(JX). From this equation, we obtain the relation
between their Hermitian curvature tensors H and H':

(3.2) e’H = H — ) ®dd°o,

where {2 denotes the Kéhler form, i.e., {2 = 3. From (3.2), for the pseudo-
curvature tensors, we obtain

(3.3) e’P' =P+ L gAdd.
From (3.3), for the pseudo-Ricci tensors we obtain
2— 1, ——
(3.4) Pl =P + % ddco + 3 (trddco)g.
Here we used the equality dd®o(JX,JY) = dd°c(X,Y). Moreover, from

(3.4), for the pseudo-scalar curvatures we obtain

1
(3.5) e p —p= %(tr ddeo).

Substitution of (3.5) into (3.4) gives

Moreover, substitution of (3.6) into (3.3) yields the conformal invariance of
the tensor By defined by

1 p
3.7 Bpy=P— ——gAP
(37) H 2m+2) Y T R m+ 2
We can easily check that By satisfies (2.3)-(2.6), i.e.,
(3.8) Bu(X.,Y,Z,W) = —Bu(Y,X,Z,W) = —Bu(X,Y,W, Z),

gQg.
)
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(310) 6Y,Z,W BH(X7 Y7 Z7 W) - 0’

(3.11) By(JX,JY,Z,W)=By(X,Y,JZ,JW)=By(X,Y,Z,W).
Moreover By satisfies

(3.12) tr[Z — Bu(Z,X)Y] =0,

where the tensor By of type (1,3) is defined by ¢(By(X,Y)Z, W) =
By (W,Z,X,Y). If the metric g is Kéhler, the tensor By coincides with
the original Bochner curvature tensor B mentioned in the introduction. We

call By defined by (3.7) the pseudo-Bochner curvature tensor on M. Sum-
ming up, we conclude

THEOREM 3.1. The pseudo-Bochner curvature tensor By on a Hermitian
manifold is conformally invariant.

4. Examples of pseudo-Bochner-flat Hermitian manifolds. We
call Hermitian manifolds with vanishing By pseudo-Bochner-flat. In the
same way as in the Kéhler case (cf. [8]), we can prove the following theorems.

THEOREM 4.1. Every Hermitian manifold of pointwise constant Hermi-
tian holomorphic sectional curvature is pseudo-Bochner-flat.

THEOREM 4.2. A pseudo-Bochner-flat Hermitian manifold has point-
wise constant Hermitian holomorphic sectional curvature if and only if the
pseudo-Ricci tensor satisfies the Einstein condition, i.e., Py = (p/(2m))g.

ExamMpPLE 4.1. We call Hermitian manifolds with H = 0 Hermitian-
flat. The Iwasawa manifold M is a compact complex manifold defined by
M = G/I', where
1

1 2t 22
G= 0 1 z3]:20eCyp,
0O 0 1
1 o' a?
I = 0 1 o|:a'cZ+V-1Z
0 0 1

In [1], Balas showed that the Iwasawa manifold M is Hermitian-flat. (See
also[7].) Obviously, such manifolds are pseudo-Bochner-flat. In [3], Cordero,
Fernandez and Gray introduced the generalized Iwasawa manifold as a gen-
eralization of the Iwasawa manifold above. They proved that the generalized
Iwasawa manifold has no Kéahler structure, even though it has a symplec-
tic structure and a complex structure. We can introduce a Hermitian-flat
metric on the generalized Iwasawa manifold in the same way as [7].

EXAMPLE 4.2. In [4], Ganchev, Ivanov and Mihova introduced a special
class of Hermitian manifolds and called them anti- Kahler manifolds. A Her-
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mitian manifold M is anti-Kéhler if and only if the connection D defined by
D=D- %T , where T is the torsion tensor of the Hermitian connection D, is
flat. They showed that an anti-K&hler metric of pointwise nonzero constant
Hermitian holomorphic sectional curvature is a certain conformal change of a
Ké&hler metric of nonzero constant holomorphic sectional curvature. More-
over, using this fact, they constructed an anti-Kéhler metric of pointwise
positive (resp. negative) constant Hermitian holomorphic sectional curva-
ture on the open unit ball D" in C™ (resp. on C™). By Theorem 4.1, such
manifolds are pseudo-Bochner-flat.

EXAMPLE 4.3. In [7], we studied Hermitian manifolds which are locally
conformal to Hermitian-flat manifolds. Such manifolds are called locally con-
formal Hermitian-flat ones. Of course, locally conformal Kéahler-flat mani-
folds (see[10]) are contained in a class of such manifolds. The Hopf manifolds
S1 x 82m=1 are of this type, where S* denotes the standard k-dimensional
sphere. In [6], we constructed a locally conformal Hermitian-flat metric on
a noncompact complex manifold R™~! x T™+! where T™*! denotes the
(m 4 1)-dimensional torus. From the conformal invariance of By, locally
conformal Hermitian-flat manifolds are pseudo-Bochner-flat.

On a Kéhler manifold, both our pseudo-Bochner curvature tensor By
and the Bochner conformal tensor B(R) of Tricerri and Vanhecke [9] coincide
with the original Bochner curvature tensor B. Moreover, since they are both
conformally invariant, it is also trivial that By coincides with B(R) on a
locally conformal Kéahler manifold. But, on a general Hermitian manifold,
By is not equal to B(R). We shall show this fact by giving an example of
Hermitian-flat manifolds with B(R) # 0.

Now we recall the definition of the Bochner conformal tensor of Tricerri
and Vanhecke [9]. Let M be a complex m-dimensional Hermitian manifold
provided with the complex structure J and the metric g. We denote by R
the Riemannian curvature tensor on M, that is,

R(X,Y)=[Vx,Vy] = Vixy]

where V is the Levi-Civita connection of g. The Riemannian curvature ten-
sor R of type (0,4) is given by R(X,Y, Z, W) = g(R(Z,W)Y, X). If m > 3,
then the Bochner conformal tensor B(R) associated with R is given by

(4.1) mm=R+Mm+$mm9A&—Mm%g£mg®&
1 1
T m -2 S ) T i g 4 O )
om? _ 5 U L

~A(m 4+ 1)(m+2)(m — 2) 4(m +1)(m —2)
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3 ) .

T IimiDmamon ¢t WD ey 9 2 )

3mr — (2m? — 3m + 4)r* R

T )mtm=—Dm=2" 29T sm—ym=2 ¢ 09
where

Ri(X,Y) = ti[Z > R(Z,X)Y], R:X,Y)=ti[Z = R(X,JZ)JY],
(RiJ)(X,Y) = Ry (JX,JY), (R:J)(X,Y) = Ri(JX, JY),

r = tr Ry, r* = tr R}.

The symbols Ry, R}, RiJ, RiJ, r, r* correspond to the symbols o(R),
0*(R), o(LsR), 0*(LsR), T, 7* respectively in [9]. And for any (0, 2)-tensor
S, g @® S (resp. g A S) corresponds to ¢(S) (resp. ©(S) + (S)). Thus
g @ g (resp. g A\ g) corresponds to 2wy (resp. 2(m + m3)).

In [7], we showed that the product of two Kenmotsu manifolds with
constant sectional curvature —1 is Hermitian-flat, and hence it is pseudo-
Bochner-flat. We now show that this product manifold is not Bochner-flat
in the sense of Tricerri and Vanhecke. Let (M’ ,¢'.¢',n',g") (resp.
(M",¢",&",1",¢")) be a Kenmotsu manifold with constant sectional curva-
ture —1, that is, R’ = —% g D g (resp. R’ = —% 9" ®g"), where R’ (resp.
R") denotes the Riemannian curvature tensor on M’ (resp. M"). Then the
product M = M’ x M" provided with the metric g = ¢’ + ¢” and the com-
plex structure J = ¢’ — 7" @ &' + ¢” + 1’ ® £” is a Hermitian manifold, and
the Riemannian curvature tensor R on M is given by

(4.2) R=R +R'=-3(¢d DJ+9"®J").
For simplicity, we assume that dim M’ = dim M"” = 2k +1, k > 1. Thus we
have dim¢ M = m = 2k + 1. From (4.2), we then obtain

(43) Ri=RiJ=—(m—-1)g, R =RjJ=-g+nn+n" @n",

(4.4) r=—2m(m—1), 1*=-2(m—1).
Substituting (4.3) and (4.4) into (4.1), we obtain
B(R) = - %(g’ g +9"Dg")
8(mT1;_(:”3T2)_(71rL)—2) 959+ mg@g
~ 5m fQ)_(rlrL —5 94 (' @n' +n"@n")
+2(ml_2)9 A0 @n+n"@n")

£ 0.



CURVATURE TENSOR 209

REMARK 4.1. By a direct computation, we can also check that a Hermi-

tian-flat metric on the Iwasawa manifold or the generalized Iwasawa mani-
fold (Example 4.1) is not Bochner-flat in the sense of Tricerri and Vanhecke.

(10]
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