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Abstract. Over an artinian hereditary ring R, we discuss how the existence of almost
split sequences starting at the indecomposable non-injective preprojective right R-modules
is related to the existence of almost split sequences ending at the indecomposable non-
projective preinjective left R-modules. This answers a question raised by Simson in [27]
in connection with pure semisimple rings.

1. Introduction. Simson showed in [27] that there is a close relation-
ship between the existence of almost split sequences starting at the inde-
composable non-injective preprojective modules and the validity of the pure
semisimplicity conjecture (see below for the definitions). Namely, let R be
an artinian hereditary left pure semisimple ring. Then there are almost split
sequences starting at any indecomposable non-injective preprojective right
R-module. Moreover, if there are also almost split sequences starting at any
indecomposable non-injective preprojective left R-module, then R even has
finite representation type, and the conjecture is verified [27, 3.1 and 1.8].

We see that in this context, tools for passing information from the left
to the right side and vice versa are required. For instance, it was asked by
Simson [27, 1.9] whether, over an artinian hereditary ring, the existence of
almost split sequences for all preprojectives on one side can be expressed in
terms of the preinjective modules on the other side. The aim of this paper
is to give the following answer.

Theorem 1.1. The following statements are equivalent for a right ar-
tinian hereditary ring R.

(P) For every indecomposable preprojective non-injective right R-module
AR there is an almost split sequence 0→ A→ B → C → 0 in mod-R.

(I) R is left artinian, all indecomposable injective left R-modules are
finitely generated , and for every indecomposable preinjective non-projective
left R-module RC there is an almost split sequence 0 → A → B → C → 0
in R-mod.
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Recall that a ring R is said to be left pure semisimple if every left
R-module is a direct sum of finitely presented modules. It is well known
that a ring has finite representation type if and only if it is left and right
pure semisimple, and it is conjectured that one-sided pure semisimplicity
is sufficient, i.e. that every left (or right) pure semisimple ring has finite
representation type. This conjecture has been verified for several classes of
rings (e.g. in [6], [19]), but it is still open in general (see also [25], [26], [34],
[24], [16]). Recent work of Simson (e.g. in [29], [30]) shows how a potential
counter-example should look like.

The role played by the preprojectives and the preinjectives in connec-
tion with the pure semisimplicity conjecture was also pointed out in [33]
and [19]. In [19], Herzog showed that over a left pure semisimple ring R,
the sets IR of the isomorphism classes of indecomposable preinjective right
R-modules and RP of the isomorphism classes of indecomposable prepro-
jective left R-modules are finite, and there is an injection IR → RP which
is given by the local duality AR 7→ RA

+ (see the definition in Section 3).
Furthermore, if this map is even bijective and R is artinian, then R has
finite representation type.

Observe that over any artinian hereditary left pure semisimple ring we
always have the corresponding bijection on the other side.

Corollary 1.2. Let R be a right artinian hereditary ring satisfying one
of the equivalent conditions of Theorem 1.1. Then the local duality RA 7→ A+

R

gives a bijection between the set RI of the isomorphism classes of indecom-
posable preinjective left R-modules and the set PR of the isomorphism classes
of indecomposable preprojective right R-modules.

Let us further point out that the almost split sequences considered in
Theorem 1.1 are even almost split in the category of all modules. Moreover,
we can interpret condition (P) in terms of the existence of a preprojective
component, and condition (I) in terms of the existence of a preinjective
component; see 8.3–8.5.

Finally, we remark that Theorem 1.1 extends a result of Zimmer-
mann [32] for artinian rings R, which states that for every indecompos-
able projective non-injective right R-module AR there is an almost split
sequence 0→ A→ B → C → 0 in mod-R if and only if all indecomposable
injective left R-modules are finitely generated. Actually, the argument used
in [32] for showing this result will be one of the main tools in our proof.

This paper is organized as follows. Section 2 is devoted to some pre-
liminaries. In Section 3 we give the definition and properties of the local
duality and explain its role in connection with the existence of almost split
sequences. Sections 4 and 5 deal with tilting and cotilting modules over
artinian rings. We need this knowledge in Sections 6 and 7, where we con-
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struct preprojective tilting and preinjective cotilting modules in order to
prove Theorem 1.1 and Corollary 1.2. The proofs of the last-mentioned re-
sults and some consequences are given in Section 8.

The main results of this paper were presented at the Conference on
Interaction between Ring Theory and Representations of Algebras held in
Murcia, Spain, in January 1998.

2. Preliminaries. We start out with some notation. For a ring R we
denote by Mod-R the category of all and by mod-R the category of all finitely
presented right R-modules; the corresponding categories of left R-modules
are denoted by R-Mod and R-mod. By a subcategory C of mod-R we always
mean a full subcategory. We denote by Add C (resp. add C) the subcategory
of Mod-R consisting of all modules isomorphic to direct summands of (finite)
direct sums of modules in C. If C contains just one module M , then we
write AddM (resp. addM). Further, we write ind-R, resp. R-ind, for the
subcategory of mod-R, resp. of R-mod, consisting of all indecomposables.
Moreover, for M ∈ mod-R we denote by indM the subcategory of mod-R
consisting of the modules which are isomorphic to an indecomposable direct
summand of M .

Let us now recall the notions of preprojective and preinjective modules,
as introduced by Auslander and Smalø in [11]. Note that in our situation they
coincide with the preprojectives and preinjectives constructed by Coxeter
functors, as studied in [27], and also with the preprojectives and preinjectives
considered in [19] (see [3]).

Let R be a right artinian ring, and let C be a subcategory of mod-R
which is closed under isomorphic images and direct summands. A cover
for C is a subcategory Y of C consisting of indecomposable modules such
that for each module C in C there is an epimorphism Y → C with Y
in addY. Moreover, we say that a module C in C is splitting projective
in C if each epimorphism X → C with X in add C is splittable, and we
denote by P0(C) the subcategory of mod-R consisting of all indecomposable
splitting projectives in C. Obviously, P0 = P0(mod-R) is the category of all
indecomposable projective right R-modules. We proceed by induction and
set Pn = P0(mod-RPn), where Pn = P0 ∪ P1 ∪ . . . ∪ Pn−1 and mod-RPn

denotes the subcategory of mod-R consisting of all modules with no direct
summand in Pn. The modules in add(

⋃
n∈N0

Pn) are called preprojective.
Furthermore, by defining P∞ = ind-R \

⋃
n∈N0

Pn we obtain a partition
P0,P1,P2, . . . ,P∞ of ind-R, which is called a preprojective partition if Pn is a
finite cover for mod-RPn for each n ∈ N. It was shown in [11] that every artin
algebra has a preprojective partition. For a right artinian hereditary ring,
however, we know from [3] that the existence of a preprojective partition is
equivalent to condition (P) in our Theorem 1.1.



270 L. ANGELERI HÜGEL AND H. VALENTA

Preinjective modules are defined dually. Observe that in this paper we
denote by In the subcategory of preinjective left R-modules of level n (while
the objects of Pn are right modules), that is, In consists of all indecompos-
able splitting injectives in the category R-modIn of finitely generated left
modules without direct summands in In = I0 ∪ . . . ∪ In−1 over a left ar-
tinian ring R. Again, we are interested in the property that In is a finite
cocover for R-modIn for each n ∈ N, where a cocover is the dual notion to
a cover. In this case we say that I0, . . . , I∞ define a preinjective partition
of R-mod.

For definitions and basic results about almost split sequences and irre-
ducible morphisms we refer to [10]; see also [17], [28]. We adopt the notation
A = τC and C = τ−1A if 0→ A→ B → C → 0 is an almost split sequence
in mod-R, and define inductively τn and τ−n. Observe that we will consider
almost split sequences in the category Mod-R or in mod-R. The relation-
ship between these two cases was explained in [32]; see 3.4 below. Details
on tilting theory can be found in [22], [12].

3. The local duality. Let R be a ring, XR a module with S = EndRX,
and SV a minimal injective cogenerator of S Mod. The left R-module

X+ = RHomS(SX, SV )

is called the local dual of X. If R is an artin algebra and XR is finitely
generated, then it is well known that X+ ∼= D(X) for the usual duality
D : mod-R→ R-mod.

The local duality will be one of the main tools in proving Theorem 1.1.
The reason is basically given by the following results on the existence of
almost split sequences. Recall that Tr denotes the Auslander–Bridger trans-
pose [8].

Theorem 3.1 (Auslander [7, Chapter I, 3.9]). Let R be a semiperfect
ring. For any finitely presented non-projective module CR with local endo-
morphism ring there is an almost split sequence 0→ (TrC)+ → B → C → 0
in Mod-R.

Theorem 3.2 (Zimmermann [32, Satz 6]). Let R be an artinian ring.
For any finitely generated indecomposable non-injective right R-module AR
such that the local dual RA

+ is a finitely generated left R-module there is
an almost split sequence 0→ A→ B → TrA+ → 0 in mod-R.

Observe that this result has the following consequence.

Proposition 3.3 (Zimmermann [32, Folgerung 9]). Let R be an artinian
ring. For every indecomposable projective non-injective right R-module AR
there is an almost split sequence 0 → A → B → C → 0 in mod-R if and
only if all indecomposable injective left R-modules are finitely generated.
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Recall that a module M is said to be endofinite if it has finite length as
a module over its endomorphism ring. In particular, endofinite modules are
pure-injective. Of course, a semiperfect ring R is left artinian if and only
if every indecomposable projective right R-module is endofinite. From the
next result we then conclude that the almost split sequences in the above
proposition are even almost split sequences in Mod-R.

Proposition 3.4 (Zimmermann [32, Proposition 3]). Let R be a semi-
perfect ring. An almost split sequence 0 → A → B → C → 0 in mod-R is
almost split in Mod-R if and only if A is pure-injective.

We now collect some basic properties of the local duality we are going
to use in the sequel.

Lemma 3.5. Let R be a semiperfect ring with Jacobson radical J .

(1) Let MR be a finitely presented module. If EndRM is local , then so
is EndRM

+.

(2) Let MR, NR be modules and assume that MR is finitely presented.
Then HomR(M,N) 6= 0 if and only if HomR(N+,M+) 6= 0.

(3) A module MR is endofinite if and only if RM
+ is endofinite.

(4) Let e ∈ R be a local idempotent. Then (eR/eJ)+ ∼= Re/Je, and
(eR)+ is an injective envelope of Re/Je. Further , if R is left artinian and

RI is an injective envelope of (Re/Je), then I+ ∼= eR.

(5) Let R be left artinian. An indecomposable left R-module RA is in-
jective if and only if A+

R is projective.

P r o o f. All statements are well known (see [23, Th. 2], [32, Lemma
5]). For the reader’s convenience we include the argument for (2). Let S =
EndRN , T = EndRM , and SV, TU be minimal injective cogenerators of
S-Mod and T -Mod, respectively. By the Hom-⊗-adjointness we have
HomR(N+,M+) ∼= HomT (TM ⊗R N+, TU), and since MR is finitely pre-
sented and SV is injective, we have a canonical isomorphism TM ⊗R N+ ∼=
T HomS(SHomR(M,N), SV ).

As we have seen above, the local duality extends the ordinary duality
we are supplied with in the special case of artin algebras. The next result
allows us to replace the Auslander–Reiten formula [9] in some arguments.

Lemma 3.6. Let 0 → A → B → Z → 0 be an almost split sequence in
Mod-R, where R is an arbitrary ring , and XR a module. If HomR(X,A)=0,
then also Ext1R(Z,X) = 0. The converse holds if Z has projective dimension
at most one.
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P r o o f. A non-split exact sequence 0 → X → Y → Z → 0 yields a
commutative diagram with exact rows

0 X Y Z 0

0 A B Z 0

// //

σ
��

//

��

//
�
�
�
�

�
�
�
�

// // β // //

where σ 6= 0 because β is not a split epimorphism.

Conversely, assume that Z has projective dimension at most one and
take a map σ : X → A. If Ext1R(Z,X) = 0, then the exact sequence X

σ→
A

p→ Cokσ → 0 gives rise to an isomorphism Ext1R(Z, p) : Ext1R(Z,A) ∼=
Ext1R(Z,Cokσ). But this implies that p does not factor through the almost
split sequence 0 → A → B → Z → 0, hence p is an isomorphism, and
σ = 0.

4. Some tilting theory. We have seen in the previous section (see
Proposition 3.3) that the first step of our Theorem 1.1 was already proven
by Zimmermann in [32, Folgerung 9]. He constructed almost split sequences
starting at the projectives by using the property that their local dual is
finitely generated and by applying Theorem 3.2. So, if we want to proceed
similarly for the other preprojectives, we first have to show that their local
duals are finitely generated. To this end, we shall need some tilting the-
ory.

Throughout this section, let R be a ring and TR a tilting module in
the sense of [12], i.e. a finitely presented module of projective dimension
at most one such that Ext1R(T, T ) = 0, and there is no non-zero module
MR satisfying HomR(T,M) = Ext1R(T,M) = 0 (see also [14, Th. 3]). We
denote by GenT the category of all T -generated modules, set S = EndR T ,
and start out with a result connected with the previous section. It shows
that the injective left modules over S can be described in terms of local
duality. Observe that statement (1) is also true for ∗-modules in the sense
of Colpi [13].

Lemma 4.1. (1) RX
+ ∼= HomS(ST, S(HomR(T,X)S)+) for any X ∈

GenT .

(2) If S is semiperfect and XR = eT for some local idempotent e ∈ S,
then ST ⊗R X+ is the injective envelope of Se/J(S)e.

P r o o f. (1) Let S′=EndRX and S′V be a minimal injective cogenerator
of S′-Mod. Since HomR(T,−) : Mod-R→ Mod-S is fully faithful on objects
of GenT , we have S′ ∼= EndS HomR(T,X) =: E. We identify S′ with E to
obtain S′HomR(T,X)⊗S TR ∼= S′XR. So, we conclude that
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RX
+ = RHomS′(X, S′V ) ∼= RHomS′(HomR(T,X)⊗S T, S′V )
∼= RHomS(T, SHomS′(HomR(T,X), S′V ))
∼= RHomS(ST, S(HomR(T,X)S)+).

(2) From HomR(T,X) ∼= eS we deduce by 3.5 that SI := HomR(T,X)+

is the injective envelope of Se/J(S)e. Further, we know X+ ∼= HomS(T, I)
by (1). Since SI is in the torsion class in S-Mod induced by the tilting mod-
ule ST with End ST ∼= R (see [12, 1.1]), we have SI ∼= ST ⊗R HomS(T, I) ∼=
ST ⊗R X+.

Next, we need some knowledge about the Ext-projectives and the Ext-
injectives in torsion theories. Recall that a module X in an extension-closed
subcategory C ⊆ Mod-R is said to be Ext-projective in C if Ext1R(X,C) = 0
for all C ∈ C. Ext-injectives are defined dually. Moreover, for a class T ⊆
Mod-R we denote by τT (X) the trace of T in the module X.

Lemma 4.2 (Hoshino [20], [21]). Let (T ,F) be a torsion theory in Mod-R.

(1) A module X is Ext-projective in F if and only if X ∼= P/τT (P ) for
some projective module P . Moreover , X is Ext-injective in T if and only if
X ∼= τT (I) for some injective module I.

(2) Let 0 → A → B → Z → 0 be an almost split sequence in Mod-R.
Then Z is Ext-projective in T if and only if A is Ext-injective in F .

P r o o f. The first statement in (1) is a straightforward generalization of
[20, Lemma 1], the second statement is proven dually. For (2), see
[21, Lemmata 2 and 3].

Let us apply this result to our situation. Consider the functors

F =HomR(T,−) : Mod-R→Mod-S, G=−⊗S T : Mod-S →Mod-R,

F ′=Ext1R(T,−) : Mod-R→Mod-S, G′=TorS(T,−) : Mod-S →Mod-R

associated with our tilting module T . It is well known [12, §1] that these

functors induce a pair of equivalences (T F,G←→Y, F F ′,G′←→X ) between the
torsion and the torsion-free part of two torsion theories, namely (T ,F) in
Mod-R on one side, where T = KerF ′ and F = KerF , and (X ,Y) in Mod-S
on the other side, where X = KerG and Y = KerG′. Since the torsion class
T contains all injectives, we immediately deduce from condition (1) in 4.2
that a module is Ext-injective in T if and only if it is injective. Moreover,
we know by [31, 1.3] that a module is Ext-projective in T if and only if it
lies in AddT .

Next, we show that the Connecting Lemma, which is well known for
artin algebras [18, 2.3], still holds in our more general context.

Lemma 4.3 (Connecting Lemma). Assume that R is a right artinian
hereditary ring. The following statements are equivalent for an almost split
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sequence 0→ A
α→ B → Z → 0 in Mod-S:

(1) A ∈ Y, Z ∈ X .
(2) A = F (I) for some indecomposable injective module IR.
(3) Z = F ′(P/τT (P )) for some indecomposable projective module PR.

In this case, P/PJ ∼= Soc I.

P r o o f. (1)⇒(3). For all X ∈ X we have HomS (X,A) = 0 and therefore
by 3.6 also Ext1S(Z,X) = 0. This implies Z ∼= F ′(W ) for some indecompos-
able Ext-projective object W ∈ F . The claim then follows from 4.2.

(3)⇒(2). We deduce from 4.2 that Z is Ext-projective in X and therefore
A is Ext-injective in Y. But then A = F (I) for some Ext-injective object
I ∈ T , which is even injective by our above considerations.

(2)⇒(1). Using again 4.2, we see that A is Ext-injective in Y, and Z lies
therefore in X .

To verify the relationship between I and P , we consider the exact se-

quence P/τT (P ) ∼= G′Z
δ→ GA

Gα−→ GB → GZ = 0. Since α does not split,
Gα is not an isomorphism, and δ 6= 0. Moreover, we find that the canonical
map ν : I → I/Soc I, which lies in T , factors through Gα, because Fν is
not a split monomorphism and thus factors through α. We then obtain a
commutative diagram

0 Im δ GA GB 0

0 Soc I I I/Soc I 0

// //

g

��

Gα //

∼=
��

//

��
// // ν // //

where g is a monomorphism, hence an isomorphism. Thus we have an epi-
morphism P → Im δ ∼= Soc I, and our claim is proven.

We quote the following result from [31, 1.4].

Lemma 4.4. Let R be a right artinian ring. The functors F , G and F ′

carry finitely generated modules to finitely generated modules. If S is right
artinian, then G′ has this property as well.

If R is hereditary, then we know by [12, 1.5] that the torsion theory
(X ,Y) is splitting. An analogous result holds if S is hereditary.

Lemma 4.5. (1) If S is right hereditary , then (T ,F) is a splitting torsion
theory.

(2) Assume that R and S are right artinian. Then the following state-
ments are equivalent :

(a) (T ∩mod-R,F ∩mod-R) is a splitting torsion theory in mod-R.
(b) Ext1R(W,U) = 0 for all U ∈ T ∩mod-R, W ∈ F ∩mod-R.
(c) Every finitely generated module XS ∈ X has projective dimension

at most one.
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P r o o f. We use the same arguments as in [21].

(1) Let U ∈ T and W ∈ F . By assumption, the module XS = F ′(W )
has a projective resolution 0 → P1 → P0 → XS → 0. Observe that
P1, P0 ∈ Y = KerG′ and XS ∈ X = KerG. So, we have an exact sequence
0→ G′(X)→ G(P1)→ G(P0)→ 0. Since G(P1), G(P0) ∈ AddT , we know
that Ext1R(G(P1), U) = 0 = Ext2R(G(P0), U). Moreover, G′(X) ∼= W , and
so we obtain Ext1R(W,U) = 0. This proves our claim.

(2) (a)⇔(b). Take an exact sequence 0 → U
α→ V → W → 0 where

U ∈ T ∩mod-R,W ∈ F ∩mod-R. If (T ∩mod-R,F ∩mod-R) is a splitting
torsion theory in mod-R, then V ∈ mod-R has a decomposition V = V1⊕V2
with V1 ∈ T and V2 ∈ F . So, V2 and W belong to KerF , and we obtain
an isomorphism F (p1α) : F (U) → F (V1) where p1 : V → V1 denotes the
canonical projection. But since U and V1 belong to T , this means that
p1α is an isomorphism, hence α a split monomorphism, and condition (b)
is verified. For the converse implication, we use the fact that R is right
noetherian to see that (T ∩mod-R,F∩mod-R) is a torsion theory in mod-R.
The splitting property then immediately follows from (b).

(b)⇒(c). Let XS ∈ X be a finitely generated module with projective
cover 0 → KS → PS → XS → 0. Observe that P , and hence also K, are
in Y. We claim that KS is projective. First of all, since S is right noetherian,

we have a presentation Sm → Sn
f→ KS → 0, which yields an exact sequence

0 → UR → Tn
G(f)−→ G(K)R → 0 where U ∈ T ∩mod-R. Further, we have

an exact sequence 0 → G′(X) → G(K) → G(P ) → 0 where G(P ) ∈ addT
and G′(X) ∈ F is finitely generated by Lemma 4.4. From (b) we then know
that Ext1R(G′(X), U) = 0 = Ext1R(G(P ), U), hence Ext1R(G(K), U) = 0.
But then G(f) is a splitting epimorphism, and G(K) ∈ addT . This shows
that K is projective.

(c)⇒(b). Let U ∈ T ∩mod-R, W ∈ F ∩mod-R. Then X = F ′(W ) ∈ X
is finitely generated by Lemma 4.4 and has by assumption a projective
resolution 0→ P1 → P0 → XS → 0. So, we conclude that Ext1R(W,U) = 0
as in the proof of (1).

Finally, we will need a criterion for verifying finiteness conditions over
the endomorphism ring. Let C be a subcategory of ind-R over an arbitrary
ring R. We say that add C has left almost split morphisms if for all A ∈ C
there is a homomorphism a : A → X with X ∈ add C such that a is not a
split monomorphism, and any map h : A→ Y where Y ∈ add C and h is not
a split monomorphism factors through a. The category add C having right
almost split morphisms is defined dually.

Lemma 4.6. Let R be a right artinian ring and C ⊆ ind-R a finite subcat-
egory such that add C has left (resp. right) almost split morphisms. Then
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for any two indecomposable modules X,Y ∈ C, HomR(X,Y ) is a finitely
generated left EndR Y -module (resp. right EndRX-module).

P r o o f. From the existence of left almost split morphisms in C we deduce
inductively, for any two indecomposable modules X,Y ∈ C and any i ∈ N,
that the module HomR(X,Y )/riC (X,Y ) (see [11, §3]) is finitely generated
over EndR Y , which gives the claim by the lemma of Harada and Sai.

Let us remark that actually, under the assumptions of the above lemma,
HomR(X,Y ) has even finite length over EndR Y (resp. EndRX). In fact,
in [5] we show the following for a subcategory C ⊆ ind-R over an arbitrary
ring R. If {Ci | i ∈ I} is a complete irredundant set of representatives of the
isomorphism classes of C, and if we set C =

∐
i∈I Ci and S = EndR C, then

add C has left almost split morphisms if and only if r(Ci, C) is a finitely
generated left S-module for all i ∈ I (see also [16]). In the situation of
Lemma 4.6, the latter means that S is left artinian, and hence so are all
EndR Ci.

We are now in a position to prove the main result of this section.

Theorem 4.7. Assume that R and S are right artinian hereditary rings
and that TR is a tilting module with S = EndR T . The following statements
are equivalent :

(1) For every indecomposable non-injective direct summand A of T there
is an almost split sequence 0 → A → B → C → 0 in Mod-R consisting of
finitely generated modules.

(2) S is left artinian, and for every indecomposable direct summand A
of T the local dual RA

+ is finitely generated.

P r o o f. (1)⇒(2). The ring S being hereditary implies by Lemma 4.5
that the torsion theory (T ,F) is splitting. Hence the almost split sequences
considered in (1) are almost split sequences in the subcategory T . It is then
easy to see that they are mapped by F to almost split sequences in Y, which
consist of finitely generated modules by Lemma 4.4, and which are even
almost split sequences in Mod-S, because R is hereditary and the torsion
theory (X ,Y) is therefore splitting (see [12, 1.5]).

We claim that for every indecomposable non-injective projective right
S-module PS there is an almost split sequence 0 → P

α→ B → Z → 0
in mod-S. In fact, P = F (A) for some indecomposable direct summand
of T , and the claim has just been proven above in case A is not injective.
So, let us consider the case that A is injective and denote by Q the pro-
jective cover of SocA. Assume for a moment that Q, and therefore also
SocA, are in T . For the embedding i : SocA → A in T we then have
0 6= F (i) : F (SocA)S → F (A) = PS in Y, and the composition f of

F (i) with an injective envelope PS
a→ IS is a monomorphism. Moreover,
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we know by the choice of P that a is not a split monomorphism, hence
G(a) : GF (A) → G(I) cannot be injective and G(f) must be zero. For the
canonical epimorphism ν : I → I/τX (I) we then obtain G(νf)= 0, and since
I/τX (I) ∈ Y, we deduce νf = 0 and Im f ⊆ τX (I). Thus we have an exact

sequence 0 → F (SocA)
f→ τX (I) → K → 0 where τX (I) and K are in X ,

which yields an exact sequence 0→ G′(τX (I))→ G′(K)→ GF (SocA)→ 0.
But this implies the existence of a non-zero map Q→ G′(K) where Q ∈ T
and G′(K) ∈ F , a contradiction. So, we conclude that Q does not lie in T .
Since (T ,F) is splitting, we then have Q ∈ F , and F ′(Q) = F ′(Q/τT (Q))
is an indecomposable non-projective module from X , which is finitely gen-
erated by 4.4, and has an almost split sequence 0→ A′ → B → F ′(Q)→ 0
in Mod-S by 3.1. From the Connecting Lemma 4.3 it now follows that
A′ ∼= F (A) = P , and the claim is proven.

As a consequence, we deduce that S is two-sided artinian. Indeed, if
BS = B′⊕Y where B′S is projective and YS has no non-zero projective direct
summands, then S being hereditary implies that any map h : P → P ′ with
P ′S projective which factors through α : P → B actually factors through

α′ : P
α−→ B

pr−→ B′. So, addP0(S) is a category with left almost split mor-
phisms, and we deduce from Lemma 4.6 that all indecomposable projective
right S-modules are endofinite. In particular, S is then also left artinian.

In other words, recalling Proposition 3.3, we have shown that all in-
decomposable injective left S-modules are finitely generated. But by Lem-
ma 4.1 this means that all modules of the form ST⊗RA+ for some A ∈ indT
are finitely generated. Now, these are modules in the torsion class induced
by the tilting module ST over the left artinian ring S with End ST ∼= R
(see [12, 1.1]), and so we know by Lemma 4.4 that the last statement is
equivalent to the second condition in (2).

(2)⇒(1). As we have just observed, condition (2) means that for every in-
decomposable non-injective projective right S-module PS there is an almost
split sequence 0→ P → Y → Z → 0 in Mod-S consisting of finitely gener-
ated modules (see 3.3 and the subsequent remark). Now, if A ∈ indT is not
injective, then neither is F (A), because otherwise A would be Ext-injective
in T , hence injective by our observation after Lemma 4.2. So, there is an
almost split sequence starting at F (A), which lies in Y by the Connecting
Lemma 4.3, and using similar arguments as above, we see that it is mapped
by G to the required almost split sequence.

5. Some cotilting theory. We call a left module RQ over an arbitrary
ring R a cotilting module if it is a module of injective dimension at most one
such that Ext1R(Q,Q) = 0, and there is no non-zero module RM satisfying
HomR(M,Q) = Ext1R(M,Q) = 0.



278 L. ANGELERI HÜGEL AND H. VALENTA

Observe that our definition is weaker than the one introduced by Colpi,
D’Este and Tonolo in [15]. In particular, we do not know whether every
module cogenerated by Q is also copresented by Q. We are going to see,
however, that under some additional assumptions, every finitely generated
module X which is cogenerated by Q is finitely copresented by Q, i.e. there
is an exact sequence 0→X→Qn→Qm for some n,m ∈ N. In this respect,
we will therefore still have a dual behaviour to the tilting case.

Before starting, we fix some notation. For a left module RQ, we denote by
⊥Q the kernel of the functor Ext1R(−, Q) and by CogenQ the category of the
modules cogenerated by Q. Observe that for a cotilting module Q, it follows
from our definition that ⊥Q contains every module finitely cogenerated byQ.
Finally, let RejQ(X) =

⋂
{Ker f | f ∈ HomR(X,Q)} denote the reject of Q

in a module X.

Proposition 5.1. Let RQ be a module and S = (EndRQ)op.

(1) Assume that Ext1R(Q,Q) = 0, and let RX ∈ CogenQ. The right
S-module HomR(X,Q)S is finitely generated if and only if there is an exact
sequence 0→ X → Qn → L→ 0 for some n ∈ N and some L ∈ ⊥Q.

(2) Assume that Q is a module of injective dimension at most one such
that there is no non-zero module RM satisfying HomR(M,Q) = Ext1R(M,Q)
= 0. If RX and X/RejQ(X) are contained in ⊥Q, then X ∈ CogenQ.

(3) Assume that Q is cotilting. If R is left artinian, or if HomR(X,Q)S
is finitely generated for any finitely generated module X, then CogenQ ∩
R-mod = ⊥Q ∩R-mod.

P r o o f. (1) The “if” part follows by applying the functor HomR(−, Q)
on the given sequence. The “only if” part is shown using arguments from
[15, 1.8]. We take maps f1, . . . , fn generating HomR(X,Q)S and consider the

exact sequence 0→ X
f→ Qn → L→ 0 induced by them. Observe that f is a

monomorphism since RX ∈ CogenQ. Applying the functor HomR(−, Q), we

get an exact sequence 0 → HomR(L,Q) → HomR(Qn, Q)
f∗→ HomR(X,Q)

δ→ Ext1R(L,Q) → Ext1R(Qn, Q) = 0, where f∗ is an epimorphism by con-
struction, hence Ext1R(L,Q) = 0.

(2) We proceed as in [15, 1.7]. We have to show that X ′ = RejQ(X) = 0.
To this end, we apply the functor HomR(−, Q) on the exact sequence

0→ X ′ → X
b→ X/X ′ → 0 to get an exact sequence 0→ HomR(X/X ′, Q)

b∗→ HomR(X,Q)→ HomR(X ′, Q)
δ→ Ext1R(X/X ′, Q) = 0. Now, b∗ is an iso-

morphism by construction, hence HomR(X ′, Q) = 0. Since moreover ⊥Q is
closed under submodules, also Ext1R(X ′, Q) = 0, thus X ′ = 0 by assumption.

(3) In the first case we will use the fact that every finitely generated mod-
ule RX is artinian, hence every factor module of X is finitely cogenerated,
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and in particular finitely cogenerated by Q whenever it lies in CogenQ
(see [1, 10.10, 10.2]). In the second case we will use (1).

Take now a finitely generated module X. We have seen that in both cases
X being in CogenQ implies that it is finitely cogenerated by Q and therefore
is in ⊥Q. Conversely, if X ∈ ⊥Q, then again by the above considerations, the
factor module X/RejQ(X) ∈ CogenQ is contained in ⊥Q, thus X ∈ CogenQ
by (2).

In [4], we call a module RQ finitely cotilting if Q is a finitely generated
cotilting module such that HomR(X,Q)(EndRQ)op is finitely generated for
any finitely generated module X. The following observation is an immediate
consequence of Proposition 5.1.

Corollary 5.2. Assume that RQ is finitely cotilting. Then every finitely
generated module X which is cogenerated by Q is finitely copresented
by Q.

In Sections 7 and 8, we are going to consider modules which are finitely
cotilting as well as tilting. In fact, we have the following relationship.

Proposition 5.3. Let R be a left artinian hereditary ring. Then every
cotilting module RQ such that RQ(EndRQ)op is finitely generated on both
sides is a tilting module.

P r o o f. We only have to take a leftR-moduleRM satisfying HomR(Q,M)
= Ext1R(Q,M) = 0 and to verify that M = 0. Observe that R ∈ ⊥Q ∩
R-mod = CogenQ ∩ R-mod by 5.1(3), and that HomR(R,Q)(EndRQ)op is
finitely generated. So, we obtain as above an exact sequence 0 → R →
Qn → L → 0 where L ∈ ⊥Q is finitely generated artinian, hence even con-
tained in Qm, for some n,m ∈ N. Applying the functor HomR(−,M), we

see that HomR(R,M)
δ→ Ext1R(L,M) is an isomorphism. Now, since R is

hereditary, ⊥M is closed under submodules. Thus Ext1R(Qm,M)=0 implies
Ext1R(L,M) = 0, and M ∼= HomR(R,M) = 0.

6. Preprojective tilting modules. Throughout this section let R be a
right artinian hereditary ring. It is well known that the isomorphism classes
of the indecomposable projective modules can then be partially ordered by
setting P ≤ Q if HomR(P,Q) 6= 0. The following condition allows us to order
the modules in Pn (see [2]). For n ∈ N0 we say that R is (right) Pn-hereditary
if it has the following property: If C is a module in Pn, then every finitely
generated indecomposable module X with a non-zero morphism X → C
is in Pn+1. In particular, every non-zero morphism P → Q where P and
Q are in Pn must then be injective. So, the isomorphism classes of Pn
can be partially ordered by setting P ≤ Q if HomR(P,Q) 6= 0. We will
denote by Pn max (resp. Pn \ max) the subcategory of Pn consisting of
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those modules which are maximal (resp. non-maximal) with respect to this
order. Further, let us write Pninj for the subcategory of Pn consisting of
the injective objects. Take now a complete irredundant set P1, . . . , Pr of
modules in Pn+1 ∪Pnmax∪Pninj and put Tn+1 =

⊕r
i=1 Pi. Finally, let T0

be a minimal progenerator of Mod-R, and define P−1 = ∅.
The modules Tn were studied in [3]. More precisely, it was established

that R satisfies condition (P) in Theorem 1.1 if and only if for all n ∈ N0 the
module Tn is tilting and R is Pn-hereditary, and for every indecomposable
preprojective non-projective module C there is an almost split sequence
0 → A → B → C → 0 in mod-R. With the arguments used there we can
now prove the following.

Proposition 6.1. Let R be a right artinian hereditary ring. Assume
that n ≥ 0 and that for all non-injective modules A ∈ Pn there is an almost
split sequence 0→ A→ B → C → 0 in mod-R. Then:

(1) For all X,Y ∈ Pn the bimodule HomR(X,Y ) is finitely generated
over the skew-fields EndRX and EndR Y .

(2) EndR Ti is right artinian and hereditary for all 0 ≤ i < n.
(3) Pi is a finite cover for mod-RPi , R is Pi-hereditary , and Ti is a

tilting module for all 0 ≤ i ≤ n.
(4) For all C ∈

⋃n
i=1 Pi there is an almost split sequence 0→ A→ B →

C → 0 in mod-R.
(5) Pi+1 = {τ−1X | X ∈ Pi−1max non-injective, or X ∈ Pi \max} for

all 0 ≤ i < n.

P r o o f. We only give the inductive step for (1) and (2), the other state-
ments are proven as in [3, 2.1 and 2.9]. Let n ≥ 0, and assume that the
statements (1)–(5) are proven for n. Observe that addPn+1 is then a finite
category with left almost split morphisms and right almost split morphisms.
Indeed, this follows from the existence of the almost split sequences and the
fact that R is Pi-hereditary for all 0 ≤ i ≤ n. By Lemma 4.6 the bimod-
ule HomR(X,Y ) is then finitely generated over EndRX and EndR Y for all
X,Y ∈ Pn. That the endomorphism rings of modules in Pn are skew-fields
follows from the fact that R is Pn-hereditary. So, we have proven (1).

Now we verify (2). Let S=EndR Tn, and let (T ,F) in Mod-R and (X ,Y)
in Mod-S be the torsion theories induced by the tilting module Tn. It follows
from (1) that r(X,Y )EndRX is finitely generated for all indecomposable di-
rect summands X and Y of Tn, hence the Jacobson radical J(S) = r(Tn, Tn)
is a finitely generated right S-module. Then the semiprimary ring S is even
right artinian. In order to prove that S is hereditary, it is enough to show
that every indecomposable finitely generated right S-module XS has pro-
jective dimension at most one. Since R is hereditary, we know by [12, 1.5]
that the torsion theory (X ,Y) is splitting. If X ∈ Y, then the claim is shown
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as in [22, 4.1(6)]. Moreover, we know from Lemma 4.5 that the claim for
X ∈ X holds true if and only if Ext1R(W,U) = 0 for all U ∈ T ∩mod-R and
W ∈ F ∩ mod-R. Now, if W is not projective, then we know by 3.1 and
3.6 that this condition is satisfied whenever HomR(U, (TrW )+) = 0. So,
it remains to prove that the latter follows from our induction assumption.
Indeed, since Pn is a cover for mod-RPn , we have mod-RPn∪Pn−1max ⊆ T ,
and every finitely generated module W ∈ F has to lie in Pn−1∪Pn−1 \max.
From condition (5) we then deduce (TrW )+ ∈ Pn−1, and using the fact
that U ∈ T is generated by Tn and that R is Pi-hereditary for all i < n− 1,
we conclude HomR(U, (TrW )+) = 0.

Corollary 6.2. Let the assumptions be as in Proposition 6.1 with n ≥ 1.
Then R is left artinian, all X ∈ Pn are endofinite with RX

+ finitely gen-
erated and X++ ∼= X, and the almost split sequences considered in 6.1 are
even almost split in Mod-R.

P r o o f. It follows from (1) in 6.1 that all modules in Pn are endofinite.
In particular, this holds true for all indecomposable projectives, and we
deduce that R is left artinian. Also, since all modules in Pn are pure-
injective, the almost split sequences considered are even almost split in Mod-
R by Proposition 3.4. Moreover, every module X ∈ Pn is a direct summand
of some Ti, 0 ≤ i < n, and we know by (2) and (3) in 6.1 that Theorem
4.7 applies to the Ti. So, RX

+ is finitely generated. Finally, X being pure-
injective with RX

+ finitely presented implies X++ ∼= X by [32, Lemma 5].

Corollary 6.3. Let the assumptions be as in Proposition 6.1. Then for
all X ∈ Pn and all Y ∈ mod-R, HomR(X,Y ) is a right EndRX-module of
finite length.

P r o o f. The module X is an indecomposable direct summand of one
of the tilting modules Ti, 0 ≤ i < n. Now, S = EndR Ti is right artinian
by 6.1, and we know from 4.4 that the functor F = HomR(Ti,−) : Mod-R→
Mod-S carries finitely generated modules to finitely generated modules.
Hence F (Y )S is a module of finite length. Let e ∈ S be the idempotent
associated with the direct summand X of Ti. Then F (Y )e eSe, and thus also
HomR(X,Y )EndRX , has finite length as well.

7. Preinjective cotilting modules. We now deal with the dual sit-
uation of preinjective left modules as considered in condition (I) of Theo-
rem 1.1. Throughout this section, we assume R to be a left artinian ring
such that all indecomposable injective left R-modules are finitely generated.
We are going to collect some results which we will need in the sequel. Most
of them are dual versions of results from [3], and therefore we will often omit
the proofs.
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Lemma 7.1 (cp. [3, 1.2]). Let N ∈R-mod and X ∈R-Mod. Then X ∈
CogenN provided there is n ∈ N such that In is finite and every morphism
h : X → I with I ∈ In \ indN factors through a morphism β : B → I which
is not a split epimorphism and where B is a finite direct sum of modules in
In ∪ indN .

P r o o f. With arguments dual to those used in [3, 1.2] we show that
for every morphism h : X → I where I ∈ In \ indN there is a morphism
g : Y → I such that Y ∈ addN and h factors through f . In particular,
any embedding h : X →

∏
k∈K Ik with injective modules Ik, k ∈ K, can be

factored through a map
∏
k∈K gk :

∏
k∈K Yk →

∏
k∈K Ik where Yk ∈ addN .

Since there are mk ∈ N with a split monomorphism
∏
k∈K Yk →

∏
k∈K N

mk ,
we obtain a monomorphismX →

∏
k∈K N

mk , which provesX ∈ CogenN .

We immediately see that (I) is a sufficient condition for R-mod having a
preinjective partition.

Theorem 7.2 (cp. [3, 1.3]). Let R be a left artinian ring such that all
indecomposable injective left R-modules are finitely generated. Further , let
n ∈ N, and assume that for each non-projective module RC ∈ In there is an
almost split sequence 0 → A → B → C → 0 in R-mod. Then Ii is a finite
cocover for R-modIi for all 0 ≤ i ≤ n.

Moreover, we obtain a criterion for endofiniteness of the preinjective left
R-modules.

Proposition 7.3. Let the assumptions be as in Theorem 7.2, and assume
further that R is hereditary. Then all C ∈ In are endofinite.

P r o o f. Let RQ be a minimal injective cogenerator of R-Mod and
let R′ = (EndRQ)op. By assumption, Q induces a Morita duality D :=
HomR(−, Q) : R-mod→ mod-R′, and R′ is a right artinian hereditary ring.
Observe that for all i ∈ N0, an indecomposable left R-module RC lies in
Ii(R) if and only if D(C)R′ lies in Pi(R′). So, R′ satisfies the assumptions
of Proposition 6.1, and we know by Corollary 6.3 that HomR′(X,Y ) is a right
EndR′ X-module of finite length for all X ∈ Pn(R′) and for all Y ∈ mod-R′.
In particular, HomR′(D(C), Q)EndR′ D(C) has finite length for all RC ∈
In(R), and since D induces isomorphisms HomR(R,C) ∼= HomR′ (D(C), Q)
and (EndRC)op ∼= EndR′ D(C), we conclude that also C(EndRC)op

∼=
HomR(R,C)(EndRC)op has finite length.

For n ∈ N0 we will say that R is (left) In-hereditary if it has the following
property: If RA is a module in In, then every finitely generated indecom-
posable module RX with a non-zero morphism A → X is in In+1. Again,
this implies that every non-zero morphism P → Q where P and Q are in
In must be surjective, and so the isomorphism classes of In can be partially
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ordered by setting P ≥ Q if HomR(P,Q) 6= 0. We will denote by Inmax,
resp. In \ max, the subcategory of In consisting of those modules which
are maximal, resp. non-maximal, with respect to this order. Observe that
using the same arguments as in [2, 4.3] we obtain the following criterion for
maximality.

Lemma 7.4. Let R be an artinian ring and n ∈ N0.

(1) Assume that R is (right) Pi-hereditary for all 0 ≤ i ≤ n. Then a
module CR in Pn is maximal in Pn with respect to “≤” if and only if there
is no irreducible morphism C → D in mod-R where D ∈ Pn.

(2) Assume that R is (left) Ii-hereditary for all 0 ≤ i ≤ n. Then a
module RA in In is maximal in In with respect to “≤” if and only if there
is no irreducible morphism B → A in R-mod where B ∈ In.

We include a well known description of the maximal injectives and the
maximal projectives.

Lemma 7.5. Let R be an artinian hereditary ring.

(1) An injective module RA is maximal injective if and only if its socle
is projective.

(2) A projective module CR is maximal projective if and only if its top
is injective.

(3) A module RA is maximal injective if and only if A+
R is maximal

projective.

P r o o f. (1) Consider an injective module RA and a projective cover P of
SocA. If P is not simple, then we can find a simple module S contained in
RadP , and thus a non-zero map f : P → I where I is an injective envelope
of S. Since S 6⊆ Ker f , we see that Ker f is properly contained in RadP , and
so we have a proper epimorphism P/Ker f → SocA which can be extended
to a non-zero non-isomorphism I → A, showing that A is not maximal. The
converse implication is left to the reader.

(2) is proven by dual arguments.
(3) We know by Lemma 3.5 that RA is injective if and only if A+

R is
projective, and that the socle of A is projective if and only if the top of A+

R

is injective.

A construction dual to the one considered in Section 6 will now provide
us with cotilting preinjective left modules. We denote the subcategory of In
consisting of the projective objects by Inproj, take a complete irredundant
set I1, . . . , Ir of modules in In+1∪Inmax∪Inproj and put Qn+1 =

⊕r
i=1 Ii.

Let us apply the results of Section 5.

Proposition 7.6 (cp. [3, 2.2]). Let n ∈ N0 such that Ii is a finite
cocover for R-modIi , R is Ii-hereditary and Qi is a finitely cotilting mod-



284 L. ANGELERI HÜGEL AND H. VALENTA

ule for all 0 ≤ i ≤ n. Then for each A ∈ R-ind \ In+1 there is a non-
split monomorphism f : A → I such that I ∈ add In and all morphisms
h : A→ X where X ∈ In+1 factor through f .

P r o o f. We know by 5.2 that all finitely generated modules which are
cogenerated by some Qi are even finitely copresented by Qi. In particular,
since In is a cocover for R-modIn , the module A is finitely copresented by

Qn, and we have a non-split exact sequence 0 → A
f→ I

p→ L → 0 where
I ∈ addQn and L ∈ CogenQn ∩ R-mod. Further, Ii being a cocover for
R-modIi and Qi being finitely cotilting imply by 5.1(3) that CogenQn ∩
R-mod ⊆ CogenQi∩R-mod = ⊥Qi∩R-mod for all 0 ≤ i ≤ n. So, the functor
HomR(−, X) is exact on our sequence whenever X ∈ Ii ⊆ indQi for some
0 ≤ i ≤ n, which means that f has the stated factorization property. As
in [3, 2.2], we can now show that if we choose the above sequence with I of
minimal length, then I ∈ add In.

Proposition 7.7. Let the assumptions be as in Proposition 7.6. Then:

(1) (cp. [3, 2.3]) For each A ∈ In+1 there is an almost split sequence
0→ A→ B → C → 0 in R-mod where C ∈ In ∪ In \max.

(2) (cp. [3, 2.4]) Ext1R(Qn+1, Qn+1) = 0.

(3) (cp. [3, 2.5]) Suppose that In+1 is a finite cocover for R-modIn+1

and Qn+1 is a finitely cotilting module. Then R is In+1-hereditary.

(4) (cp. [3, 2.7]) Suppose that In+1 is a finite cocover for R-modIn+1 .
Then for each C ∈ In+2 \ indQn+1 there is a non-split exact sequence 0→
A→ B → C → 0 in R-mod such that Ext1R(X,A) = 0 for all X ∈ ⊥Qn+1.

P r o o f. All proofs are straightforward dualizations of the corresponding
proofs in [3]. The only point we have to take care of is in the proof of (4).
As in [3, 2.7], we proceed by induction on n, and in the induction step we
distinguish two cases. Let us look at the first case, namely when C lies in
In−1∪In−1 \max. Since R is assumed to be Ii-hereditary for all 0 ≤ i < n,
we have HomR(C,Qn) = 0. By the definition of a (finitely) cotilting module,
there is no non-zero module RM satisfying HomR(M,Qn) = Ext1R(M,Qn) =
0. Hence we have Ext1R(C,Qn) 6= 0, and there is a non-split exact sequence
0 → A → B → C → 0 where A ∈ indQn. Now we can conclude the proof
as in [3, 2.7].

Corollary 7.8. Let n ∈ N0 such that Ii is a finite cocover for R-modIi ,
R is Ii-hereditary and Qi is a finitely cotilting module for all 0 ≤ i ≤ n.
Suppose further that In+1 is a finite cocover for R-modIn+1 . Then Qn+1 is
a cotilting module.

P r o o f. Since R is hereditary and Ext1R(Qn+1, Qn+1) = 0 by 7.7(2),
it only remains to verify that there is no non-zero module RM satisfying
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HomR(M,Qn+1) = Ext1R(M,Qn+1) = 0. To this end, it suffices to show
that ⊥Qn+1 ⊆ CogenQn+1. This is deduced from 7.7(4) and Lemma 7.1 as
in [3, p. 10].

8. The main results. We now apply the results of the previous sections
in order to pass information from the preprojective right modules to the
preinjective left modules. Let Qn, n∈N, be as in Section 7, and put I−1 =∅.
Proposition 8.1. Let R be a right artinian hereditary ring. Assume that

n ≥ 0 and that for all non-injective modules A ∈ Pn+2 there is an almost
split sequence 0→ A→ B → C → 0 in mod-R. Then:

(1) R is left artinian, and any minimal injective cogenerator RQ0 of
R-Mod is finitely generated.

(2) For all non-projective modules RC ∈ In there is an almost split
sequence 0 → A → B → C → 0 in R-Mod consisting of finitely generated
modules.

(3) Ii is a finite cocover for R-modIi , R is Ii-hereditary , and Qi is an
endofinite cotilting module for all 0 ≤ i ≤ n.

(4) For all A ∈
⋃n
i=1 Ii there is an almost split sequence 0→ A→ B →

C → 0 in R-mod.
(5) Ii+1 = {τX | X ∈ Ii−1max non-projective, or X ∈ Ii \max} for all

0 ≤ i < n.
(6) For all finitely generated indecomposable left R-modules RA and for

all 0 ≤ i ≤ n, the module A lies in Ii (and is maximal) if and only if A+
R

lies in Pi (and is maximal). Moreover , A is in In+1 if A+
R is in Pn+1.

P r o o f. For (1), note that R is left artinian by Corollary 6.2. More-
over, all indecomposable injective left R-modules are finitely generated by
Proposition 3.3.

We will now prove (2)–(6) by induction on n. To this end, we will employ
Theorems 3.1 and 3.2. In particular, we will repeatedly use 3.1 to obtain
almost split sequences 0 → C+ → E → TrC → 0 in Mod-R for some
indecomposable non-projective modules RC.

Let us start with n = 0. Then In = ∅, and the statements in (3) are true
by assumption on R. It remains to prove (6). The first statement is shown
in Lemmata 3.5 and 7.5. Assume that A+

R is in P1 and set C = TrA+.
We know by Proposition 6.1 and Corollary 6.2 that there is an almost split
sequence 0→ C+ → E → A+ → 0 in Mod-R where C+ ∈ P0 \max, hence
C ∈ I0 \ max. Further, we have an almost split sequence 0 → A → B →
C → 0 in R-mod by Theorem 3.2. Since B must have an injective direct
summand by 7.4, we conclude that A ∈ I1.

Let now n ≥ 0 such that for all non-injective modules A ∈ Pn+3 there is
an almost split sequence 0→ A→ B → C → 0 in mod-R. Then statements
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(2)–(6) hold for n by the induction assumption and are to be verified for
n+ 1. We need the following information from 6.1 and 6.2.

(i) For all 0 ≤ i ≤ n + 3, the ring R is Pi-hereditary, and even more,
if C ∈ Pi, then every indecomposable module X ∈ Mod-R with a non-zero
morphism X → C lies in Pi+1. Indeed, the latter observation is proved
by the same arguments as in [2, 4.1] using the fact that the almost split
sequences ending at the modules from Pi are even almost split in Mod-R.

(ii) If 0 → A → B → C → 0 is an almost split sequence in mod-R, and
0 ≤ i ≤ n + 2, then A ∈ Pi−1max ∪ Pi \ max iff C ∈ Pi+1. In particular,
C ∈ Pn+3 if A ∈ Pn+1.

(iii) All X ∈ Pn+3 are endofinite with RX
+ finitely generated and

X++ ∼= X.

For statement (2), we only have to consider the case C ∈ In, which
means C+∈Pn with an almost split sequence 0→ C+ → E → TrC → 0 in
Mod-R. But then we know by (ii) that TrC∈Pn+3, hence (TrC)

+
is finitely

generated by (iii), and our claim follows from Auslander’s Theorem 3.1.

Next, we know from 7.2 that In+1 is a finite cocover for R-modIn+1 .
Since the Qi, 0 ≤ i ≤ n, are all endofinite, hence finitely cotilting, we deduce
by 7.8 that Qn+1 is a cotilting module. Moreover, we infer from 7.7(1) that
for every A ∈ In+1 there is an almost split sequence 0→ A→ B → C → 0
in R-mod where C ∈ In ∪ In \ max, which yields statement (4) and the
inclusion “⊆” in (5). We can also show that A+ ∈ Pn+1. In fact, we deduce
from (6) that C+ ∈ Pn−1max ∪ Pn \ max. Considering the almost split
sequence 0 → C+ → E → TrC → 0 in Mod-R, and applying (ii), we then
obtain TrC ∈ Pn+1. So, we know by (iii) that (TrC)+ is finitely generated,
hence isomorphic to A, and TrC ∼= (TrC)++ ∼= A+, which proves the claim.

In particular, it follows from (iii) that the local dual of any module
A ∈ In+1 is endofinite, hence A itself is also endofinite by Lemma 3.5. So,
we conclude that Qn+1 is endofinite since each of its indecomposable direct
summands is. Then R is In+1-hereditary by 7.7(3), and so all statements
in (3) are proven.

Further, since all Qi are finitely generated over R and over their endo-
morphism rings, we know by 5.3 that they are also tilting modules. Hence
the numbers of isomorphism classes in indQn+1 and in indQn coincide, and
a counting argument as in the proof of [3, 2.1] shows that the number of
isomorphism classes in In+1 equals the number of isomorphism classes of
non-projective modules in In−1max ∪ In \ max. This completes the proof
of (5).

Finally, we prove (6). By the induction assumption and our above consid-
erations we know that RA lies in In+1 if and only if A+

R lies in Pn+1. Assume
now that A ∈ In+1 \max. Then there is an irreducible morphism Y → A
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in R-mod for some Y ∈ In+1 by 7.4, and A is not projective. Consider the
almost split sequence 0 → A+ → E → TrA → 0 in Mod-R consisting of
finitely generated modules. We claim that Y + ∈ indE. Indeed, we have an
almost split sequence 0 → Y → B → C → 0 in R-mod where C ∼= TrY +

by 3.2. Hence there is an irreducible morphism A→ TrY + in R-mod, and
by properties of Tr, also an irreducible morphism Y + → TrA in mod-R,
which proves the claim. This yields an irreducible morphism A+ → Y +

where A+, Y + ∈ Pn+1, and we conclude that A+ ∈ Pn+1 \max. The other
implication is shown similarly using the fact that preprojectives in Pn+3 are
reflexive with respect to local duality by (iii).

It remains to prove that A ∈ In+2 whenever A+ ∈ Pn+2. Consider
C = TrA+ and the almost split sequence 0 → C+ → B → A+ → 0 in
Mod-R. Then C+ is finitely generated by 6.1 and 6.2, and by (ii) we have
C+ ∈ Pnmax∪Pn+1\max, which implies C∈Inmax∪In+1\max. Moreover,

by 3.2 we have an almost split sequence 0 → A
a→ B

b→ C → 0 in R-mod.
We then know by (5) that A 6∈ In+2, and so we only have to show that all
monomorphisms f : A→Y ∈R-modIn+2 split. Suppose that such an f does
not split. Put B = B′ ⊕ I where B′ ∈ R-modIn+2 and all indecomposable
direct summands of I are in In+2. Then f factors through a and even
through prB′ a, since R is Ii-hereditary for all i < n + 2 and therefore
HomR(I, Y ) = 0. In particular, B′ 6= 0 and prB′ a is a monomorphism.

Consider first the case C ∈ In+1\max. By Lemma 7.4 the module I then
has a direct summand X ∈ In+1. But we have seen above that prB′ a, and
therefore also b|I , are monomorphisms. Hence b|X : X → C is a non-split
monomorphism with X,C ∈ In+1, a contradiction.

Now we pass to the case C ∈ Inmax. Take a module X ∈ indB. We
have HomR(A,X) 6= 0, hence HomR(X+, A+) 6= 0 by 3.5, and from (i)
we conclude that X+ ∈ Pn+3. Observe further that X cannot be injective,
because even in case n = 0 we have C ∈ I0max. So, there is an almost split
sequence 0 → X → E → TrX+ → 0 in R-mod by Theorem 3.2, and we
have C ∈ indE. Since R is In-hereditary, we obtain TrX+ ∈ In∪In \max,
thus X ∈ In+2 by (5). But this contradicts B′ 6= 0.

So, we conclude that all monomorphisms f : A→ Y ∈ R-modIn+2 split,
and A ∈ In+2.

Proposition 8.2. Let R be a ring satisfying condition (I). Then:

(i) For all A ∈ In, n ≥ 1, there is an almost split sequence 0 → A →
B → C → 0 in R-mod.

(ii) In is a finite cocover for R-modIn , R is In-hereditary , and Qn is
an endofinite cotilting module for all n ∈ N0.

(iii) In+1 = {τX |X ∈ In−1max non-projective, or X ∈ In \ max} for
all n ∈ N0.
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In particular , the almost split sequences considered are even almost split in
R-Mod, and R(TrC)+ is finitely generated for every indecomposable prein-
jective non-projective left R-module RC.

P r o o f. The proof of (i)–(iii) is by induction on n. We deduce from 7.3
that the Qi are endofinite, and show the other statements as in 8.1.

Now it is easy to check that the almost split sequences considered consist
of preinjective modules, which are endofinite by 7.3, hence pure-injective.
We then conclude from 3.4 that the almost split sequences are even almost
split in R-Mod. The last statement then follows from 3.1.

We can finally complete the proof of our theorem.

Proof of Theorem 1.1. That (P) implies (I) follows immediately from
Proposition 8.1. We now assume (I) and show that (P) is satisfied by in-
duction on n. For n = 0 the claim follows from 3.3. Let n = 1, and consider
a non-injective module A ∈ P1. By 3.1 there is an almost split sequence
0 → (TrA)+ → E → A → 0 in Mod-R, and by 6.1 and 6.2 we have
(TrA)+ ∈ P0 \max, hence (TrA) ∈ I0 by 3.5. Thus A+ ∼= (Tr(TrA))+ is
finitely generated by 8.2, and we obtain the desired almost split sequence
from 3.2. Let now n ≥ 0, and assume that for all non-injective modules
A ∈ Pn+2 there is an almost split sequence 0 → A → B → C → 0 in
mod-R. We consider a non-injective module A ∈ Pn+2. By 3.1 there is
an almost split sequence 0 → (TrA)+ → E → A → 0 in Mod-R, and we
know from 6.1 and 6.2 that (TrA)+ ∈ Pnmax∪Pn+1 \max. Then Proposi-
tion 8.1(6) yields TrA ∈ Inmax ∪ In+1, and we conclude the proof by the
same arguments as above.

Proof of Corollary 1.2. We immediately infer from 8.1 and 6.2 that the
local duality RA 7→ A+

R gives a bijection between the sets of isomorphism
classes in In and in Pn for all n, thus also between the sets RI of the
isomorphism classes of all indecomposable preinjective left R-modules and
PR of the isomorphism classes of all indecomposable preprojective right
R-modules.

It is well known that the preprojective modules over a hereditary artin
algebra Λ form a preprojective component of the Auslander–Reiten quiver
of Λ [22]. Indeed, we can interpret condition (P) of Theorem 1.1 in terms of
the existence of such a component. A subcategory C of ind-R over a right
artinian ring R is called a preprojective component in mod-R if it satisfies
the following conditions:

(a) For any X ∈ C there are a left almost split morphism X → Z and a
right almost split morphism Y → X in mod-R.

(b) If X → Y is an irreducible map in mod-R with one of the modules
lying in C, then both modules are in C.
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(c) The Auslander–Reiten quiver of C is connected and has no oriented
cycles.

(d) For every Z ∈ C there is m ≥ 0 such that τm Z ∈ P0.

If in addition the almost split sequences arising from condition (a) are even
almost split in Mod-R, then C is called a preprojective component in Mod-R.
Preinjective components in R-mod and R-Mod are defined dually.

Proposition 8.3. Let R be a right artinian hereditary indecomposable
ring. Then the following statements are equivalent :

(P) For every indecomposable preprojective non-injective right R-module
AR there is an almost split sequence 0→ A→ B → C → 0 in mod-R.

(PC) There is a preprojective component in mod-R containing all inde-
composable projective modules.

P r o o f. (P)⇒(PC). Choose the category of all indecomposable prepro-
jective modules and use [3, 2.1 and 2.9].

(PC)⇒(P). Condition (P) follows from (a), because all indecomposable
preprojective modules are contained in C by induction. In fact, if Pn ⊆ C,
then we know from (a) and the proof of [3, 1.3] that all modules in Pn are
irreducible successors of some module in Pn, hence lie in C by (b). Note that
by [3, 2.1 and 2.9] and (c) we even know that C consists of all indecomposable
preprojective modules.

Applying Proposition 8.2 and using dual arguments we can prove the
following.

Proposition 8.4. Let R be a left artinian hereditary indecomposable
ring , and assume that all indecomposable injective left R-modules are finitely
generated. Then the following statements are equivalent :

(I′) For every indecomposable preinjective non-projective left R-module

RC there is an almost split sequence 0→ A→ B → C → 0 in R-mod.

(IC) There is a preinjective component in R-mod containing all inde-
composable injective modules.

We then obtain the following consequence of Theorem 1.1.

Corollary 8.5. Let R be an artinian hereditary indecomposable ring ,
and assume that all indecomposable injective left R-modules are finitely gen-
erated. Then the following statements are equivalent :

(PC) There is a preprojective component in mod-R containing all inde-
composable projective modules.

(PC′) There is a preprojective component in Mod-R containing all inde-
composable projective modules.
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(IC) There is a preinjective component in R-mod containing all inde-
composable injective modules.

(IC′) There is a preinjective component in R-Mod containing all inde-
composable injective modules.

P r o o f. The equivalence of (PC) and (PC′) follows from the fact that
the almost split sequences in mod-R for the preprojective right modules are
even almost split in Mod-R; see [3, 2.8] or Corollary 6.2. Similarly we obtain
the equivalence of (IC) and (IC′); see Proposition 8.2. Moreover, we know
from Theorem 1.1, 8.3 and 8.4 that (PC) is equivalent to (IC).

In the preprojective and in the preinjective component, the local duality
and the Auslander–Bridger transpose behave as in the artin algebra case.

Corollary 8.6. Let R be an artinian hereditary indecomposable ring
satisfying one of the equivalent conditions in Theorem 1.1, and let ∆ be
the Gabriel quiver of R. We denote by P the preprojective component of
mod-R and by I the preinjective component of R-mod, and identify them
with their Auslander–Reiten quivers. Then there exist monomorphisms of
translation quivers without valuation φ : P→ N0∆ and ψ : I→ (−N0)∆op.
Moreover , if we identify along φ and ψ, then the local duality gives rise
to a map N0∆ → (−N0)∆op, (n, x) 7→ (−n, x), and the Auslander–Bridger
transpose gives rise to a map N∆→ (−N0)∆op, (n, x) 7→ (−n+ 1, x).

P r o o f. That φ and ψ are injective translation quiver morphisms is
shown as in [10, Chapter VIII, 1.15]. Moreover, if CR is an indecompos-
able preprojective module and n ∈ N0 with τnC ∈ P0, then it is easy to
check that τ−nC+ ∼= (τnC)+ ∼= τ−n+1 TrC. This proves the last two state-
ments.
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