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COMPLETENESS OF L1 SPACES OVER FINITELY

ADDITIVE PROBABILITIES

BY

S. GANGOPADHYAY AND B. V. RAO (CALCUTTA)

1. Introduction. Finitely additive measures—though not as technically
amenable as their countably additive counterparts—seem to lead to inter-
esting, and at times peculiar, mathematical problems. For an exposition
of the theory of finitely additive measures, see Dunford and Schwartz [5]
or Bhaskara Rao and Bhaskara Rao [1]. The bold initiative of Dubins and
Savage [4] to develop gambling in a finitely additive setup and the beautiful
existence theorem of Purves and Sudderth [18] in infinite product spaces
paved the way to develop a substantial part of classical probability theory
in a finitely additive setup—called the strategic setup.

The strong law of large numbers was treated in Purves and Sudderth
[18] and Chen [3]; the law of iterated logarithm in Chen [2]; the central limit
theorem in Ramakrishnan [22] and Karandikar [15]; Markov chains and po-
tential theory in Ramakrishnan [20, 21, 23]; random walks in Karandikar [16]
and S. Gangopadhyay and Rao [7, 8]; martingales in Dubins and Savage [4],
Purves and Sudderth [18]; Komlos type theorems in Halevy and Bhaskara
Rao [11]. The zero-one laws of Lévy and Kolmogorov hold as shown in Purves
and Sudderth [18, 19] whereas the Hewitt–Savage zero-one law needs mod-
ification as shown in Purves and Sudderth [19], Gangopadhyay and Rao [9].
It is interesting to note that an appropriate finitely additive version of this
zero-one law already appears in the fundamental paper of Hewitt and Savage
[14], but of course, not in the strategic setup.

More recently (as pointed out to us by J. K. Ghosh), Heath and Sudderth
[12, 13] and Lane and Sudderth [17] have advocated that it is beneficial to
use finitely additive priors in some problems of statistical inference. In fact
the prescription of [13] is simple: A Bayesian who seeks to avoid incoherent
inferences might be advised to abandon improper countably additive priors
and use only finitely additive priors.
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This paper is concerned with the completeness of the space L1(γ) of
integrable functions over a finitely additive nonnegative bounded measure
γ defined on a σ-field of subsets of a set. In the mathematical literature
[1, 5, 14, 26] the domain for such a γ is a field of sets. Our interest is
not in finitely additive measures per se, but in the development of prob-
ability. The natural domain for γ then is a σ-field and that is what we
take.

By the Hewitt–Yosida theorem γ = γ0 + γ1 where γ0 is countably ad-
ditive and γ1 is purely finitely additive. We show (Theorem 3) that L1(γ)
is complete iff L1(γ1) is complete and γ0, γ1 are supported on disjoint sets.
By the Sobczyk–Hammer theorem γ1 = γ2 + γ3 where γ2 is discrete and
γ3 is strongly continuous. We show (Theorem 6) that L1(γ1) is complete iff
L1(γ2), L1(γ3) are complete and γ2, γ3 are supported on disjoint sets. We
have γ2 =

∑
i aiδi where each δi is a 0-1 valued measure. We show (Theorem

4) that L1(γ2) is complete iff the δi are uniformly singular.

Next we consider finite strategic products, γ =
⊗k

i=1 γi. We show (The-
orem 9) that if L1(γi) is complete for each i then L1(γ) is complete. If
L1(γ) is complete then L1(γ1) is complete, but for i > 1, L1(γi) need not
be complete. We have partial results for infinite strategic products.

It should be remarked that the completeness of L1 spaces is not only
interesting in its own right (see [6, 10] and reference therein) but is also
related to the existence of Radon–Nikodym derivatives. As noted in [6, 10]
the completeness of L1(γ) is equivalent to the completeness of Lp(γ) for
any p with 1 ≤ p < ∞. It is interesting to note [6] that L∞(γ) is always
complete.

2. Preliminaries. Throughout we consider a nonnegative finitely addi-
tive bounded set function γ defined on a σ-field F of subsets of a space Ω.
Even though our motivation and interest is only in probabilities, it is conve-
nient to deal with bounded measures. Recall that [1, 5] L1(γ) is the collection
of F-measurable real-valued functions f on Ω such that

T
|f | dγ < ∞, with

the usual pseudometric.

This paper can be regarded as a continuation of [6]. Our starting point
is the following theorem:

Theorem 1 (see [6]). The following are equivalent :

1. L1(γ) is complete.

2. (F , d) is complete where d is the usual pseudometric on F given by

d(A,B) = γ(A△B).

3. Given any sequence {An} of sets in F , there exists a set A ∈ F such

that γ(An \ A) = 0 for each n, and γ(A) ≤
∑

γ(An).
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4. Given any sequence {An} of sets in F and ε > 0, there exists a set

A ∈ F such that

γ(An −A) = 0 for each n, and γ(A) ≤
∑

γ(An) + ε.

5. Given any sequence {An} of sets in F there is a sequence {Bn} of

sets in F such that

Bn ⊂ An, γ(An −Bn) = 0 for each n, and

γ
(⋃

Bn

)
≤

∑
γ(Bn) =

∑
γ(An).

6. Given a sequence {An} of pairwise disjoint sets in F , there exists a

sequence {Bn} in F such that

Bn ⊂ An, γ(An −Bn) = 0 for each n, and

γ
(⋃

Bn

)
=

∑
γ(Bn) =

∑
γ(An).

7. Given an increasing sequence {An} of sets in F , there exists a set

A ∈ F such that

γ(An −A) = 0 for each n, and γ(A) = lim
n

γ(An).

This theorem is not stated in this form in [6], but a proof can be based
on the proofs of Lemma 2.2, Theorem 2.4 and Remark 2.5 of [6]. See also
[10] where a notion of self-separability of γ was introduced and was shown
to be equivalent to the completeness of Banach space valued L1 spaces.
Outer measure was used in [6], but the above pleasing form of the result is
a consequence of the fact that the domain of γ is now a σ-field.

As a useful consequence of the criteria given above, we have the following

Theorem 2. (a) Suppose γ = γ1 + γ2.

(i) If L1(γ) is complete then so are L1(γ1) and L1(γ2).
(ii) If L1(γ1) and L1(γ2) are complete then L1(γ) is not necessarily

complete.

(iii) If L1(γ1) and L1(γ2) are complete and γ1, γ2 are supported on

disjoint sets then L1(γ) is complete.

(b) Suppose Ω0 ∈ F , 0 < γ(Ω0) < γ(Ω). Then L1(γ) is complete iff

L1(γ1) and L1(γ2) are complete where γ1, γ2 are the restrictions of γ to Ω0

and Ω −Ω0 respectively.

(c) SupposeL1(γ) is complete. LetF0 be a sub-σ-field of F which includes

all γ null sets that are in F . Let γ0 be γ restricted to F0. Then L1(γ0) is

complete.

P r o o f. (c) and (aiii) follow from criterion 6 of Theorem 1. (b) follows
from (ai) and (aiii).
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To show (aii) take Ω = {1, 2, . . .}, F = power set of Ω; γ1 is the countably
additive measure γ1(n) = 1/2n, n = 1, 2, . . .; γ2 is a diffuse 0-1 valued
measure on F giving 0 to singletons; γ = γ1 + γ2. Then both L1(γ1) and
L1(γ2) are complete. However, criterion 6 of Theorem 1 fails for An = {n},
showing that L1(γ) is not complete.

Finally, we prove (ai) as follows: Towards verifying criterion 6 of The-
orem 1, suppose {An} is a sequence of disjoint sets in F . Since L1(γ) is
complete, get a sequence {Bn} as stated there. In particular, γ1(An−Bn) =
0 = γ2(An −Bn) for each n. Moreover

γ
(⋃

Bn

)
= γ1

(⋃
Bn

)
+ γ2

(⋃
Bn

)
,

∑
γ(Bn) =

∑
γ1(Bn) +

∑
γ2(Bn).

By choice of {Bn}, the left sides of the equations above are the same. So must
be the right sides. But γ1(

⋃
Bn) ≥

∑
γ1(Bn) and γ2(

⋃
Bn) ≥

∑
γ2(Bn) so

that equality must hold at both places. In other words, the same sequence
{Bn} witnesses that criterion 6 of Theorem 1 holds for both γ1 and γ2.

Remark 1. Theorem 2(ai) can equivalently be stated as follows: If L1(γ)
is complete and γ1 ≤ γ (inequality being understood setwise) then L1(γ1)
is also complete.

3. Yosida–Hewitt decomposition.Recall that a finitely additive pos-
itive measure µ on (Ω,F) is said to be purely finitely additive if λ being a
positive countably additive measure with λ(A) ≤ µ(A) for all A ∈ F implies
that λ ≡ 0.

The celebrated decomposition theorem due to Yosida and Hewitt [26]
(see also [24]) says that any finitely additive positive measure γ on (Ω,F)
can be decomposed as γ = γ1 + γ2 where γ1 is countably additive and γ2 is
purely finitely additive. Moreover such a decomposition is unique.

Theorem 3. Let γ = γ1 + γ2 be the Yosida–Hewitt decomposition of γ.
Then L1(γ) is complete iff γ1, γ2 are supported on disjoint sets and L1(γ2)
is complete.

P r o o f. If γ1, γ2 satisfy the conditions of the theorem, then L1(γ) is
complete in view of Theorem 2(aiii).

Conversely, assume that L1(γ) is complete. The idea is the following:
We shall express Ω = A ∪ B ∪ C where A,B,C ∈ F are pairwise disjoint,
γ1(A) = 0, γ2(B) = 0, and if S ∈ F , S ⊂ C then γ1(S) > 0 iff γ2(S) > 0.

Assume the decomposition for a moment. We claim that γ2 (and hence
γ1) is null on C. If not, γ2 being purely finitely additive we can get Cn ⊂ C

with Cn ↑ C and limn γ2(Cn) < γ2(C). By criterion 7 of Theorem 1, get C̃

such that γ(Cn − C̃) = 0 for each n and γ(C̃) = limn γ(Cn). In particular,
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γ1(Cn−C̃) = 0 for each n so that γ(C̃) ≥ limn γ1(Cn). In case γ2(C−C̃) = 0

we have γ2(C̃) ≥ γ2(C) > limn γ2(Cn), implying that γ(C̃) > limn γ(Cn),

a contradiction. Thus γ2(C − C̃) > 0. But then γ1(C − C̃) > 0. Since

Cn− C̃ ↑ C− C̃ and γ1 is countably additive we conclude that γ1(C − C̃) =

limn γ1(Cn − C̃) = 0, again a contradiction. Thus γ2 must be null on C. So
must be γ1. Thus γ1 and γ2 are supported on B and A respectively. The
proof is completed by using Theorem 2(b).

We now proceed to exhibit the stated decomposition. Consider

C = {S ∈ F : γ1(S) > 0 and γ2(S) = 0},

β = sup{γ1(S) : S ∈ C}.

Completeness of L1(γ) implies that this supremum is indeed attained. To
see this, pick Sn ∈ C with γ1(Sn) ↑ β. Since C is closed under finite unions
we can assume that Sn increases with n. By criterion 7 of Theorem 1, get
B such that γ(B) = β and γ(Sn − B) = 0 for each n. There is no loss to
assume that B ⊂

⋃
n Sn. First observe that γ1(B) + γ2(B) = γ(B) = β.

Secondly, γ(Sn − B) = 0 and hence γ1(Sn − B) = 0 for each n, so that
γ1(B) ≥ γ1(Sn) for all n, implying that γ1(B) ≥ β. These two observations
show that γ1(B) = β and γ2(B) = 0.

In an analogous manner, consider

D = {S ∈ F : γ2(S) > 0 and γ1(S) = 0}.

Since γ1 is countably additive, D is closed under countable unions and hence
there is a set A such that γ1(A) = 0 and γ2(A) = sup{γ2(S) : S ∈ D}. By
construction it is clear that γ1(A∩B) = 0 = γ2(A∩B). Thus we can assume
A ∩B = ∅. Set C = Ω − {A ∪B} to complete the proof.

Remark 2. Since γ1 in the theorem above is countably additive, clearly
L1(γ1) is complete.

4. Discrete measures. Recall that a finitely additive nonnegative mea-
sure γ on (Ω,F) is said to be discrete if γ =

∑
aiδi where the δi are distinct

0-1 valued measures and ai > 0. Since we are considering only bounded
measures, clearly

∑
ai < ∞.

Theorem 4. Let γ =
∑

aiδi be discrete. Then L1(γ) is complete iff the

δi are uniformly singular , that is, there are pairwise disjoint sets Ai ∈ F
with δi(Ai) = 1 for each i.

P r o o f. If {δi} are uniformly singular then criterion 6 of Theorem 1
applies to show that L1(γ) is complete.

To prove the converse, assume that {δi} are not uniformly singular. Let
us say that δi can be separated if there is a set Ai in F such that δi(Ai) = 1
and δj(Ai) = 0 for j 6= i. If each δi can be separated, witnessed by say Ai,
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then setting Bn = An −
⋃

i<n Ai, we observe that δi(Bi) = 1 for each i,
showing that δi are uniformly singular. Thus there is a δi, say δ1, which
cannot be separated. We shall construct a sequence of pairwise disjoint sets
(An)n≥1 such that (i) if j > 1 then δj(Ai) = 1 for some i and (ii) δ1(Ai) = 0
for each i. If this is done, then we claim that criterion 6 of Theorem 1 fails for
this sequence. Indeed, suppose we have sets Bi ⊂ Ai with γ(Ai − Bi) = 0
for each i. By properties (i) and (ii) we have

∑
i≥1 γ(Bi) =

∑
i>1 ai. If

δ1(
⋃

Bi) = 0 then property (i) implies that δ1 can be separated, which is not
the case. Thus δ1(

⋃
Bi) = 1, implying that γ(

⋃
Bi) =

∑
i≥1 ai >

∑
γ(Bi).

We now proceed to exhibit sets Ai as stated. Pick B0 such that δ1(B0)
= 1. Set A1 = Bc

0 and S1 = {j : δj(B0) = 1}. Then S1 is infinite because δ1
cannot be separated. Pick the first integer j1 ∈ S1 and write B0 = B1 ∪A2,
a disjoint union with δ1(B1) = 1 and δj1(A2) = 1. To do this, just note that
the δi, being 0-1 valued, are pairwise singular. Then S2 = {j : δj(B1) = 1}
is again infinite. Proceed inductively by picking the first j in Sn at the nth
stage. This completes the proof of the theorem.

The following theorem, a slight extension of Theorem 4, will be needed
later. Theorem 4 corresponds to the case when γ0 is absent.

Theorem 5. Suppose γ =
∑

i≥0 aiγi with ai > 0 and
∑

ai < ∞. Assume

that γi, i ≥ 1, are 0-1 valued. If L1(γ) is complete then γi, i ≥ 1, are

uniformly singular.

P r o o f. Apply Theorems 2 and 4.

5. Sobczyk–Hammer decomposition. Recall that a finitely additive
nonnegative measure γ on (Ω,F) is said to be strongly continuous if given
ε > 0, there is a finite decomposition Ω =

⋃
Ai with γ(Ai) < ε for each

i. The well known decomposition theorem due to Sobczyk and Hammer
[25] says that any finitely additive positive measure γ on (Ω,F) can be
decomposed as γ = γ1+γ2 where γ1 is discrete and γ2 is strongly continuous.
Further such a decomposition is unique.

Theorem 6. Let γ = γ1 + γ2 be the Sobczyk–Hammer decomposition

of γ. Then L1(γ) is complete iff L1(γ1), L1(γ2) are complete and γ1, γ2 are

supported on disjoint sets.

P r o o f. The “if” part is a consequence of Theorem 2. To prove the
converse, assume that L1(γ) is complete. By Theorem 2 again, L1(γ1) and
L1(γ2) are also complete. We only need to show now that γ1, γ2 are sup-
ported on disjoint sets.

First assume that γ1 is 0-1 valued. By using the strong continuity of γ2,
one can obtain, for each n, a set An such that γ1(A

c
n) = 1 and γ2(A

c
n) <

1/2n. We can also assume that An increases with n. We have limn γ(An) =
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limn γ2(An) = γ2(Ω). By Theorem 1(7) get B ⊂
⋃

An with γ(B) = γ2(Ω)
and γ(An − B) = 0 for each n. In particular γ2(An − B) = 0 for each n
so that γ2(B) ≥ γ2(An ∩ B) = γ2(An), which increases to γ2(Ω). Thus
γ2(B) = γ2(Ω). But since γ(B) = γ2(Ω) we conclude that γ1(B) = 0. In
other words γ1, γ2 are supported on Bc and B respectively.

To treat the general case, assume that the discrete part is γ1 =
∑

i≥1 aiδi,
where ai > 0,

∑
ai < ∞ and the δi are distinct 0-1 valued measures.

By Theorem 5, the δi are uniformly singular so that Ω can be written
as a disjoint union

⋃
i≥1Ai with δi(Ai) = 1 for each i. By Theorem 2,

L1(aiδi + γ2) is complete for each i and hence by earlier para we can get
Bi ⊂ Ai such that δi(Bi) = 1 and γ2(Bi) = 0. Since L1(γ) is complete,
by Theorem 1(6) we can get Ci ⊂ Bi with γ(Bi − Ci) = 0 for each i
and γ(

⋃
Ci) =

∑
γ(Ci). In particular for each i, δi(Bi − Ci) = 0 so that

δi(Ci) = δi(Bi) = 1. Since γ2(Ci) = 0 and γ1(Ci) = ai for each i, we have
∑

γ(Ci) =
∑

γ1(Ci) +
∑

γ2(Ci) =
∑

ai,

γ
(⋃

Ci

)
= γ1

(⋃
Ci

)
+ γ2

(⋃
Ci

)
≥

∑
ai + γ2

(⋃
Ci

)
.

Since the left sides are equal we conclude that γ2(
⋃

Ci) = 0. In other words
γ1 is supported on

⋃
Ci and γ2 is supported on its complement, as claimed.

Combining Theorems 3–6 we obtain the following two versions of the
main characterization theorem.

Theorem 7. Let γ be a finitely additive probability on (Ω,F). Then

L1(γ) is complete iff Ω has a decomposition Ω = Ω0 ∪ Ω1 ∪ Ω2 such that

(i) γ restricted to Ω0 is countably additive, (ii) γ restricted to Ω1 is dis-

crete and is a combination of uniformly singular 0-1 probabilities and (iii) γ
restricted to Ω2 is strongly continuous and its L1 space is complete.

Theorem 8. Let γ be a finitely additive probability on (Ω,F). Then

L1(γ) is complete iff Ω has a decomposition Ω =
⋃

i≥0Ωi such that (i) γ
restricted to Ω0 is countably additive, (ii) γ restricted to each Ωi, i ≥ 2, is
at most two-valued , (iii) γ restricted to Ω1 is strongly continuous and its L1

space is complete and (iv) for each A ∈ F , γ(A) =
∑∞

i=0 γ(Ωi ∩A).

In Theorem 7 we had a finite decomposition so that the last condition of
Theorem 8 was not imposed. We conclude this section with a few remarks.

Remark 3. Here is an example of a sequence of 0-1 measures which are
not uniformly singular. Set Ω = {0, 1, 2, · · ·}. For i ≥ 2, let γi be a diffuse
0-1 measure concentrated on the powers of the ith prime. Let

C = {A : γi(A) = 1 for all but finitely many i ≥ 2}.

Extend C to an ultrafilter and denote by γ1 the corresponding 0-1 measure.
Then {γi : i ≥ 1} are not uniformly singular. Note that all these γi are
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purely finitely additive. If we did not want this, we could have taken point
masses and any diffuse 0-1 measure. Also note that all these γi are defined
on the power set of Ω. The same construction can be carried out on any
(Ω,F) provided F is infinite.

Remark 4. Given any sequence {γi} of 0-1 measures on (Ω,F) there
exists an infinite subsequence which is uniformly singular. We inductively
construct a sequence of disjoint sets Ai ≥ 1 and indices ni, i ≥ 1, such that
γni

(Ai) = 1 for all i. Just make sure that at the kth stage infinitely many
γi are concentrated on the complement of

⋃
i≤k Ai.

Remark 5. If γ =
∑

2−iγi where γi are as in Remark 3, then L1(γ) is
not complete—though γ is defined on the power set of Ω.

Remark 6. Given (Ω,F) where F is infinite it is always possible to
obtain strongly continuous γ on F such that L1(γ) is not complete. F being
infinite, the general case can be reduced to Ω = N and F the power set.
This is what we treat. Let µ be any extension of the density charge defined
on arithmetic progressions. Then µ is clearly strongly continuous. Fix a
decomposition of N into disjoint sets An, n ≥ 1, with µ(An) > 0 for each n.
Let

F = {B : µ(B ∩An) = µ(An) for all but finitely many n}.

For each k, 1 ≤ k ≤ n, and each sequence (ε1, . . . , εk) of 0’s and 1’s fix
a subset An

ε1...εk
of An with positive µ measure such that An

ε1...εk
is the

disjoint union of An
ε1...εk0

and An
ε1...εk1

, and An is the disjoint union of An
0

and An
1 . This can be done by the strong continuity of µ. For k ≥ 1 define

Bε1...εk =
⋃

n≥k A
n
ε1...εk

. Extend F restricted to Bε1···εk to an ultrafilter on⋃
n≥k A

n. Let ηε1...εk be the associated 0-1 measure supported on
⋃

n≥k A
n,

defined on the power set of N. For k ≥ 1, let ηk be the average of the 2k

measures ηε1...εk . Fix any Banach limit ℓ and set η(A) = ℓ{ηk(A) : k ≥ 1}
for A ⊂ N. Let γ = 1

2η + 1
2µ. It is not difficult to see that γ is strongly

continuous. Since ηk(An) = 0 for k > n, it follows that η(An) = 0 for
any n. Using this, one can argue that condition 6 of Theorem 1 fails for the
sequence {An} so that L1(γ) is not complete.

Remark 7. Later we shall see examples of strongly continuous γ for
which L1(γ) is complete. However, we are unable to decide if there are
extensions of density charges for which theL1 space is complete. (The referee
has kindly informed us that he has examples of such extensions.)

6.Finite strategic products.When dealing with finitely additive mea-
sures, products are not in general well defined on product σ-fields. However,
there is one situation where the product measures are well defined by suc-
cessive integration as was done by Dubins and Savage [4]. For this we need
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to consider measures defined on power sets. For 1 ≤ i ≤ k, let γi be a finitely
additive probability defined on the power set of Ωi. Let Ω =

⊗k

i=1Ωi. On
the power set of Ω define

γ(A) =
\
. . .
\
1A(x1, . . . , xk) dγk(xk) . . . dγ1(x1).

This γ is called the strategic product of the γi, 1 ≤ i ≤ k. Carefully note the
order of integration. For more on this, see [4]. The reader should note that
even though the probabilities are defined on power sets, their L1 spaces may
still be incomplete (see Remarks 5 and 6 of the previous section).

Theorem 9. Let γ be the strategic product of γi, 1 ≤ i ≤ k.

(a) If L1(γi) is complete for each i, then so is L1(γ).
(b) If L1(γ) is complete, then so is L1(γ1).
(c) L1(η

k) is complete iff L1(η) is complete. Here ηk is the k-fold strate-

gic product of η.

P r o o f. (c) is immediate from (a) and (b). For simplicity we assume
that k = 2 in what follows.

To prove (b) we verify condition 7 of Theorem 1 for the measure γ1. So let
{An} be an increasing sequence of subsets of Ω1. Set Bn = An ×Ω2. Using
the fact that L1(γ) is complete and criterion 7 of Theorem 1 get B ⊂ Ω1×Ω2

such that γ(Bn \B) = 0 for each n and limn→∞ γ(Bn) = γ(B). Set

A = {x ∈ Ω1 : γ2(Bx) > 1/2}.

Firstly, for each n,

γ1(An \ A) ≤ 2
\

An\A

γ2(Bn \B)x dγ1(x) ≤ 2γ(Bn \B) = 0.

Secondly, a similar computation gives γ1(A \ An) ≤ γ(B \ Bn), so that
limn→∞ γ1(An) ≥ γ1(A), which together with the first observation implies
that limn→∞ γ1(An) = γ1(A).

We now prove (a). Using ideas from [6] we verify condition 7 of Theorem1
for γ. Let {An} be an increasing sequence of subsets of Ω1×Ω2. Passing to
a subsequence if necessary we can and do assume that γ(An+1\An) < 1/22n

for each n ≥ 1. This of course implies that for each n ≥ 1,

γ1{x1 : γ2((An+1)x1
) > γ2((An)x1

) + 1/2n} < 1/2n.

Let the set in braces be denoted by Bn. Fix k ≥ 1. By completeness of
L1(γ1) and condition 3 of Theorem 1 applied to the sequence {Bn : n ≥ k}
we obtain Ck ⊂ Ω1 such that

γ1(Ck) ≤ 1/2k−1 and γ1(Bn \ Ck) = 0 ∀n ≥ k.

By taking successive intersections we can assume that Ck decreases with k.
Set C∞ =

⋂
k Ck. Clearly γ1(C∞) = 0. If x1 6∈ C∞ then let k(x1) be the
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first integer k such that x1 6∈ Ck. Let

D1 =
{
x1 : x1 6∈ C∞, x1 ∈

⋃

n≥k(x1)

Bn

}
,

D2 =
{
x1 : x1 6∈ C∞, x1 6∈

⋃

n≥k(x1)

Bn

}
.

For x1 ∈ D1 let n(x1) be the first integer n ≥ k(x1) such that x1 ∈ Bn. For
each x1 ∈ Ω1 by completeness of L1(γ2) get a set A(x1) ⊂ Ω2 such that

γ2((An)x1
\ A(x1)) = 0 for each n and lim

n
γ2((An)x1

) = γ2(A(x1)).

Define

A =
⋃

x1∈D1

({x1} × (An(x1))x1
) ∪

⋃

x1∈D2

({x1} ×A(x1)).

Fix any integer n ≥ 1.

Claim. γ(An \A) = 0.

Firstly, N = C∞∪(
⋃

1≤k≤m<n(Bm\Ck)) is γ1 null. Secondly, if x1 ∈ D1

and n(x1) ≤ n then k(x1) ≤ n(x1) < n and so x1 ∈ N ; whereas if n(x1) ≥ n
then clearly (An \A)x1

= ∅. Thirdly, if x1 ∈ D2 then by choice of A(x1) we
have γ2(An \A)x1

= 0. These three observations prove the claim.

Claim. limn γ(An) = γ(A) (or equivalently, in view of the earlier claim,
limn γ(A \An) = 0.)

To see this, fix any k≥1. Set Ek=
⋃k

i=1

⋃k

n=i(Bn\Ci)∪Ck. Then firstly,
γ1(Ek) = γ1(Ck) ≤ 1/2k−1. Secondly, suppose x1 6∈Ek. Then k(x1)≤k and
n(x1) > k.

If x1 ∈ D1 then using the fact that x1 6∈ Bi for k ≤ i < n(x1) we get

γ2(A \ Ak)x1
= γ2((An(x1))x1

\ (Ak)x1
)

≤
∑

k≤i<n(x1)

γ2((Ai+1)x1
\ (Ai)x1

) <
1

2k−1
.

If x1 ∈ D2 then pick l > k (depending on x1) so that γ2(A(x1)\(Al)x1
) <

1/2k−1. Using the fact that x1 6∈ Bi for all i ≥ k(x1) we conclude that

γ2(A \ Ak)x1
≤

∑

k≤i<l

γ2((Ai+1)x1
\ (Ai)x1

) + γ2(A(x1) \ (Al)x1
) <

1

2k−2
.

These two observations show that γ(A\Ak) ≤ 1/2k−3, proving the claim.
This completes the proof of the theorem.

Remark 8. If L1(γ1×γ2) is complete then L1(γ2) need not be complete.
In fact if γ1 is 0-1 valued and not countably additive then L1(γ1 × γ2)
is complete for any γ2. To see this, we verify condition 4 of Theorem 1.
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Let {An} be a sequence of subsets of Ω1 × Ω2 and ε > 0. Fix a partition
N1, N2, · · · of Ω1 such that γ1(Ni) = 0 for each i. Fix n ≥ 1. Observe that
γ1{x : γ2(An)x < γ(An) + ε/2n+1} = 1 where γ = γ1 × γ2. If the set in
braces is denoted by Cn then take

Bn =
{
(x, y) : x ∈ Cn, x 6∈

⋃

k≤n

Nk

}
∩An.

We show that these sets satisfy condition 4 of Theorem 1. Since An \Bn ⊂
Cc

n∪(
⋃

k≤nNk)×Ω2, we have γ(An\Bn) = 0. To see γ(
⋃

Bn) ≤
∑

γ(Bn) we
first observe that for any fixed x there is exactly one k such that x ∈ Nk. So
if n ≥ k, then (Bn)x is empty. Therefore, for all x there exists a k, depending

on x, such that γ2(
⋃∞

n=1Bn)x = γ2(
⋃k

n=1 Bn)x ≤
∑k

n=1 γ2(Bn)x. Hence,

γ(∪∞
n=1Bn) =

\
γ2

( ∞⋃

n=1

Bn

)
x
dγ1(x)

≤
\∞∑

n=1

γ2(Bn)x dγ1(x) ≤
\∞∑

n=1

γ2(An)x1Cn
(x) dγ1(x)

<
\∞∑

n=1

(γ(An) + ε/2n+1) dγ1 =
∞∑

n=1

γ(An) + ε/2.

This proves condition 4 of Theorem 1 and we are done.

The same proof works even if γ1 is a purely finitely additive probability
which is a combination of uniformly singular 0-1 valued measures. The same
argument shows that if γ is the product

⊗k

i=1 γi and L1(γ) is complete then
L1(γi) need not be complete for any i > 1.

7. Infinite strategic products. For each n ≥ 1, let γn be a finitely
additive probability defined on the power set of Ω. Let H = Ω∞. Then
there is a unique—subject to certain regularity conditions—finitely additive
probability σ on the Borel σ-field of H (each coordinate space Ω has discrete
topology) σ =

⊗
n≥1 γn. For definition and properties see [18]. This σ is

called the strategic product of the γn’s.

For this setup our results are only fragmentary. Following the arguments
of Remark 8 one could show that if L1(σ) is complete then L1(γn) for n > 1
need not be complete. In fact L1(σ) is complete as soon as γ1 is a combina-
tion of 0-1 valued uniformly singular purely finitely additive probabilities.
Of course if L1(σ) is complete then L1(γ1) is necessarily complete as in
Theorem 9(b).

Suppose each γn is a fixed finitely additive probability γ, and σ = γ∞.
Then as a consequence of what was said earlier, if L1(σ) is complete then
L1(γ) is complete. We could not show that the completeness of L1(γ) implies
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that of L1(σ). However, we could establish this in special cases. For instance
if Ω = Z is the set of integers and γ is a combination of a countably additive
probability and a sequence of uniformly singular 0-1 measures then L1(σ)
is indeed complete. The argument depends on a certain identification of σ
developed in [9].We shall not give the details here. In particular, let δ∞ (resp.
δ−∞) be a 0-1 purely finitely additive probability concentrated on the set of
positive (resp. negative) integers and let γ = 1

2
δ∞ + 1

2
δ−∞. Then L1(σ) is

complete. This gives an example of a strongly continuous probability whose
L1 space is complete.

We thank the referee for helpful comments—especially in streamlining
our proof of Theorem 9.
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