COLLOQUIUM MATHEMATICUM

VOL. 80

1999

NO. 1

INVARIANT OPERATORS ON FUNCTION SPACES ON HOMOGENEOUS TREES

ΒY

MICHAEL COWLING (SYDNEY, N.S.W.) STEFANO MEDA (MILANO) $$_{\rm AND}$$ ALBERTO G. SETTI (COMO)

A homogeneous tree \mathfrak{X} of degree q+1 is a connected graph with no loops in which each vertex is adjacent to q+1 others. We assume that $q \geq 2$. The tree \mathfrak{X} has a natural measure, counting measure, and a natural distance d, viz. d(x, y) is the number of edges between vertices x and y. Let o be a fixed but arbitrary reference point in \mathfrak{X} , and let G_o be the stabiliser of o in the isometry group G of \mathfrak{X} . We write |x| for d(x, o). The map $g \mapsto g \cdot o$ identifies the coset space G/G_o with \mathfrak{X} ; thus a function f on \mathfrak{X} gives rise to a G_o -invariant function f' on G by the formula $f'(g) = f(g \cdot o)$, and every G_o -invariant function arises in this way. A function f on \mathfrak{X} is said to be radial if f(x) depends only on |x|, or equivalently, if f is G_o -invariant, or f' is G_o -bi-invariant. We endow the totally disconnected group G with the Haar measure such that the mass of the open subgroup G_o is 1. The reader may find much more on the group G in the book of Figà-Talamanca and Nebbia [FTN].

We denote by |E| the measure of a subset E of a measure space. We write \mathfrak{S}_n for $\{x \in \mathfrak{X} : |x| = n\}$. Clearly, $|\mathfrak{S}_0| = 1$, and $|\mathfrak{S}_n| = (q+1)q^{n-1}$ when $n \in \mathbb{Z}^+$. We pick points w_0, w_1, w_2, \ldots in \mathfrak{X} such that $|w_d| = d$. A radial function f on \mathfrak{X} is determined by its restriction to these points.

It is well known that G-invariant linear operators from $L^p(\mathfrak{X})$ to $L^r(\mathfrak{X})$ correspond to linear operators from $L^p(G/G_o)$ to $L^r(G/G_o)$ given by convolution on the right by G_o -bi-invariant kernels. We denote by $\operatorname{Cv}_p^r(\mathfrak{X})$ the space of radial functions on \mathfrak{X} associated to these G_o -bi-invariant kernels. The norm of an element k of $\operatorname{Cv}_p^r(\mathfrak{X})$ is then defined as the norm of the corresponding operator from $L^p(\mathfrak{X})$ to $L^r(\mathfrak{X})$, and denoted by $||k||_{p;r}$. Equipped

¹⁹⁹¹ Mathematics Subject Classification: Primary 43A90; Secondary 20E08, 43A85, 22E35.

Key words and phrases: homogeneous trees, spherical functions, harmonic analysis.

Work partially supported by the Australian Research Council and the Italian M.U.R.S.T., fondi 40%.

^[53]

with this norm, $\operatorname{Cv}_p^r(\mathfrak{X})$ is a Banach space. We note that the maps $f \mapsto f'$ and $f' \mapsto \mathcal{E}f'$ given by the formulae

$$f'(g) = f(g \cdot o), \quad \mathcal{E}f'(g \cdot o) = \int_{G_o} f'(gg_1) \, dg_1 \quad \forall g \in G$$

are isometric from $L^p(\mathfrak{X})$ into $L^p(G)$ and norm-decreasing from $L^p(G)$ into $L^p(\mathfrak{X})$, for all p in $[1, \infty]$. It follows that the norm of an element k in $\operatorname{Cv}_p^r(\mathfrak{X})$ is equal to the norm of its G_o -bi-invariant extension k' to G in $\operatorname{Cv}_p^r(G)$, the space of convolution operators from $L^p(G)$ to $L^r(G)$.

For any function space $E(\mathfrak{X})$ on \mathfrak{X} , we denote by $E(\mathfrak{X})^{\sharp}$ the (usually closed) subspace of $E(\mathfrak{X})$ of radial functions. We denote by $L^{p,r}(\mathfrak{X})$ the standard Lorentz space, as in Bergh and Löfström [BL]. Pytlik [Py] proved that, given p and r in $[1, \infty)$, a radial function f belongs to $L^{p,r}(\mathfrak{X})$ if and only if the function $d \mapsto f(w_d) |\mathfrak{S}_d|^{1/p}$ is in $L^r(\mathbb{N})$, and

(2)
$$\left[\sum_{d\in\mathbb{N}} \left|f(w_d)\right|^r \left|\mathfrak{S}_d\right|^{r/p}\right]^{1/r} \sim \left\|f\right\|_{p,r}.$$

The key to the proof is that $|\mathfrak{S}_d|$ grows exponentially in d. Pytlik used this lemma to show that $L^{p,1}(\mathfrak{X})^{\sharp} \subseteq \operatorname{Cv}_p^p(\mathfrak{X}) \subseteq L^p(\mathfrak{X})^{\sharp}$, and that the cone of positive radial convolution operators on $L^p(\mathfrak{X})$ coincides with the cone of positive functions in $L^{p,1}(\mathfrak{X})$.

In this paper, we first outline "spherical harmonic analysis" on G, and then prove some general theorems on $\operatorname{Cv}_p^r(\mathfrak{X})$. In particular, we generalise results of Pytlik [Py] and of C. Nebbia [N, Thm. 2].

1. Notation and preliminaries. We write τ for $2\pi/\log q$, and define \mathbb{T} to be the torus $\mathbb{R}/\tau\mathbb{Z}$, usually identified with the interval $[-\tau/2, \tau/2)$. We denote by \mathcal{F} the Fourier transformation on \mathbb{Z} , given by

$$\mathcal{F}F(s) = \sum_{d \in \mathbb{Z}} F(d) q^{-ids} \quad \forall s \in \mathbb{T}.$$

Clearly, $\mathcal{F}F(s + \tau) = \mathcal{F}F(s)$. A distribution m on \mathbb{T} is said to be in $M_p^r(\mathbb{T})$ if convolution with $\mathcal{F}^{-1}m$ defines a bounded operator from $L^p(\mathbb{Z})$ to $L^r(\mathbb{Z})$. We define $\mathcal{F}L^r(\mathbb{T})$ to be $\{\mathcal{F}F : F \in L^r(\mathbb{Z})\}$, and note that $\mathcal{F}L^r(\mathbb{T})$ is continuously included in $L^{r'}(\mathbb{T})$, by the classical Hausdorff–Young inequality, for r in [1, 2].

For p in $[1,\infty]$, let p', $\delta(p)$, \mathbb{S}_p and $\overline{\mathbb{S}}_p$ denote p/(p-1), 1/p - 1/2,

$$\{z \in \mathbb{C} : |\mathrm{Im}(z)| < |\delta(p)|\} \text{ and } \{z \in \mathbb{C} : |\mathrm{Im}(z)| \le |\delta(p)|\}.$$

If f is holomorphic in \mathbb{S}_p , then $f_{\delta(p)}$ and $f_{-\delta(p)}$ denote its boundary functions $f(i\delta(p) + \cdot)$ and $f(-i\delta(p) + \cdot)$, when these exist distributionally. The letter C, sometimes with subscripts or superscripts, denotes a positive constant which may vary from place to place; it may depend on any factor quantified

(implicitly or explicitly) before its occurrence, but not on factors quantified afterwards. Given functions A and B, defined on a set \mathbb{D} , we say that $A \sim B$ in \mathbb{D} if there exist C and C' such that

$$CA(t) \le B(t) \le C'A(t) \quad \forall t \in \mathbb{D}.$$

We conclude this section by summarising some features of spherical analysis on \mathfrak{X} . The theory parallels that of spherical analysis on a noncompact symmetric space of rank one. The Gel'fand pair (G, G_o) has associated spherical functions ϕ_z , parametrised by the complex number z. We refer to [CMS1] for explicit formulae, noting that our parametrisation differs from that used by some authors (e.g., [FTP] and [FTN]; our ϕ_z corresponds to their $\phi_{1/2+iz}$). The spherical Fourier transform \tilde{f} of f in $L^1(\mathfrak{X})^{\sharp}$ is defined by

$$\widetilde{f}(z) = \sum_{x \in \mathfrak{X}} f(x) \phi_z(x) \quad \forall z \in \overline{\mathbb{S}}_1.$$

Since $\phi_{z+\tau} = \phi_z$ and $\phi_z = \phi_{-z}$, \tilde{f} is even and τ -periodic in $\overline{\mathbb{S}}_1$. We say that a holomorphic function in a strip \mathbb{S}_p is *Weyl-invariant* if it satisfies these conditions in \mathbb{S}_p .

We denote by $\underline{\mu}$ the Plancherel measure on \mathbb{T} [CMS1, (1.2)]. We note that the relation $\mathbf{c}(z) = \mathbf{c}(-\overline{z})$ and the symmetry properties of spherical functions imply that

$$\phi_s(x)\frac{d\mu(s)}{ds} = c_G \,\mathbf{c}(-s)^{-1} \,q^{(is-1/2)|x|} + c_G \,\mathbf{c}(s)^{-1} \,q^{(-is-1/2)|x|}$$

for all x in \mathfrak{X} and s in T. Therefore, if $m : \mathbb{R} \to \mathbb{C}$ is even and τ -periodic, then

$$\begin{split} \int_{\mathbb{T}} m(s) \,\phi_s(x) \,d\mu(s) &= c_G \int_{\mathbb{T}} m(s) \,\mathbf{c}(-s)^{-1} q^{(is-1/2)|x|} \,ds \\ &+ c_G \int_{\mathbb{T}} m(s) \,\mathbf{c}(s)^{-1} q^{(-is-1/2)|x|} \,ds, \end{split}$$

and by changing the variable s to -s, we see that the two integrals on the right hand side are equal. In particular, if we set $\check{\mathbf{c}}(s) = \mathbf{c}(-s)$, we have

(3)
$$f(x) = 2 c_G \int_{\mathbb{T}} \widetilde{f}(s) \mathbf{c}(s)^{-1} q^{(-is-1/2)|x|} ds$$
$$= 2 c_G \int_{\mathbb{T}} \widetilde{f}(s) \check{\mathbf{c}}(s)^{-1} q^{(is-1/2)|x|} ds.$$

In the following theorem, we use the results of [CMS2] on the range of the radial Abel transformation to characterise the spherical Fourier transforms of the radial functions in the Lorentz spaces $L^{p,r}(\mathfrak{X})$, and derive a version of the Hausdorff–Young inequality. For related results in the setting of noncompact symmetric spaces see [CGM]. THEOREM 1.1. Suppose that $1 \leq p < 2$. If f is in $L^{p,r}(\mathfrak{X})^{\sharp}$, then \tilde{f} extends to a Weyl-invariant holomorphic function in \mathbb{S}_p , with boundary functions $\tilde{f}_{\delta(p)}$ and $\tilde{f}_{-\delta(p)}$ in $\mathcal{F}L^r(\mathbb{T})$. If also $1 \leq r \leq 2$, then the map $z \mapsto \tilde{f}(z + \cdot)$ is continuous from $\overline{\mathbb{S}}_p$ into $L^{r'}(\mathbb{T})$, and

$$\left[\int_{\mathbb{T}} \left|\widetilde{f}(z+s)\right|^{r'} ds\right]^{1/r'} \le C \left\|f\right\|_{p,r} \quad \forall z \in \overline{\mathbb{S}}_p$$

Conversely, if f is radial and \tilde{f} extends to a Weyl-invariant holomorphic function in \mathbb{S}_p , the map $z \mapsto \tilde{f}(z + \cdot)$ is continuous from $\overline{\mathbb{S}}_p$ into the space of distributions on \mathbb{T} , and the boundary functions $\tilde{f}_{\delta(p)}$ and $\tilde{f}_{-\delta(p)}$ are in $\mathcal{F}L^r(\mathbb{T})$, then f is in $L^{p,r}(\mathfrak{X})^{\sharp}$, and

$$\left\|f\right\|_{p,r} \le C \left\|\mathcal{F}^{-1}\widetilde{f}_{\delta(p)}\right\|_{r}$$

Proof. Let \mathcal{A} denote the Abel transformation on \mathfrak{X} ; see [CMS2] for notation and discussion. We recall that, for sufficiently nice radial functions on \mathfrak{X} , the spherical Fourier transformation factors as $\tilde{f} = \mathcal{F}(\mathcal{A}f)$. Further, by [CMS2, Thm. 2.5], \mathcal{A} is a bicontinuous isomorphism of $L^{p,r}(\mathfrak{X})^{\sharp}$ onto the space $q^{-\delta(p)|\cdot|} L^r(\mathbb{Z})$, for any p in [1, 2) and r in $[1, +\infty)$. Thus, if f is in $L^{p,r}(\mathfrak{X})^{\sharp}$, it follows from the definition of \mathcal{F} that \tilde{f} extends to a holomorphic function on the strip \mathbb{S}_p with the required continuity properties, and with boundary functions in $\mathcal{F}L^r(\mathbb{T})$. Moreover, from the classical Hausdorff–Young inequality,

$$\begin{split} \left[\int_{\mathbb{T}} \left| \mathcal{F}(\mathcal{A}f)(z+s) \right|^{r'} ds \right]^{1/r'} &\leq C \| q^{\operatorname{Im}(z)(\cdot)} \mathcal{A}f \|_{L^{r}(\mathbb{Z})} \\ &\leq C \| q^{\delta(p)| \cdot |} \mathcal{A}f \|_{L^{r}(\mathbb{Z})} \leq C \| f \|_{p,r} \quad \forall z \in \overline{\mathbb{S}}_{p}. \end{split}$$

Conversely, assume that \tilde{f} has the stated properties. By Cauchy's Theorem,

$$\mathcal{A}f(h) = \mathcal{F}^{-1}(\widetilde{f}(h)) = \frac{1}{\tau} \int_{\mathbb{T}} \widetilde{f}(s+i\delta(p)) \, q^{i(s+i\delta(p))h} \, ds = q^{-\delta(p)h} \mathcal{F}^{-1}(\widetilde{f}_{\delta(p)}).$$

Since $\mathcal{F}^{-1}(\widetilde{f}_{\delta(p)})$ is in $L^r(\mathbb{Z})$ by assumption, and $\mathcal{A}f$ is even, $\mathcal{A}f$ is in $q^{-\delta(p)|\cdot|}L^r(\mathbb{Z})$; the required norm inequality follows from (2).

2. On radial convolutors. Recall that $\operatorname{Cv}_p^r(\mathfrak{X})$ denotes the space of radial kernels which convolve $L^p(\mathfrak{X})$ into $L^r(\mathfrak{X})$. In this section, we apply the results of the previous section to study these spaces.

The spherical Fourier transforms of the elements of the space $\operatorname{Cv}_p^r(\mathfrak{X})$ are called *spherical* $L^p \cdot L^r$ *Fourier multipliers*, or L^p *Fourier multipliers* if p = r. It is easy to see that the Clerc–Stein condition [CS] for spherical L^p multipliers on noncompact symmetric spaces holds in the present situation.

Thus a spherical L^p Fourier multiplier extends to a bounded holomorphic function on \mathbb{S}_p [CMS1, Thm. 1.3], and

$$\sup_{z \in \mathbb{S}_p} |\widetilde{k}(z)| \le ||\!|k||\!|_p \quad \forall k \in \mathrm{Cv}_p^p(\mathfrak{X}).$$

The symmetry properties of spherical functions imply the Weyl-invariance of spherical $L^{p}-L^{r}$ multipliers in their strip of holomorphy. The following theorem, which may be proved using Theorem 1.1, generalises the Clerc–Stein condition.

THEOREM 2.1. Suppose that $1 \le p < 2$ and $1 \le r \le s \le \infty$, and that k is a radial function on \mathfrak{X} . The following conditions are equivalent:

(i) k extends to a holomorphic function on \mathbb{S}_p , and the map $z \mapsto k(z+\cdot)$ extends to a continuous map from $\overline{\mathbb{S}}_p$ into the space of distributions on \mathbb{T} , and $\widetilde{k}_{\delta(p)}$ is in $M_r^s(\mathbb{T})$;

(ii) the operator of right convolution with k is bounded from $L^{p,r}(\mathfrak{X})^{\sharp}$ to $L^{p,s}(\mathfrak{X})^{\sharp}$.

In particular, if k is in $\operatorname{Cv}_p^p(\mathfrak{X})$ then $\widetilde{k}_{\delta(p)}$ is in $M_p^p(\mathbb{T})$.

We omit the proof, since it is also an immediate corollary of [CMS2, Prop. 2.7]. Using Theorem 1.1 we moreover obtain the following.

THEOREM 2.2. Suppose that p is in [1, 2) and that k is a radial function on \mathfrak{X} whose Fourier transform \widetilde{k} is holomorphic on \mathbb{S}_p and such that the map $z \mapsto \widetilde{k}(z + \cdot)$ is a continuous distribution-valued map on $\overline{\mathbb{S}}_p$.

(i) If p > 1 and $\widetilde{k}_{\delta(p)}$ is in $\mathcal{F}L^r(\mathbb{T})$, then right convolution with k is a bounded operator from $L^{p,s}(\mathfrak{X})$ into $L^{p,t}(\mathfrak{X})$, where 1/t = 1/r + 1/s - 1. In particular, if \widetilde{k} is in $H^{\infty}(\mathbb{S}_p)$, then right convolution with k is of weak type (p, p).

(ii) If p > 1 and $k_{\delta(p)}$ is bounded and smooth in $\mathbb{C} \setminus \tau \mathbb{Z}$, and satisfies

$$\left|\frac{d}{ds}\widetilde{k}_{\delta(p)}(s)\right| \le C \,|s|^{-1} \quad \forall s \in \mathbb{T},$$

then right convolution with k maps $L^{p,s}(\mathfrak{X})$ continuously into $L^{p,t}(\mathfrak{X})$ whenever t > s.

(iii) If k is in $H^{\infty}(\mathbb{S}_1)$, then right convolution with k is of weak type (1,1), and of strong type (p,p) for every p in $(1,\infty)$.

Proof. We claim that $L^{p,s}(\mathfrak{X}) * L^{p,r}(\mathfrak{X})^{\sharp} \subseteq L^{p,t}(\mathfrak{X})$ when $1 \leq p < 2$, $1 \leq r, s, t < \infty$, and 1+1/t = 1/r+1/s. Indeed, $L^{1}(\mathfrak{X}) * L^{1}(\mathfrak{X})^{\sharp} \subseteq L^{1}(\mathfrak{X})$, and Pytlik [Py] showed that if p is in (1,2), then $L^{p}(\mathfrak{X}) * L^{p,1}(\mathfrak{X})^{\sharp} \subseteq L^{p}(\mathfrak{X})$ (see also Theorem 2.4 below). The claim then follows by multilinear interpolation [BL, 3.13.5, p. 76]. Assume now that $\widetilde{k}_{\delta(p)}$ is in $\mathcal{F}L^r(\mathbb{T})$. By Theorem 1.1, k is in $L^{p,r}(\mathfrak{X})$, and the first statement in (i) follows from the claim above.

If \tilde{k} is in $H^{\infty}(\mathbb{S}_p)$, then $\tilde{k}_{\delta(p)}$ is in $L^{\infty}(\mathbb{T})$ and a fortiori in $\mathcal{F}L^2(\mathbb{T})$. The second statement in (i) follows from the first.

Under hypothesis (ii), $k_{\delta(p)}$ is in $\mathcal{F}L^r(\mathbb{T})$ when r > 1, and the result follows from (i).

Finally, assume that \widetilde{k} is in $H^{\infty}(\mathbb{S}_1)$. By (i) and interpolation and duality, it suffices to prove that convolution with k is of weak type (1, 1). By (3), we see that

$$k(x) = 2c_G \int_{\mathbb{T}} \widetilde{f}(s) \mathbf{c}(s)^{-1} q^{(-is-1/2)|x|} ds;$$

by changing the contour of integration and inserting the value of c_G , we deduce that

$$k(x) = \frac{q \log q}{2\pi(q+1)} q^{-|x|} \int_{\mathbb{T}} \widetilde{f}(s-i/2) \mathbf{c}(s-i/2)^{-1} q^{-is|x|} ds.$$

We may therefore estimate

$$|k(x)| \le \frac{q}{q+1} q^{-|x|} \sup_{s \in \mathbb{T}} |\widetilde{f}(s-i/2) \mathbf{c}(s-i/2)^{-1}| \le \frac{q}{q-1} \|\widetilde{f}\|_{\infty} q^{-|x|}.$$

Now, according to R. Rochberg and M. Taibleson [RT], Green's operator (the inverse of the Laplacian) for a strongly reversible random walk on a tree of bounded degree is of weak type (1,1). It is easily verified that the convolution kernel of Green's operator on a homogeneous tree of degree q+1 is given by

$$k(x) = \frac{q}{q-1} q^{-|x|},$$

and the required conclusion follows. \blacksquare

We now focus on the Banach space $\operatorname{Cv}_p^r(\mathfrak{X})$ of radial convolutors from $L^p(\mathfrak{X})$ to $L^r(\mathfrak{X})$. First, we state the analogue of Herz's *principe de majoration* on trees. This is known, and may be found in a more general setting, for instance, in [Lo].

PROPOSITION 2.3. Suppose that $1 \leq p \leq 2$, and that k belongs to $\operatorname{Cv}_p^p(\mathfrak{X})$. Then

$$\|k\|_p \leq \||k|\|_p = |k| \widetilde{(i\delta(p))}$$

and equality holds if k is nonnegative.

Denote by $Y(\mathfrak{X})$ the Banach space of functions f on \mathfrak{X} such that $||f||_{Y} < \infty$, where

$$||f||_{Y} = \sum_{d \in \mathbb{N}} (d+1) \left(\sum_{x \in \mathfrak{S}_{d}} |f(w_{d})|^{2}\right)^{1/2}$$

Observe that $Y(\mathfrak{X})^{\sharp} \subset L^{2,1}(\mathfrak{X})^{\sharp}$; the inclusion is proper, from (2).

THEOREM 2.4. Suppose that $1 \leq p, r \leq \infty$. Then $\operatorname{Cv}_p^r(\mathfrak{X}) = \operatorname{Cv}_{r'}^{p'}(\mathfrak{X})$. Further,

(i) if $1 , then <math>L^{p,1}(\mathfrak{X})^{\sharp} \subseteq \operatorname{Cv}_p^p(\mathfrak{X}) \subseteq L^p(\mathfrak{X})^{\sharp}$, and if $k \ge 0$ and k is in $\operatorname{Cv}_p^p(\mathfrak{X})$, then k belongs to $L^{p,1}(\mathfrak{X})^{\sharp}$;

(ii) if p = 2, then $Y(\mathfrak{X})^{\sharp} \subseteq \operatorname{Cv}_2^2(\mathfrak{X}) \subseteq L^2(\mathfrak{X})^{\sharp}$, and if $k \ge 0$ and k is in $\operatorname{Cv}_2^2(\mathfrak{X})$, then k belongs to $Y(\mathfrak{X})^{\sharp}$;

(iii) if $1 \le p < r \le 2$, then $\operatorname{Cv}_p^r(\mathfrak{X}) = L^r(\mathfrak{X})^{\sharp}$;

(iv) if $1 \le p \le 2 \le r \le \infty$, and $r \ne p'$, then $\operatorname{Cv}_p^r(\mathfrak{X}) = L^{\min(p',r)}(\mathfrak{X})^{\sharp}$;

(v) if $1 , then <math>L^{p',p'/2}(\mathfrak{X})^{\sharp} \subseteq \mathrm{Cv}_{p}^{p'}(\mathfrak{X}) \subseteq L^{p'}(\mathfrak{X})^{\sharp}$.

REMARKS. Both inclusions in (i) and the right hand inclusion in (v) are strict. This follows from the study of the $L^{p}-L^{r}$ mapping properties of the resolvent operator of the Laplacian [CMS1]. In addition, both inclusions in (ii) are strict. Indeed, the image of the space $Y(\mathfrak{X})^{\sharp}$ under the spherical Fourier transform is contained in the space of absolutely convergent Fourier series on \mathbb{T} , while the images of $\operatorname{Cv}_{2}^{2}(\mathfrak{X})$ and $L^{2}(\mathfrak{X})^{\sharp}$ coincide with $L^{\infty}(\mathbb{T})$ and $L^{2}(\mathbb{T},\mu)$ respectively. Finally, by considering nonnegative elements of $L^{2,1}(\mathfrak{X})^{\sharp}$ which are not in $Y(\mathfrak{X})^{\sharp}$, it may be seen that $L^{2,1}(\mathfrak{X})^{\sharp}$ is not contained in $\operatorname{Cv}_{2}^{2}(\mathfrak{X})$.

Proof (of Theorem 2.4). Observe that $\operatorname{Cv}_p^r(\mathfrak{X}) \subseteq L^r(\mathfrak{X})^{\sharp}$ since the point mass at o is in $L^p(\mathfrak{X})^{\sharp}$ for all p in $[1, \infty]$. Moreover, $\operatorname{Cv}_p^r(\mathfrak{X}) = \operatorname{Cv}_{r'}^{p'}(\mathfrak{X})$, with norm equality, by duality, and since \mathfrak{X} is noncompact, $\operatorname{Cv}_p^r(\mathfrak{X})$ is nontrivial if and only if $p \leq r$, by a theorem of Hörmander [Hö].

We first prove (i). As stated above, the left hand inclusion in (i) was proved in [Py]. We give a shorter proof. Since k is in $\operatorname{Cv}_p^p(\mathfrak{X})$ if |k| is, it suffices to take k nonnegative. For these k, Herz's *principe* shows that

$$|||k|||_p = \widetilde{k}(i\delta(p)) = \sum_{d \in \mathbb{N}} k(w_d) \,\phi_{i\delta(p)}(w_d) \sim \sum_{d \in \mathbb{N}} k(w_d) \,|\mathfrak{S}_d|^{1/p} \sim ||k||_{p,1},$$

as required. This completes the proof of (i). To prove (ii), we argue in a similar fashion.

Now we prove (iii). We have already observed that $\operatorname{Cv}_p^r(\mathfrak{X}) \subseteq L^r(\mathfrak{X})^{\sharp}$, so it suffices to show the reverse inclusion. For this, it suffices to prove that if kis in $L^r(\mathfrak{X})^{\sharp}$, then the map $f \mapsto f * k$ is bounded from $L^p(\mathfrak{X})$ to $L^r(\mathfrak{X})$; this follows from the radial form of the Kunze–Stein phenomenon on \mathfrak{X} (see [N]).

We now prove (iv). Suppose that k is in $\operatorname{Cv}_p^r(\mathfrak{X})$; then it also belongs to $L^r(\mathfrak{X})$. Since $\operatorname{Cv}_p^r(\mathfrak{X}) = \operatorname{Cv}_{r'}^{p'}(\mathfrak{X})$, a similar argument shows that k is also in $L^{p'}(\mathfrak{X})^{\sharp}$, and hence in $L^{\min(p',q)}(\mathfrak{X})^{\sharp}$, showing that $\operatorname{Cv}_p^r(\mathfrak{X}) \subseteq L^{\min(p,r')}(\mathfrak{X})$.

To prove the converse, we consider two cases separately. Suppose first that p < r', so that $L^{r}(\mathfrak{X}) = L^{\min(p',r)}(\mathfrak{X})$. Assume that k is in $L^{r}(\mathfrak{X})$. Let

f be in $L^{p}(\mathfrak{X})$ and h be in $L^{r'}(\mathfrak{X})$; denote by f', h', and k' respectively the G_{o} -right-invariant and G_{o} -bi-invariant extensions to G of f, h, and k. Then

$$\langle f * h, g \rangle_{\mathfrak{X}} = \langle f' * k', h' \rangle_G = \langle k', (f')^* * h' \rangle_G,$$

where $(f')^*(g) = \overline{(f')}(g^{-1})$. Since G has the Kunze–Stein property [N] and $1 \le p < r' < 2$,

 $\|(f')^{\star} * h'\|_{r'} \le C_{p,r'} \|(f')^{\star}\|_{p} \|h'\|_{r'} = C_{p,r'} \|f'\|_{p} \|h'\|_{r'} = C_{p,r'} \|f\|_{p} \|h\|_{r'}.$

Thus, by Hölder's inequality,

$$\sup\{|\langle f * k, h \rangle_{\mathfrak{X}}| : ||f||_p = 1, ||h||_{r'} = 1\} \le C_{p,r'} ||k||_r,$$

so that k is in $\operatorname{Cv}_{p}^{r}(\mathfrak{X})$, and

$$|||k|||_{p;r} \leq C_{p,r'} ||h||_{r},$$

as required. The case where r' < p is treated similarly.

Finally we prove (v). As before, the right inclusion is obvious. The left inclusion follows from the result [CMS2] that, if $1 , then <math>L^p(G) * L^{p,r}(G) \subseteq L^{p,r}(G)$, where r = p/(2-p), much as (iv) follows from the Kunze– Stein phenomenon. The dual form of this sharp inclusion is the inclusion $L^p(G) * L^{p',r'}(G) \subseteq L^{p'}(G)$, where r' = p'/2; the desired result follows by specialising to functions with the appropriate invariance properties.

REFERENCES

- [BL] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, New York, 1976.
- [CS] J.-L. Clerc and E. M. Stein, L^p multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912.
- [CGM] M. Cowling, S. Giulini and S. Meda, $L^p L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109–150.
- [CMS1] M. Cowling, S. Meda and A. G. Setti, *Estimates for functions of the Laplace* operator on homogeneous trees, Trans. Amer. Math. Soc., to appear.
- [CMS2] —, —, —, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math. 16 (1998), 385–423.
- [FTN] A. Figà-Talamanca and C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees, London Math. Soc. Lecture Note Ser. 162, Cambridge Univ. Press, Cambridge, 1991.
- [FTP] A. Figà-Talamanca and M. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Marcel Dekker, New York, 1983.
 - [Hö] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.
 - [Lo] N. Lohoué, Estimations L^p des coefficients de représentation et opérateurs de convolution, Adv. Math. 38 (1980), 178–221.

- [N] C. Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon, Pacific J. Math. 133 (1988), 141–149.
- [Py] T. Pytlik, Radial convolutors on free groups, Studia Math. 78 (1984), 178–183.
- [RT] R. Rochberg and M. Taibleson, Factorization of the Green's operator and weak-type estimates for a random walk on a tree, Publ. Mat. 35 (1991), 187–207.

School of Mathematics University of New South Wales Sydney, NSW 2052, Australia E-mail: m.cowling@unsw.edu.au

Facoltà di Scienze Università dell'Insubria–Polo di Como via Lucini 3 I-22100 Como, Italy E-mail: setti@fis.unico.it Dipartimento di Statistica Università "Bicocca" Edificio U7, II piano viale Sarca 202 I-20100 Milano, Italy E-mail: stemed@mate.polimi.it

Received 20 July 1998