INVARIANT OPERATORS ON FUNCTION SPACES
ON HOMOGENEOUS TREES

BY
MICHAEL COWLING (SYDNEY, N.S.W.)
STEFANO MEDA (MILANO)
AND
ALBERTO G. SETTI (COMO)

A homogeneous tree X of degree $q + 1$ is a connected graph with no loops in which each vertex is adjacent to $q + 1$ others. We assume that $q \geq 2$. The tree X has a natural measure, counting measure, and a natural distance d, viz. $d(x, y)$ is the number of edges between vertices x and y. Let o be a fixed but arbitrary reference point in X, and let G_o be the stabiliser of o in the isometry group G of X. We write $|x|$ for $d(x, o)$. The map $g \mapsto g \cdot o$ identifies the coset space G/G_o with X; thus a function f on X gives rise to a G_o-invariant function f' on G by the formula $f'(g) = f(g \cdot o)$, and every G_o-invariant function arises in this way. A function f on X is said to be radial if $f(x)$ depends only on $|x|$, or equivalently, if f is G_o-invariant, or f' is G_o-bi-invariant. We endow the totally disconnected group G with the Haar measure such that the mass of the open subgroup G_o is 1. The reader may find much more on the group G in the book of Figà-Talamanca and Nebbia [FTN].

We denote by $|E|$ the measure of a subset E of a measure space. We write S_n for $\{x \in X : |x| = n\}$. Clearly, $|S_0| = 1$, and $|S_n| = (q + 1)q^{n-1}$ when $n \in \mathbb{Z}^+$. We pick points w_0, w_1, w_2, \ldots in X such that $|w_d| = d$. A radial function f on X is determined by its restriction to these points.

It is well known that G-invariant linear operators from $L^p(X)$ to $L^r(X)$ correspond to linear operators from $L^p(G/G_o)$ to $L^r(G/G_o)$ given by convolution on the right by G_o-bi-invariant kernels. We denote by $Cv^r_p(X)$ the space of radial functions on X associated to these G_o-bi-invariant kernels. The norm of an element k of $Cv^r_p(X)$ is then defined as the norm of the corresponding operator from $L^p(X)$ to $L^r(X)$, and denoted by $\|k\|_{pr}$. Equipped
with this norm, $Cv^r_p(\mathfrak{X})$ is a Banach space. We note that the maps $f \mapsto f'$ and $f' \mapsto \mathcal{E}f'$ given by the formulae

$$f'(g) = f(g \cdot o), \quad \mathcal{E}f'(g \cdot o) = \left\{ f'(gg_1) \right\}_{g_1} \quad \forall g \in G$$

are isometric from $L^p(\mathfrak{X})$ into $L^p(G)$ and norm-decreasing from $L^p(G)$ into $L^p(\mathfrak{X})$, for all $p \in [1, \infty]$. It follows that the norm of an element k in $Cv^r_p(\mathfrak{X})$ is equal to the norm of its G_o-bi-invariant extension k' to G in $Cv^r_p(G)$, the space of convolution operators from $L^p(G)$ to $L^r(G)$.

For any function space $E(\mathfrak{X})$ on \mathfrak{X}, we denote by $E(\mathfrak{X})^2$ the (usually closed) subspace of $E(\mathfrak{X})$ of radial functions. We denote by $L^{p,r}(\mathfrak{X})$ the standard Lorentz space, as in Bergh and Lőfström [BL]. Pytlik [Py] proved that, given p and r in $[1, \infty)$, a radial function f belongs to $L^{p,r}(\mathfrak{X})$ if and only if the function $d \mapsto f(w_d)|\mathfrak{G}_d|^{1/p}$ is in $L^r(N)$, and

$$\left(\sum_{d \in N} |f(w_d)|^r |\mathfrak{G}_d|^{r/p} \right)^{1/r} \sim \|f\|_{p,r}.$$

The key to the proof is that $|\mathfrak{G}_d|$ grows exponentially in d. Pytlik used this lemma to show that $L^{p,1}(\mathfrak{X})^2 \subseteq Cv^r_p(\mathfrak{X}) \subseteq L^p(\mathfrak{X})^2$, and that the cone of positive radial convolution operators on $L^p(\mathfrak{X})$ coincides with the cone of positive functions in $L^{p,1}(\mathfrak{X})$.

In this paper, we first outline “spherical harmonic analysis” on G, and then prove some general theorems on $Cv^r_p(\mathfrak{X})$. In particular, we generalise results of Pytlik [Py] and of C. Nebbia [N, Thm. 2].

1. Notation and preliminaries. We write τ for $2\pi/\log q$, and define T to be the torus $\mathbb{R}/\tau\mathbb{Z}$, usually identified with the interval $[-\tau/2, \tau/2]$. We denote by \mathcal{F} the Fourier transformation on \mathbb{Z}, given by

$$\mathcal{F}f(s) = \sum_{d \in \mathbb{Z}} F(d) q^{-ids} \quad \forall s \in T.$$

Clearly, $\mathcal{F}f(s + \tau) = \mathcal{F}f(s)$. A distribution m on T is said to be in $M^r_p(T)$ if convolution with $\mathcal{F}^{-1}m$ defines a bounded operator from $L^p(\mathbb{Z})$ to $L^r(\mathbb{Z})$. We define $\mathcal{F}L^r_p(T)$ to be $\{\mathcal{F}F : F \in L^r_p(\mathbb{Z})\}$, and note that $\mathcal{F}L^r_p(T)$ is continuously included in $L^r_p(T)$, by the classical Hausdorff–Young inequality, for r in $[1, 2]$.

For p in $[1, \infty]$, let p', $\delta(p)$, \mathfrak{S}_p and \mathfrak{S}_p denote $p/(p - 1)$, $1/p - 1/2$,

$$\{z \in \mathbb{C} : |\Im(z)| < |\delta(p)|\} \quad \text{and} \quad \{z \in \mathbb{C} : |\Im(z)| \leq |\delta(p)|\}. $$

If f is holomorphic in \mathfrak{S}_p, then $f_{i\delta(p)}$ and $f_{-i\delta(p)}$ denote its boundary functions $f(i\delta(p) + \cdot)$ and $f(-i\delta(p) + \cdot)$, when these exist distributionally. The letter C, sometimes with subscripts or superscripts, denotes a positive constant which may vary from place to place; it may depend on any factor quantified
(implicitly or explicitly) before its occurrence, but not on factors quantified afterwards. Given functions A and B, defined on a set \mathbb{D}, we say that $A \sim B$ in \mathbb{D} if there exist C and C' such that

$$CA(t) \leq B(t) \leq C'A(t) \quad \forall t \in \mathbb{D}.$$

We conclude this section by summarising some features of spherical analysis on \mathfrak{X}. The theory parallels that of spherical analysis on a noncompact symmetric space of rank one. The Gel’fand pair (G, G_o) has associated spherical functions ϕ_z, parametrised by the complex number z. We refer to [CMS1] for explicit formulae, noting that our parametrisation differs from that used by some authors (e.g., [FTP] and [FTN]; our ϕ_z corresponds to their $\phi_{1/2+iz}$). The spherical Fourier transform \tilde{f} of f in $L^1(\mathfrak{X})^\#$ is defined by

$$\tilde{f}(z) = \sum_{x \in \mathfrak{X}} f(x) \phi_z(x) \quad \forall z \in S_1.$$

Since $\phi_{z+\tau} = \phi_z$ and $\phi_z = \phi_{-z}$, \tilde{f} is even and τ-periodic in S_1. We say that a holomorphic function in a strip \mathcal{S}_p is Weyl-invariant if it satisfies these conditions in \mathcal{S}_p.

We denote by μ the Plancherel measure on \mathbb{T} [CMS1, (1.2)]. We note that the relation $\overline{c(z)} = c(-\overline{z})$ and the symmetry properties of spherical functions imply that

$$\phi_s(x) \frac{d\mu(s)}{ds} = c_G c(-s)^{-1} q^{(is-1/2)|x|} + c_G c(s)^{-1} q^{(-is-1/2)|x|},$$

for all x in \mathfrak{X} and s in \mathbb{T}. Therefore, if $m : \mathbb{R} \to \mathbb{C}$ is even and τ-periodic, then

$$\int_{\mathbb{T}} m(s) \phi_s(x) d\mu(s) = c_G \int_{\mathbb{T}} m(s) c(-s)^{-1} q^{(is-1/2)|x|} ds$$

$$+ c_G \int_{\mathbb{T}} m(s) c(s)^{-1} q^{(-is-1/2)|x|} ds,$$

and by changing the variable s to $-s$, we see that the two integrals on the right hand side are equal. In particular, if we set $\tilde{c}(s) = c(-s)$, we have

$$f(x) = 2 c_G \int_{\mathbb{T}} \tilde{f}(s) \tilde{c}(s)^{-1} q^{(-is-1/2)|x|} ds$$

$$= 2 c_G \int_{\mathbb{T}} \tilde{f}(s) \tilde{c}(s)^{-1} q^{(is-1/2)|x|} ds.$$

In the following theorem, we use the results of [CMS2] on the range of the radial Abel transformation to characterise the spherical Fourier transforms of the radial functions in the Lorentz spaces $L^{p,r}(\mathfrak{X})$, and derive a version of the Hausdorff–Young inequality. For related results in the setting of noncompact symmetric spaces see [CGM].
Theorem 1.1. Suppose that $1 \leq p < 2$. If f is in $L^{p,r}(\mathcal{X})^2$, then \tilde{f} extends to a Weyl-invariant holomorphic function in \mathcal{S}_p, with boundary functions $\tilde{f}_{\delta}(p)$ and $\tilde{f}_{-\delta}(p)$ in $\mathcal{F}L'(\mathcal{T})$. If also $1 \leq r \leq 2$, then the map $z \mapsto \tilde{f}(z + \cdot)$ is continuous from \mathcal{S}_p into $L^r(\mathcal{T})$, and

$$\left[\int_{\mathcal{T}} |\tilde{f}(z + s)|^{r'} ds \right]^{1/r'} \leq C \|f\|_{p,r} \quad \forall z \in \mathcal{S}_p.$$

Conversely, if \tilde{f} is radial and \tilde{f} extends to a Weyl-invariant holomorphic function in \mathcal{S}_p, the map $z \mapsto \tilde{f}(z + \cdot)$ is continuous from \mathcal{S}_p into the space of distributions on \mathcal{T}, and the boundary functions $\tilde{f}_{\delta}(p)$ and $\tilde{f}_{-\delta}(p)$ are in $\mathcal{F}L'(\mathcal{T})$, then f is in $L^{p,r}(\mathcal{X})^2$, and

$$\|f\|_{p,r} \leq C \|\mathcal{F}^{-1}\tilde{f}_{\delta}(p)\|_{r'}.$$

Proof. Let \mathcal{A} denote the Abel transformation on \mathcal{X}; see [CMS2] for notation and discussion. We recall that, for sufficiently nice radial functions on \mathcal{X}, the spherical Fourier transformation factors as $\tilde{f} = \mathcal{F}(\mathcal{A}f)$. Further, by [CMS2, Thm. 2.5], \mathcal{A} is a bicontinuous isomorphism of $L^{p,r}(\mathcal{X})^2$ onto the space $q^{-\delta(p)|\cdot|}L'(\mathcal{Z})$, for any p in $[1,2)$ and r in $[1,\infty)$. Thus, if f is in $L^{p,r}(\mathcal{X})^2$, it follows from the definition of \mathcal{F} that \tilde{f} extends to a holomorphic function on the strip \mathcal{S}_p with the required continuity properties, and with boundary functions in $\mathcal{F}L'(\mathcal{T})$. Moreover, from the classical Hausdorff–Young inequality,

$$\left[\int_{\mathcal{T}} |\mathcal{F}(\mathcal{A}f)(z + s)|^{r'} ds \right]^{1/r'} \leq C\|q^{\text{Im}(z)(\cdot)}\mathcal{A}f\|_{L^r(\mathcal{Z})}$$

$$\leq C\|q^{\delta(p)|\cdot|}\mathcal{A}f\|_{L^r(\mathcal{Z})} \leq C\|f\|_{p,r} \quad \forall z \in \mathcal{S}_p.$$

Conversely, assume that \tilde{f} has the stated properties. By Cauchy’s Theorem,

$$\mathcal{A}f(h) = \mathcal{F}^{-1}(\tilde{f}(h)) = \frac{1}{\tau} \int_{\mathcal{T}} \tilde{f}(s + i\delta(p)) q^{(s + i\delta(p))h} ds = q^{-\delta(p)h} \mathcal{F}^{-1}(\tilde{f}_{\delta}(p)).$$

Since $\mathcal{F}^{-1}(\tilde{f}_{\delta}(p))$ is in $L'(\mathcal{Z})$ by assumption, and $\mathcal{A}f$ is even, $\mathcal{A}f$ is in $q^{-\delta(p)|\cdot|}L'(\mathcal{Z})$; the required norm inequality follows from (2). $lacksquare$

2. On radial convolutors. Recall that $\text{CV}_p^r(\mathcal{X})$ denotes the space of radial kernels which convolve $L^p(\mathcal{X})$ into $L^r(\mathcal{X})$. In this section, we apply the results of the previous section to study these spaces.

The spherical Fourier transforms of the elements of the space $\text{CV}_p^r(\mathcal{X})$ are called spherical L^p-L^r Fourier multipliers, or L^p Fourier multipliers if $p = r$. It is easy to see that the Clerc–Stein condition [CS] for spherical L^p multipliers on noncompact symmetric spaces holds in the present situation.
Thus a spherical L^p Fourier multiplier extends to a bounded holomorphic function on S_p [CMS1, Thm. 1.3], and
\[
\sup_{z \in S_p} |\tilde{k}(z)| \leq \|k\|_p \quad \forall k \in \text{Cv}_p(X).
\]
The symmetry properties of spherical functions imply the Weyl-invariance of spherical L^p-L^r multipliers in their strip of holomorphy. The following theorem, which may be proved using Theorem 1.1, generalises the Clerc–Stein condition.

\textbf{Theorem 2.1.} Suppose that $1 \leq p < 2$ and $1 \leq r \leq s \leq \infty$, and that k is a radial function on X. The following conditions are equivalent:

(i) \tilde{k} extends to a holomorphic function on S_p, and the map $z \mapsto \tilde{k}(z + \cdot)$ extends to a continuous map from S_p into the space of distributions on T, and $\tilde{k}_{\delta(p)}$ is in $M^r_s(T)$;

(ii) the operator of right convolution with k is bounded from $L^p,r(X)^\diamond$ to $L^p,s(X)^\diamond$.

In particular, if k is in $\text{Cv}_p(X)$ then $\tilde{k}_{\delta(p)}$ is in $M^r_p(T)$.

We omit the proof, since it is also an immediate corollary of [CMS2, Prop. 2.7]. Using Theorem 1.1 we moreover obtain the following.

\textbf{Theorem 2.2.} Suppose that p is in $[1, 2)$ and that k is a radial function on X whose Fourier transform \tilde{k} is holomorphic on S_p and such that the map $z \mapsto \tilde{k}(z + \cdot)$ is a continuous distribution-valued map on S_p.

(i) If $p > 1$ and $\tilde{k}_{\delta(p)}$ is in $FL^r(T)$, then right convolution with k is a bounded operator from $L^{p,s}(X)$ into $L^{p,t}(X)$, where $1/t = 1/r + 1/s - 1$. In particular, if \tilde{k} is in $H^\infty(S_p)$, then right convolution with k is of weak type (p, p).

(ii) If $p > 1$ and $\tilde{k}_{\delta(p)}$ is bounded and smooth in $\C \setminus \pi \Z$, and satisfies
\[
\left| \frac{d}{ds} \tilde{k}_{\delta(p)}(s) \right| \leq C |s|^{-1} \quad \forall s \in T,
\]
then right convolution with k maps $L^{p,s}(X)$ continuously into $L^{p,t}(X)$ whenever $t > s$.

(iii) If \tilde{k} is in $H^\infty(S_1)$, then right convolution with k is of weak type $(1, 1)$, and of strong type (p, p) for every p in $(1, \infty)$.

\textbf{Proof.} We claim that $L^{p,s}(X) \ast L^{p,r}(X)^\diamond \subseteq L^{p,t}(X)$ when $1 \leq p < 2$, $1 \leq r, s, t < \infty$, and $1 + 1/t = 1/r + 1/s$. Indeed, $L^1(X) \ast L^1(X)^\diamond \subseteq L^1(X)$, and Pytlik [Py] showed that if p is in $(1, 2)$, then $L^p(X) \ast L^{p,1}(X)^\diamond \subseteq L^p(X)$ (see also Theorem 2.4 below). The claim then follows by multilinear interpolation [BL, 3.13.5, p. 76].
Assume now that $\tilde{k}_{\delta(p)}$ is in $FL^r(T)$. By Theorem 1.1, k is in $L^{p,r}(X)$, and the first statement in (i) follows from the claim above.

If k is in $H^\infty(S_p)$, then $\tilde{k}_{\delta(p)}$ is in $L^\infty(T)$ and a fortiori in $FL^2(T)$. The second statement in (i) follows from the first.

Under hypothesis (ii), $\tilde{k}_{\delta(p)}$ is in $L^{\infty}(T)$ and a fortiori in $F_{L^2}(T)$. The second statement in (i) follows from the first.

Finally, assume that \tilde{k} is in $H^\infty(S_1)$. By (i) and interpolation and duality, it suffices to prove that convolution with k is of weak type $(1,1)$. By (3), we see that $k(x) = 2c_G \int_T \tilde{f}(s) c(s)^{-1} q^{(-i\delta-1/2)|x|} ds$; by changing the contour of integration and inserting the value of c_G, we deduce that $k(x) = \frac{q \log q}{2\pi (q+1)} q^{-|x|} \int_T \tilde{f}(s-i/2) c(s-i/2)^{-1} q^{-i|x|} ds$.

We may therefore estimate $|k(x)| \leq \frac{q}{q+1} q^{-|x|} \sup_{s \in T} |\tilde{f}(s-i/2) c(s-i/2)^{-1}| \leq \frac{q}{q-1} \|\tilde{f}\|_\infty q^{-|x|}$.

Now, according to R. Rochberg and M. Taibleson [RT], Green’s operator (the inverse of the Laplacian) for a strongly reversible random walk on a tree of bounded degree is of weak type $(1,1)$. It is easily verified that the convolution kernel of Green’s operator on a homogeneous tree of degree $q+1$ is given by $k(x) = \frac{q}{q-1} q^{-|x|}$, and the required conclusion follows.

We now focus on the Banach space $Cv_p^r(X)$ of radial convolutors from $L^p(X)$ to $L^r(X)$. First, we state the analogue of Herz’s principe de majoration on trees. This is known, and may be found in a more general setting, for instance, in [Lo].

Proposition 2.3. Suppose that $1 \leq p \leq 2$, and that k belongs to $Cv_p^r(X)$. Then

$$\|k\|_p \leq \|k\|_p = |k|(|\delta(p)|),$$

and equality holds if k is nonnegative.

Denote by $Y(X)$ the Banach space of functions f on X such that $\|f\|_Y < \infty$, where

$$\|f\|_Y = \sum_{d \in \mathbb{N}} (d+1) \left(\sum_{x \in \mathbb{E}_d} |f(u_d)|^2 \right)^{1/2}.$$

Observe that $Y(X)^{\sharp} \subset L^{2,1}(X)^{\sharp}$; the inclusion is proper, from (2).
Theorem 2.4. Suppose that $1 \leq p, r \leq \infty$. Then $Cv^r_p(\mathcal{X}) = Cv^r_r(\mathcal{X})$.

Further,

(i) if $1 < p < 2$, then $L^{p,1}(\mathcal{X})^♯ \subseteq Cv^p_p(\mathcal{X}) \subseteq L^p(\mathcal{X})^♯$, and if $k \geq 0$ and k is in $Cv^p_p(\mathcal{X})$, then k belongs to $L^{p,1}(\mathcal{X})^♯$;

(ii) if $p = 2$, then $Y(\mathcal{X})^♯ \subseteq Cv^2_2(\mathcal{X}) \subseteq L^2(\mathcal{X})^♯$, and if $k \geq 0$ and k is in $Cv^2_2(\mathcal{X})$, then k belongs to $Y(\mathcal{X})^♯$;

(iii) if $1 \leq p < r \leq 2$, then $Cv^p_p(\mathcal{X}) = L^r(\mathcal{X})^♯$;

(iv) if $1 \leq p \leq 2 \leq r \leq \infty$, and $r \neq p'$, then $Cv^p_r(\mathcal{X}) = L^{\min(p',r)}(\mathcal{X})^♯$;

(v) if $1 < p < 2$, then $L^{p',2'}(\mathcal{X})^♯ \subseteq Cv^p_r(\mathcal{X}) \subseteq L^{p'}(\mathcal{X})^♯$.

Remarks. Both inclusions in (i) and the right hand inclusion in (v) are strict. This follows from the study of the L^p-L^r mapping properties of the resolvent operator of the Laplacian Δ. In addition, both inclusions in (ii) are strict. Indeed, the image of the space $Y(\mathcal{X})^♯$ under the spherical Fourier transform is contained in the space of absolutely convergent Fourier series on \mathbb{T}, while the images of $Cv^2_2(\mathcal{X})$ and $L^2(\mathcal{X})^♯$ coincide with $L^\infty(\mathbb{T})$ and $L^2(\mathbb{T},\mu)$ respectively. Finally, by considering nonnegative elements of $L^{2,1}(\mathcal{X})^♯$ which are not in $Y(\mathcal{X})^♯$, it may be seen that $L^{2,1}(\mathcal{X})^♯$ is not contained in $Cv^2_2(\mathcal{X})$.

Proof (of Theorem 2.4). Observe that $Cv^r_p(\mathcal{X}) \subseteq L^r(\mathcal{X})^♯$ since the point mass at o is in $L^p(\mathcal{X})^♯$ for all p in $[1, \infty]$. Moreover, $Cv^r_p(\mathcal{X}) = Cv^p_r(\mathcal{X})$, with norm equality, by duality, and since \mathcal{X} is noncompact, $Cv^r_p(\mathcal{X})$ is nontrivial if and only if $p \leq r$, by a theorem of Hörlmander [Hö].

We first prove (i). As stated above, the left hand inclusion in (i) was proved in [Py]. We give a shorter proof. Since k is in $Cv^p_p(\mathcal{X})$ if $|k|$ is, it suffices to take k nonnegative. For these k, Herz’s principe shows that

$$\|k\|_p = \tilde{k}(i\delta(p)) = \sum_{d \in \mathbb{N}} k(w_d) \phi_{i\delta(p)}(w_d) \sim \sum_{d \in \mathbb{N}} k(w_d) |\mathcal{G}_d|^{1/p} \sim \|k\|_{p,1},$$

as required. This completes the proof of (i). To prove (ii), we argue in a similar fashion.

Now we prove (iii). We have already observed that $Cv^r_p(\mathcal{X}) \subseteq L^r(\mathcal{X})^♯$, so it suffices to show the reverse inclusion. For this, it suffices to prove that if k is in $L^r(\mathcal{X})^♯$, then the map $f \mapsto f * k$ is bounded from $L^p(\mathcal{X})$ to $L^r(\mathcal{X})$; this follows from the radial form of the Kunze–Stein phenomenon on \mathcal{X} (see [N]).

We now prove (iv). Suppose that k is in $Cv^p_p(\mathcal{X})$; then it also belongs to $L^r(\mathcal{X})$. Since $Cv^r_p(\mathcal{X}) = Cv^p_r(\mathcal{X})$, a similar argument shows that k is also in $L^{p'}(\mathcal{X})^♯$, and hence in $L^{\min(p,r')}(\mathcal{X})^♯$, showing that $Cv^r_p(\mathcal{X}) \subseteq L^{\min(p,r')}(\mathcal{X})$.

To prove the converse, we consider two cases separately. Suppose first that $p < r'$, so that $L^r(\mathcal{X}) = L^{\min(p,r')}(\mathcal{X})$. Assume that k is in $L^r(\mathcal{X})$. Let
f be in $L^p(\mathcal{X})$ and h be in $L^{r'}(\mathcal{X})$; denote by f', h', and k' respectively the G_0-right-invariant and G_0-bi-invariant extensions to G of f, h, and k. Then
\[
\langle f * h, g \rangle_{\mathcal{X}} = \langle f' * k', h' \rangle_G = \langle k', (f')^* * h' \rangle_G,
\]
where $(f')^*(g) = (f')(g^{-1})$. Since G has the Kunze–Stein property [N] and $1 \leq p < r' < 2$,
\[
\|(f')^* * h'\|_{r'} \leq C_{p,r'}\|f'\|_p\|h'\|_{r'} = C_{p,r'}\|f\|^p_p\|h\|^r_{r'}.
\]
Thus, by Hölder’s inequality,
\[
\sup\{|\langle f * k, h \rangle_{\mathcal{X}}| : \|f\|_p = 1, \|h\|_{r'} = 1\} \leq C_{p,r'}\|k\|_{r'},
\]
so that k is in $C^v_{p,r}(\mathcal{X})$, and
\[
\|k\|_{p,r} \leq C_{p,r'}\|h\|_{r'},
\]
as required. The case where $r' < p$ is treated similarly.

Finally we prove (v). As before, the right inclusion is obvious. The left inclusion follows from the result [CMS2] that, if $1 < p < 2$, then $L^p(G) * L^p(G) \subseteq L^{p,r}(G)$, where $r = p/(2-p)$, much as (iv) follows from the Kunze–Stein phenomenon. The dual form of this sharp inclusion is the inclusion $L^p(G) * L^{p',r'}(G) \subseteq L^{p'}(G)$, where $r' = p'/2$; the desired result follows by specialising to functions with the appropriate invariance properties.

REFERENCES

School of Mathematics
University of New South Wales
Sydney, NSW 2052, Australia
E-mail: m.cowling@unsw.edu.au

Facoltà di Scienze
Università dell’Insubria–Polo di Como
via Lucini 3
I-22100 Como, Italy
E-mail: setti@fis.unico.it

Received 20 July 1998