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STABILITY OF THE FIXED-POINT PROPERTY
A BY

V. KLEE* (SEATTLE AND COPENHAGEN)

Ag is well-known, the fixed-point property is possessed by every
compact absolute retract A; if the mapping ¢ of A into itself is conti-
nuous, then some point of 4 i3 invariant under ¢. We show here that
for such an A there is in the following sense a sort of stability about the
fixed-point property; if the mapping ¢ of A into itself is nearly conti-
nuous, then some point of A is nearly invariant under ¢. An example
is given of a plane continuum in which the fixed-point property persists
but fails to satisfy the stability condition.

Consider a topological space X and a metric space (M, g). For ¢ > 0,
2 mapping ¢ of X into M will be called e-continuous provided each point
2 of X admits a neighborhood U, such that the p-diameter of the set ¢ U,
is at most e. For § > 0, a d-invariant point for a mapping £ of M into M
is a point p «M such that p(&p, p) < 6; £ will be called a d-mapping pro-
vided each point of M is d-invariant for &.

1. PrOPOSITION. Suppose X and Y are topological spaces, M a metric
space, f a continuous mapping of X into Y, ¢ an s-continuous mapping
of ¥ into M, and & a 5-mapping of M into M. Then &gf is an (e-+ 28)-con-
tinuous mapping of X into M.

Proof. Consider an arbitrary point z<X. Since ¢ is e-continuous,
there is a neighborhood V of fx such that diamgV < e And since f is
continuous, there is a mneighborhood U, of x such that fU,C V. Then
diamgfU, < & Since & iy a J-mapping, for arbitrary u, v’ U, we have

elépfu, Spfu’) < e(pfu, pfu)+ olpfu, ofu)+ olefu’, Spfu’)
< b6+ e+6.

Consequently diam &pfU, <C e+ 26 and the proof is complete.
2. PROPOSITION. Suppose P is a compact conver polyhedron in a finite-
dimensional normed linear space, and ¢ is an e-continuous mapping of P
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into P. Then there ewists a continuous mapping ¢ of P into P such that
lgp —gpll < & for all peP. Consequently some point of P is e-invariont
under @.

Proof. By compactness of P and e-continuity of ¢, P must admit
a finite open covering U such that diamepU < ¢ for each UeW. Leb o
be o simplicial subdivision of P such that every member of ¢§ lies in gome
member of . Let gv = gv for each vertex v of J, and. then extend g
affinely over all the simplices in . Then ¢ is a continuous map of P
into P, so by Brouwer’s fixed-point theorem there exists p,eP for which
gPo = Po- Now consider an arbitrary point peP, and let V be the set
of all vertices of the carrier of p in . Then diam(pp v V) < e Thus
each point of ¢V lies within ¢ of ¢p, and since spheres are convex
the same is true of the entire set convpV. But of course gp econvoV
and consequently |lgp—opll <e In particular, ¢ = llgpo— ppoll =
= |[po—@Poll- '

3. THROREM. Suppose € is a compact comvex subset of @& norined linear
space, @ is an s-continuous mapping of C into O, and g >&. Then some
point of O is &'-invariant under @. ‘ ‘

Proof. Choose 8¢10, (&' —s)/3[. Since O is compact and hence totally
bounded, there exists a finite set F'C ¢ such that for each point xel
there exists fzeF for which |lp— &x|| < 8. Let P denote the convex hull
of F. Since ¢& is a -mapping of ¢ into P it follows from Proposition 1 that
£p i3 an (s4-26)-continuous mapping of ¢ into P. By Proposition 2 there
exists poeP such that [[&pp,— p,ll < &--26. But then

lepe— Dol < llppo— Egpoll+ | Eppo—Doll < 8- (e+20) < &y

and the proof is complete.

Now a metric space M will be said to have the prowimate fized-point
property provided for each & >0 there exists 7, >0 such that every
7,-continuous mapping of M into M admits an sinvariant poind.

4. PRODOSITION. If a metric space M has the promimate fimed-point
property, then so has every compact retract of M.

Proof. Let # be a continuous retraction of M onto a compact seb
Y C M, and congider an arbitrary & > 0. We wish to f)roduce 7 > 0 such
thz.\.’s every 7-continuous mapping of ¥ into ¥ admits an s-invariant
p'omt. By using the compactness of ¥ it is easy to see that for & gutfi-
el'ently small 8¢]0, ¢2[, (@, rw) < &/2 whenever weM and g(v, ¥) < 0.
Since M has the proximate fixed-point property, there exists n >0
sugh that every 7-continuous mapping of M into M admits a é-invariant
point. qu consider an arbitrary »-continuous mapping ¢ of Y into Y.
Then ¢r is 7-continuous by Proposition 1 and hence gr admits a &-in-
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variant point z <M. Since p(pre, z) < é and greze Y, we have ¢(z, ¥) < 8
and hence o(x,rz) < £/2. Bub also 6 < /2, and thus

olgra, r2) < olpre, o)+ (@, 72) < &,
and the proof of Proposition 4 is complete for rx is s-invariant under g.

5. PROPOSITION. If a compact meiric space X has the prozimate fized-
point property, then so has every metric homeomorph of X.

Proof. Let h be a homeomorphism of X onto & metric space Y,
and consider an arbitrary & > 0. There exists 6; >0 such that o(zy, #a)
< 8, implies p(h@,, ha,) < & Since X has the proximate fixed-point
property, there exists d, >0 such that every J,-continuous mapping
of X into X admits a 8-invariant point. And there exists 8y > 0 such
that o(yy, ¥ < & implies o(h 'y, I ly,) <. 0,. Now consider an arbi-
trary Os-continuous mapping ¢ of Y into ¥. Bach point of ¥ admits
a neighborhood V for which diameV < 8, and hence each point =
of X admits a neighborhood U, for which diamehU, < 8;. But then
diamh1phU, < 8, and hgh is 5,-continuous, so there exists 2, «X for
which ¢(h—¢hw,s) < 8;. Thus ¢(phay, hazy) < & and ha, is an e-invariant
point for .

Trom @ well-known embedding theorem in conjunction with the
results 3-5 we have

6. TEROREM. Every compact meiric absolute retract has the prozvimate
fiwed-point property.

It is evident that a compact metric space which has the proximate
fixed-point property must also have the fixed-point property. We wish
now to describe a plane continuum K which has the fixed-point property
‘but lacks the proximate fixed-point property. For each teT = [0, 6+44/x],
let the point {t in the Cartesian plane be defined as follows:

[0;3]’ (Oyl”t)’

[3,3+2/], | -3, -2),

[342/r, 64 2/x], (2)m,1—B—2/n),

[64 2/, 64 4/=[, (6+4/m—1, §inl/(6+4/m—1)).

Let K = {¢:teT}. Clearly K is a continunm. Now consider & con-

tinuous mapping f of K into K, and for each teT let nt = (1 flteT. If
always nt>>1 then clearly Z0 eclfK, whence [0 = fis for some seT and
7s = 0 < s. Thus in any case there exists seT such that ns <s. And 7

is continuous on [0, s] so there is & smallest number #,¢[0, s] for which
7ty < ty. Then 7t = o whence fit, = i, and K must have the fixed-

point property.

for te
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Now for n =1,2,..., let &, = 2/(4n+ 1) and let y, be a homeo-
morphism of the interval [0,3-2/x] onto the interval [3+ 2/, 64 4/r
— &,] which maps the endpoints in the indicated order. Let ¢, (1) = Cyat
for 1[0, 3+2/x], @, (it) = Ly, ™'t for te[34-2/m, 6+ 4/n—e¢,), and com-
plete the definition of ¢, by setting @,lt = tp%(O, sinl/(6+4/r:—t)) for
te[6+4/r—e,, 6+4/n]. It is easily verified that ¢, is continuous at
each point of K\{{(3+2/n)}, and that for each & >e¢,, the point
{(3+2/r) admits a neighborhood U in K such that diame,U < ¢.
Thus ¢, 18 2e,-continuous. Bub it can be verified further that ¢ (¢, ¢, 0t)
> 2/n—eg, for all teT, and consequently the plane continuum K does
not have the proximate fixed-point property.

Thus far we have confined our attention to metric spaces. But this
was only for the sake of simplicity, and generalizations to uniform spaces
are almost immediate. Proposition 2 is easily extended to cover “nearly
upper semicontinuous” mappings which associate with each point of P
a closed convex subset of P. The resulting generalization of Kakutani’s
fixed-point theorem [3] can be applied after the manner of Theorem 3
above to a compact convex set in an arbitrary locally convex Hausdortf
linear space. This leads to an extension of the fixed-point theorem of
Fan [1] and Glicksberg [2]. From a rather special case of that extension,
the following result ecan he deduced:

7. TawOREM. Suppose X is a compact Hausdorff space which is an
absolute retract for such spaces. Then for each open covering U of X there
exists a finite open covering <V of X which has the following property:

if @ is any mapping of X into X such that each point of X admits
a neighborhood N, for which N, lies in some member of VI, then there ewisls
& pont wye X such that x, and gz, lie together in some member of U.
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SUR LES FONCTIONS QUASICONTINUES
AU SENS DE S. KEMPISTY

PAR

S. MARCTUS (BUCAREST)

1. Propriétés de structure. 4 et A’ étant deux espaces topolo-
giques, désignons par f une fonction définie dans A et ayant ses valeurs
dans 4’.

En généralisant la notion de quasicontinuité, introdunite par Kem-
pisty [4], convenons de dire que f est quasicontinue au point zed lorsque,
pour tout voisinage U de x et pour tout voisinage ¥ de f(x), il existe un
ensemble ouvert G C U tel que f(G)C V.

B et B' étant deux espaces métriques avec les distances o et o
respectivement, désignons par ¢ une fonction définie dans B et ayant
ses valeurs dans B'. Elle sera dite avoisinée (,,neighborly” selon Morse
et Bledsoe [1]) au point x<B lorsqu'il existe pour tout ¢ > 0 une sphére
8 CB telle que o(x, y)+ o' (p(#), (¥) < & quel que soit yeS.

Elle sera dite avoisinée au sens large (,neighborly *» selon Bledsoe
[1]) au point B lorsqu’il existe pour tout ¢ > 0 une sphére 8 C B telle
que o(z,y)+ o (p(y), p(2)) < e quels que soient yeS et zeS.

Enfin, appelons la fonction ¢ apparentée (,,cliquiss” selon Thielman [8]
et [9]) au point ¢ B lorsque pour tout ¢ > 0 et pour toute sphére ouverte
8 contenant =, il existe ume sphére S;C S telle que o (p(y), ¢(2)) < &
quels que soient yeS; et zeS,.

Toutes les quatre notions sont des généralisations de celle de con-
tinuité. Les relations suivantes entre elles (pour les fonctions ¢ définies
dans un espace B métrique) sont faciles & démontrer: .

(i) La guasicontinuité @une fonction ¢ en wun . point weB équivaut
& Davoisinement de cette fonction en méme point.

(ii) L'apparentage d'une fonction ¢ en un point xeB équivaut ¢ Vavoi-
sinement au sens large de celte fonction en méme point.

(iii) La quasicontinuité d'une fonction ¢ en un point meB enlraine
Papparentage de cette fonction en .
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