26

A. LELEK

From (8) we obtain $Y = Z_{\beta} \cup \bigcup_{\iota < \beta} Q(Z_{\iota})$, where the sets in the sums on the right are disjoint according to (8) and to the hypothesis concerning the sets $Q(Z_{\iota})$ for $\iota < \beta$. Thus

$$\overline{ar{Y}} = \overline{ar{Z}}_{eta} + \sum_{\iota < eta} \overline{\overline{Q(oldsymbol{Z}_{\iota})}} \leqslant oldsymbol{arkappa}_{a} + oldsymbol{arkappa}_{a} ar{eta}$$

by virtue of (7) and (9). But $\beta < \omega_{a+1}$ implies $\bar{\beta} \leqslant s_a$. Hence $\bar{Y} \leqslant s_a + s_a \cdot s_a = s_a$, contrary to (5).

From (6) we have $Q(Z_{\beta}) \subset Z_{\beta}$. That means according to (8) that the sets $Q(Z_{\beta})$ and $Q(Z_{\iota})$ are disjoint for every $\iota < \beta$.

Therefore the sets Z_{β} (where $\beta < \omega_{a+1}$) are defined so that $Q(Z_{\beta})$ are disjoint and $\kappa_{a+1} \leqslant \overline{Z}_{\beta}$ for $\beta < \omega_{a+1}$. Put $z_{\beta} = q(Z_{\beta})$ for $\beta < \omega_{a+1}$.

Now let $\beta < \beta'$. Since $z_{\beta} \in Q(Z_{\beta})$ and $z_{\beta'} \in Q(Z_{\beta'})$ by virtue of (6), we have $z_{\beta} \neq z_{\beta'}$ and $z_{\beta'}$ non $\in Q(Z_{\beta})$, that is $q(Z_{\beta})$ non $Rz_{\beta'}$, i. e. z_{β} non $Rz_{\beta'}$. Hence the set of points z_{β} (where $\beta < \omega_{\alpha+1}$) has a power $\kappa_{\alpha+1}$, is contained in Y, thus also in X, and z_{β} non $Rz_{\beta'}$ for every two of its distinct elements z_{β} and $z_{\beta'}$. This contradicts $(s_{\alpha+1})$.

REFERENCES

- [1] B. Dushnik and E. W. Miller, Partially ordered sets, American Journal of Mathematics 43 (1941), p. 600-610.
- [2] B. Knaster, Sur une propriété caractéristique de l'ensemble des nombres réels, Matematitcheskii Sbornik 16 (1945), p. 281-290.
- [3] W. Sierpiński, Sur un problème de la théorie des relations, Annali della Scuola normale Superiore di Pisa; Scienze fisiche e matematiche 2 (1933), p. 285-287.
- [4] E. Szpilrajn-Marczewski, Sur deux propriétés des classes d'ensembles, Fundamenta Mathematicae 33 (1945), p. 303-307.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 10, 3, 1960

COLLOQUIUM MATHEMATICUM

FASC. 1

VOL. VIII 1961

CARTESIAN PRODUCTS AND CONTINUOUS IMAGES

BY

R. ENGELKING (WARSAW) AND A. LELEK (WROCŁAW)

Studying the question whether the Cartesian product $A \times B$ of continua A and B is a continuous image of A provided that B is a continuous image of A, Sieklucki and Engelking have proved that the answer can be negative already for A = B, i. e. for topological squares (1). Their examples are the following:

- (i) $A = B = \emptyset$, where \emptyset is the condensed sinusoid, i.e. the sum of the curve $\{(x, y): y = \sin 1/x, 0 < x \le 1\}$ and the straight segment with end points (0, -1) and (0, 1),
- (ii) $A = B = \mathcal{B}$, where \mathcal{B} is the *countable brush*, i.e. the sum of the infinite sequence of straight segments with end points (0,1) and (1/i, 0) for i = 1, 2, ... and the straight segment with end points (0, 1) and (0, 0).

The purpose of this paper is to prove a more general theorem (2), which comprises the cases (i) and (ii) (see especially the corollary).

- Let X, Y and Z be arbitrary compact spaces and let p be the projection of Cartesian product $X \times Y$ onto X. We denote by L(X) the set of points of X at which the space X is locally connected and we put N(X) = X L(X).
- (1) If f(X) = Y is a continuous mapping, $y \in Y$ and $f^{-1}(y) \subset Int(V)$, then $y \in Int(f(V))$.

Proof. Suppose that $\lim y_n = y$ and $y_n \in Y - f(V)$. Then we have $f^{-1}(y_n) \subset X - f^{-1}f(V) \subset X - V$. Applying the compactness of X, let $x_n \in f^{-1}(y_n)$ and $\lim x_n = x'$. Then $f(x_n) = y_n$ and $x_n \in X - V$, that is $x' \in \overline{X - V} = X - \operatorname{Int}(V)$. Thus $x' \in X - f^{-1}(y)$ and hence $f(x') \neq y$, which contradicts the continuity of f.

⁽¹⁾ See P 290, Colloquium Mathematicum 7 (1960), p. 110, and P 290, R 1, ibidem, p. 309.

⁽²⁾ It is a result of a correspondence and discussion at the meeting on 16 December 1959 of the Wrocław Topological Seminar conducted by Professor B. Knaster.

(2) If f(X) = Y is a continuous mapping, $y \in Y$ and $f^{-1}(y) \subset L(X)$, then $y \in L(f(X))$.

Proof. Let U be an open neighbourhood of the point y in Y. Then $f^{-1}(y) \subset f^{-1}(U)$ and $f^{-1}(U)$ is open in X. Since $f^{-1}(y) \subset L(X)$, there exists for each $x \in f^{-1}(y)$ an open neighbourhood U_x of x which is connected and contained in $f^{-1}(U)$. Thus the sum $V = \bigcup_x U_x$, where $x \in f^{-1}(y)$, is an open set and $f^{-1}(y) \subset V$. From (1) we have $y \in \text{Int}(f(V)) = \text{Int}(\bigcup_x f(U_x))$. However, $y \in f(U_x)$ for every $x \in f^{-1}(y)$. Hence the neighbourhood $\bigcup_x f(U_x)$ of the point y is connected and contained in U, because $f(U_x) \subset ff^{-1}(U) = U$ for each $x \in f^{-1}(y)$.

(3) If f is a continuous mapping, then $N(f(X)) \subset f(N(X))$.

Proof. Since f(X)-N(f(X))=L(f(X)), the theorem is equivalent to the inclusion $f(X)-f(N(X))\subset L(f(X))$. Putting $y\in f(X)-f(N(X))$ we have $f^{-1}(y)\subset f^{-1}f(X)-f^{-1}f(N(X))\subset X-N(X)=L(X)$, which, applying (2), implies $y\in L(f(X))$.

(4)
$$L(X \times Y) = L(X) \times L(Y)$$
.

Proof. The inclusion $L(X) \times L(Y) \subset L(X \times Y)$ is evident. Let $(x,y) \in L(X \times Y)$. If V is a neighbourhood of x in X, $p^{-1}(V)$ is one of (x,y) in $X \times Y$. Then there exists a neighbourhood U of (x,y) which is connected and contained in $p^{-1}(V)$. It follows that the set p(U) containing the point x is connected, contained in V and open, the projection p being an open mapping. Then $x \in L(X)$. The proof that $y \in L(Y)$ is similar.

(5)
$$N(X \times Y) = N(X) \times Y \cup X \times N(Y)$$
.

Proof. We have the identities $X \times Y = L(X) \times L(Y) \cup L(X) \times N(Y) \cup N(X) \times L(Y) \cup N(X) \times N(Y)$ and $N(X) \times Y \cup X \times N(Y) = N(X) \times L(Y) \cup N(X) \times N(Y) \cup L(X) \times N(Y)$ and the sums on the right are those of disjoint sets. Hence $X \times Y = L(X) \times L(Y) \cup N(X) \times Y \cup X \times N(Y)$ and (4) implies $N(X) \times Y \cup X \times N(Y) = X \times Y - L(X) \times L(Y) = X \times Y - L(X) \times Y$.

THEOREM. If $N(Y) \neq 0 \neq N(X) \subset Z \subset X$ and N(Z) = 0, then $X \times Y \neq f(X)$ for every continuous mapping f.

Proof. Suppose that $X \times Y = f(X)$. It follows from (3) and (5) that $N(X) \times Y \cup X \times N(Y) = N(X \times Y) = N(f(X)) \subset f(N(X)) \subset f(Z)$. Thus $X \times N(Y) \subset f(Z)$. However, the condition $N(Y) \neq 0$ implies $X = p(X \times N(Y)) \subset pf(Z)$. Hence X = pf(Z). We conclude from (3) and from the continuity of the mapping pf that $N(X) = N(pf(Z)) \subset pf(N(Z)) = 0$. This implies that N(X) = 0, contrary to our hypothesis. Applying the theorem for X = Y we obtain

COROLLARY. If a continuum X is not locally connected and the set N(X) of points at which X is not locally connected is contained in a locally connected continuum lying in X, then the Cartesian product $X \times X$ is not a continuous image of X.

Let us note that the hypothesis concerning N(X) in this corollary is essential. For example, a countable Cartesian product $\mathfrak{I}^{\aleph 0}$ of the brush $\mathfrak{I}^{\aleph 0}$ is not locally connected at the point $((0,0),(0,0),\ldots)$ and $\mathfrak{I}^{\aleph 0} \times \mathfrak{I}^{\aleph 0}$ is homeomorphic to $\mathfrak{I}^{\aleph 0}$.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 31. 12. 1959