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From (8) we obtain ¥ =Z;w (J@(Z,), where the sets in the sums
<f

on the right are disjoint according to (8) and to the hypothesis con-
cerning the sets Q(Z,) for « < g. Thus

Y =Zp+ D) Q(Z) < sotsof
<p

Ey virtue of (7) and (9). But f < w,, implies f <w,. Hence
Y < 8,808, = 8, contrary to (B).

From (6) we have @(Z;) C Z;. That means according to (8) that
the sets @(Z;) and Q(Z,) are disjoint for every . < f.

Therefore the sets ZJ, (where f << w,,;) are defined so that Q(Z,)
are disjoint and s, << Z; for § << w.py. Pub & = q(Zy) for g < Bgpy -

Now let § < f'. Since z;¢ Q(Z;) and 2p¢ Q(Zy) by virtue of (8), we
have z; # 25 and 2z none Q(Z), that is q(Zz)nonRz,., i. e. 25 non Reg. .
Hence the set of points z, (where § < w,y;) has a power &,.;, is con-
tained in ¥, thus also in X, and z;n0n Rep for every two of its distinet
elements z; and z;. This contradicts (s..q)-
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CARTESIAN PRODUCTS AND CONTINUOUS IMAGES

BY

R. ENGELKING (WARSAW) axp A. LELEK (WROCLAW)

Studying the question whether the Cartesian produet 4 x B of con-
tinna A and B is a continuous image of A provided that B is a continuous
image of A, Sieklucki and Engelking have proved that the answer
can be negative already for A = B, i.e. for topological squares ().
Their examples are the following:

(i) A =B=J, where & is the condensed sinusoid, i.e. the sum of
the curve {(#,¥):y = sinl/s, 0 < o <1} and the straight segment with
end points (0, —1) and (0, 1),

(ii) 4 = B = 9B, where 95 is the countable brush, i.e. the sum of
the infinite sequence of straight segments with end points (0,1) and
(1/i,0) for 4 =1, 2, ... and the straight segment with end points (0,1)
and (0, 0).

The purpose of this paper is to prove a more general theorem (2),
which comprises the cases (i) and (ii) (see especially the corollary).

Let X, Y and Z be arbitrary compact spaces and let » be the pro-
jection of Cartesian product X x ¥ onto X. We denote by L(X) the set
of points of X at which the space X is loecally connected and we pub
N(X) = X—L(X).

(1) If f(X) = Y ds a continuous mapping, ye¥ and f(y) C Int(V),
then y <Int (f(V)).

Proof. Suppose that limy, =y and y,e¥Y—f(V). Then we have
Fyn) C X—F71f(V)C X—V. Applying the compactness of X, let
Znef(yq) and lima, = 2. Then f(z,) =y and @,eX—V, that is
& X—V = X—TInt(V). Thus #'eX—f'(y) and hence f(x') 7y, which
contradicts the continuity of f. :

(%) See P 290, Colloquium Mathematicum 7 (1960), p. 110, and P290, R 1,
ibidem, p. 309.

(%) It is a result of a correspondence and discussion at the meeting on 16 De-
cember 1959 of the Wroctaw Topological Seminar conducted by Professor B. Knaster.
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(2) If f(X) = Y 4s a continuous mapping, ye¥ and f~'(y)C L(X),
then yeL(f(X)).

Proof. Let U be an open neighbourhood of the point y in ¥. Then
fy) Cf(U) and f7(U)is open in X. Since f~'(y) C L(X), there exists
for each z<f~'(y) an open neighbourhood U, of & which is connected and
contained in f~'(U). Thus the sum ¥V = | U, where z<f ' (y), is an open

@

set and f~'(y) C V. From (1) we have yeInt(f(V)) = Int(f(T,)). How-
€
ever, yef(U,) for every wef™*(y). Hence the neighbourhood \Jf(U,) of

@z
the point y is connected and contained in U, because f(U,) C ff~1(U) = U
for each mef~'(y).

(8) If f is a continuous mapping, then N (f(X))C f(N (X)).

Proof. Since f(X)—N(f(X)) = L{f(X)), the theorem is equivalent
to the inclusion f(X)—jf(N (X)) C L(f(X)). Putting yef(X)—f(N (X))
we have f~'(y) C f~'f(X)—ff(N (X)) C X—N(X) = L(X), which, ap-
plying (2), implies y L (f(X)).

4) L(XXY) = L(X)x L(Y).

Proof. The inclusion L(X)XL(Y)CL(XxY) is evident. Let
(@,y)eL(XX Y). If V ig a neighbourhood of # in X, p~*(V) is one of (z, y)
in X x Y. Then there exists a neighbourhood U of (x, y) which is connected
and contained in p~'(V). It follows that the set p(U) containing the
point z is connected, contained in V and open, the projection p being
an open mapping. Then weL(X). The proof that yeL(Y) is similar.

(B) N(XXY)=NIX)XxY v XxXN(Y).

Proof. We have the identities XX ¥ = L(X) X L(Y)vL(X)XN(Y)w
UNEXL(Y)w N(X)xN(Y) and N(X)XY o XXN(Y)=DN(X)x
XL(Y) v N(X)XN(Y)w L(X)x N(Y) and the sums on the right are
those of disjoint sets. Hence XX Y =L(X)XL(Y) v N(X)x Y v X X
XN(Y) and (4) implies N(X)XY o XXN(Y)=Xx¥—L(X)XL{Y)
=XXY—L(XXY)=NIAxX).

THEOREM. If N(Y) 40« N(X)CZCX and N(Z) =0, then
X XY  f(X) for every continuous mapping f.

Proof. Suppose that Xx ¥ = f(X). It follows from. (3) and (3)
that N(X)xY v X xN(Y) = N(X xY) = N(f(X)) C f(N(X) C f(2).
Thus XX N(Y)Cf(Z). However, the condition N(¥) 0 implies
X =p(XxN(Y))Cpf(Z). Hence X = pf(Z). We conclude from (3)
and from the continuity of the mapping pf that N (X) = N (pf(%)) C
Cof (N (.Z)) = 0. This implies that N (X) = 0, contrary to our hypothesis.

Applying the theorem for X = ¥ we obtain
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COROLLARY. If a continuum X is not locally connected and the set
N(X) of points at which X is not locally connected is contained in a locally
connected contimuum lying in X, then the Cartesian product XX X s not
o continuous image of X.

Let us note that the hypothesis concerning N (X) in this corollary
is esgential. For example, a countable Cartesian product 9% of the
brush 9 is not locally connected at the point ((0,0),(0,0),...) and
QBRx PB¥ ig homeomorphic to 93%.
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