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1. L. Jeémanowicz [4] recently gave a simple proof of the Hardy-
-Landau theorem ([3], Theorem 64) for the convergence of series summable
by Cesaro means, supposing the order of the means to be positive real,
and using properties of the Holder and Kronecker operators. I give here
direct proofs of two extensions of the Hardy-Landau theorem, viz. The-
orem A and Theorem B, equally simple in principle, using certain diffe-
rence formulae of Bosanguet ([2],§ 3.1). My proof of Theorem A follows
a method employed by Rajagopal for a more general purpose ([6], § 3)
and my proof of Theorem B follows a method as given by Bosanquet
(e. g. [2], Theorem 6) in illustration of how his difference formulae may
be used.

Throughout this note {s,} stands for a real sequence and {83}, {Ch},
where a > 0, are the sequences of Cesaro sums and Cesiro means respec-
tively, of order «, of the sequence {s,}. Thus

On = 8L /By,

where S;, is the coefficient of " in (1—x)7*}'s,#", and B is the coeffi-
cient of 4™ in (1—a)™ """, and (C, a)-summability of {s,} to I (finite) is
defined by C5 — 1 (n — oo). Let us note that

n®

By~ e (= 00).

" a1

Following Bosanquet, we may define below differences of positive
integral order p of the sequence {s,}. For positive integers &, k,

1 _ 1 —~1 0 _
A18p = Spin—8n, Adhs, = 43457 's, for p=1,2,3,... (dpsp =3),
1 1 —1 . - :
A—Iasn = 8p—8n_1» Agkgn = A—I»Ap—k Sn for p= 17 27 3!

(A% 48 = Sy 8 = 0 for j < 0);
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so that
? .
\ P
A%Sn = Z ("l)r(,),)sn—;-(zl—rﬂn
r=0
V4
ATilnsn = § (_1)7' (};)snmﬁw if "> ‘[)7(7 .
r=0

In the above notation, Bosanquet’s difference formulae already
referred to may be stated thus.
LemMA. For positive integers h, k, p, we have

h I h
rar . U U Ve
=l rg=1 rp=1

k k k
al 1 . ) »
@) A8 = X 3 N Sy > K.

A=l org=l =l

The proof of the lemma, by induction on p and using the fact
80 = 8P+ SV4-... - 8%, is quite simple.

2. A neat proof of the Hardy-Landau theorem, in the following
more general form, may be based on the above lemmas:

TuporREM A. If {s,} is a sequence summable (C, p) to L for a positive
integer p and if the sequence is slowly increasing in the Schmidt sense (1)
which is (in the now familiar form)

(3) limsup max (s, —8,) =w(A) | 0 as A} 1,
N0 NINEIAN
then the sequence is convergent to 1.
Proof. From (1) we have at once
(4) —8y, = I4J,
where
AP gP 1 7}_1 }}'1 hw
7Oy 1
T = — ]:17 o and J = WZ Z e Z (8”.{.pl.‘4|v2‘.|‘““|«y/7)ﬁ"‘ sn)w
rp==l vg=1 I'I,T»il

() It may be mentioned here that the essential idea of slow oscillation of
a2 sequence was introduced by K. Ananda-Rau independently of others, in connec-
tlon with (C, 1)-summability, in a paper presented to the London Mathematical
Society as early as 1919 but published much later in 1924 [11.
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Writing 87 = 8%(n) for convenience, we obtain, from the definition
of A%8%,
» -
_ r [0\ 8 (n+p—rh) [n ?
I=— ) (—1y() 2222y (v p—r) .
] *lo(ntp—rh)? \Rb
Given A >1, we can choose & (corresponding to ) so that h <
(A—1)nf/p < k+1 and hence h — oo with » while nlh - p/i—1. Re-
membering that summability (C, p) of {s,} to ! means

r—

8% (n+p—rh) L
(n+p—rh)y?  I'(p-+1)

a8 N, h — oo,

we then get, as n — oo,
»
(P l P »
I - — -1 —_— —_—
g( ) (7”)]"(11—{—1)(/1—1 o T)
l - p
=i Y )ererr
—_ AY? = —]
I+~

where we define A?:" exactly like A?s(n) and use the fact that AV P
=TI'(p+1). Again

) = (x =p/2—-1),

J < max (s,—s,), where ph < (A—1)n,
n<n/ Kn+ph
so that, by (3),
(6) limsup J < o(4).
N—>00

Using (5), (6) in (4) and letting A} 1, we find that

(7) ) limsup(—s,) < —1, or liminfs, >1.

=00 N—00

Next, starting from (2), we obtain the relation

(4" 8y =I'+J",
where
, A%,8m 1o v ¢
! vp=1 wg=1 yp=1
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Here I’ — [ as n — oo exactly as I » —1I in (4) and

J’ < max (Sn’_sn’)7 where pk (1 0)”, 0 < 0 < 1

n-pl<n’'<sn

s0 that, by (3),

1

We now deduce from (4'), by substitution for m7’ and limsup J*
as » — oo, and by letting 6 4 1, the relation
(7 » limsups, << 1.

N0

(7) and (7") together yield the desired conclusion lims, = 1.

3. The next theorem, which can alsa be proved by means of Bosan-
quet’s difference formulae, includes the Hardy-Landan theorem ag a spe-
cial case.

TaEOREM B. Lét W(x), V(®) be two positive-valued functions of
@ > 0 such that there are comstants 0 < n <1, H > 0 which satisfy the
condition

(8) W)W i) < H for |o'—a| <, 0>z,
Via)|V (@)

Aiso, for the sequence {s,} and a positive integer p, let

9) 82t = o(W(n)} as P o,

(10) 8 = 0g{V(n)} as n— oo,

(11) (W) V@) = 0m)  as  n — oo
Then

(12) 8, = o[{W (n)}PH{V (n)}PP+] a3 m - oo,

Proof. In (1) we can replace s, by &5 and hence SL by 82+ and
obtain

(13) ] ' —'S:"L =Il‘}‘Jla

where
h h

AR e+ 1
L B8 e Ji_.hpzz 2 oty — S5

vy=1 vy=l rp=1
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We first suppose that h is subject to the preliminary conditions
b <wml[p, h - oo with n. Then, given any small ¢ > 0, we see that, in
virtue of (9) and (8), Sh*' = §P+!(n) satisfied the cond_lmon

S D+l
I8P+ (nLp—Th) < (z) W(n-+p—rh)

<G

since n << n-+(p—r)h < n(l+q). Hence, in (13),

for n>ng, r=0 y1,2,..,p,

L\D|m

(14 winl=| 3 (17 (2) e mp

< LHTHWR)  for no> .

On the other hand, in virtue of (10) and (8),

(15 J, _“22 Z (Sn1tSnrat oot Supn i 1)

v1=1 rg=1 rp=1

R
K
> “FZ 2 ...Z{V(n—)—l)—i- V(n42)+ oo+ V(ntnb .. tvy))

=1 rg=1 sp=1

—KhpHV(n) for 2>,

since n < n+-v v+ ...+, <ntph < w(1+ 7).
From (13), (14), and (15) we get

n+1

¢ — HW(n)—hEpHV (n) for n>max(n,,n,).

(16) —8; >

Here the most advantageous choice of h (for a given =) is that
which makes the right-hand member maximum, i. e., the choice is h —
e{W(n)/KV (n)}'**' which is in conformity with our preliminary con-
ditions on h in consequence of (11). (16) gives us, with this choice of &,

— 8 = —sC(p, H, E){W (@) {V (n)P+*  for x> max(n,, Hg)
ie 8L = or[{W (n)}*HH{V (n)}P+1] ag n — oo.

We can establish the above relation with op changed to o, by star-
ting from (2) instead of from (1) as in the above work, and repeating our
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arguments in all essential respects. Thus (12) is proved as required.

The significance of Theorem B lies in the fact that it includes the
following two well-known results.

I W(z) = o, V(z) = K in Theorem B, we have the following
result:

CorROLLARY B,. If a sequence is summable (C,p-1) to zero (or to
any 1) for a positive integer p and bounded below, then the sequence is
(C, 1)-summable to zero (or to 1).

If, in Theorem B, we replace s, by 8;' = s,—s,_; and hence §2*!
by 8%, we have the following generalisation of a theorem of Mordell [5]
for the case (C,1):

COROLLARY B,. Theorem B can be restated with the hypotheses (9)
(10) changed to

’

S8 =0o(W(n)}, sy—$u_y = 0r{V(n)}

respectively, and the conclusion (12) changed so that the place of Sy is taken
by s,

The case W (n) = nP, V(n) = n~" of Corollary B, is the Hardy-Lan-
dau theorem proved by Je§manowicz [4].
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