A NOTE ON CONVEXITY

BY

A. D. WALLACE (NEW ORLEANS, LA.)

The theorem of this note extends a result of Nachbin [1] and Ward [3].

We suppose that X is a Hausdorff space and that R is a binary relation on X; that means that R is a subset of $X \times X$ (a R y if and only if $(x, y) \in R$).

We say that R is strict [3] on X if it is a closed non-void transitive subset of $X \times X$, i.e., the relation R is transitive.

A closed subset A of X is called R-convex if $a, a' \in A$, $a \in X$ and $aR a'$ implies $a' \in A$.

Theorem. If A is a compact R-convex subset of the compact Hausdorff space X, where R is a strict on X, and if W is an open set containing A, then there exists an open R-convex set W_0 with $A \subseteq W_0 \subseteq W$.

Proof. Let

$$L(A) = \{ (X \times A) \cap R \} \quad \text{and} \quad M(A) = \{ (A \times X) \cap P \},$$

where p and q are the projections of $X \times X$ on the first and second coordinates. It is well known that the projection of the Cartesian product of a compact space and any space on the non-compact factor is a closed map. Hence $L(A)$ and $M(A)$ are closed.

We write also

$$L_0(U) = X \setminus M(X \setminus U) \quad \text{and} \quad M_0(V) = X \setminus L(X \setminus V)$$

and it follows from the above that if U and V are open, then $L_0(U)$ and $M_0(V)$ are open [3].

Let us put

$$\mathcal{C}(A) = L(A) \setminus M(A).$$

It is obvious that A is R-convex if and only if $\mathcal{C}(A) \subseteq A$.

The sets $L(A) \setminus W$ and $M(A) \setminus W$ are disjoint and closed. Hence there exist disjoint open sets U_0 and V_0 with $L(A) \setminus W \subseteq U_0$ and $M(A) \setminus W \subseteq V_0$.
Let $U = U_0 \cup W$ and $V = V_0 \cup W$ so that $A \cup L(A) \subset U$ and $A \cup M(A) \subset V$ and, moreover, $U \cap V \subset W$. If we put

$$W_x = U \cap L_x(U) \cap V \cap M_x(V),$$

then W_x is the desired set. For W_x is open in virtue of a preceding remark, and it is clear that $A \subset U \cap V$. It is readily seen that

$$L(A) \subset B \quad \text{if and only if} \quad A \subset L_x(B).$$

From this we infer that $A \subset W_x$. Now the intersection of R-convex sets is R-convex and it is easily seen that $U \cap L_x(U)$ and $V \cap M_x(V)$ are R-convex. This completes the proof.

I am greatly obliged to the National Science Foundation (U.S.A.) for its support.

REFERENCES

THE TULANE UNIVERSITY OF LOUISIANA (U.S.A.)

Reçu par la Rédaction le 9.7.1960

COLLOQUIUM MATHEMATICUM

VOL. VIII 1961 FASC. 2

ON A PROBLEM OF V. KLEE
CONCERNING THE HILBERT MANIFOLDS

BY

K. BORSUK (WARSAW)

In his talk at the conference on Functional Analysis in Warsaw, September 1960, V. Klee raised the following problem:

Is it true that every Hilbert manifold (i.e., a connected space locally homeomorphic to the Hilbert space at each of its points) is homeomorphic to the Cartesian product of an n-dimensional manifold (in the classical sense) and of the Hilbert space?

In the present note I give an example answering this question in the negative sense and I consider another analogous problem.

Let H denote the Hilbert space, i.e., the space consisting of all real sequences (a_n) with $\sum_{n=1}^{\infty} a_n^2 < +\infty$, metrized by the formula

$$d((x_n), (y_n)) = \sqrt{\sum_{n=1}^{\infty} (x_n - y_n)^2}.$$

Let Q_n denote the open ball in H with centre $a_n = (3n, 0, 0, \ldots)$ and radius 1. Let B_n denote the boundary of Q_n.

It is clear that every open ball in H is homeomorphic to H; consequently every point of a Hilbert manifold has neighbourhoods with arbitrary small diameters, homeomorphic to H.

Obviously the Cartesian product of H by an n-dimensional manifold (i.e., by a connected space locally homeomorphic with the Euclidean n-space at each of its points) is a Hilbert manifold. In particular the spaces

$$A_n = H \times S^n, \quad n = 1, 2, \ldots,$$

where S^n denotes the Euclidean n-sphere, are Hilbert manifolds. It follows that there exists a homeomorphism h_n mapping H onto an open subset G_n of A_n and one can assume that

$$G_n \subset A_n -(a_n) \times S^n.$$