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The theory of determinants in infinitely dimensional Banach spaces
is, in some sense, much older than the notion of Banach spaces. In fact,
the first determinant theories in some special infinitely dimengional
linear space were created by Fredholm [1-4] (in the case of some inte-
gral equations) and by von Koch [1-7] (in the case of seme infinite systems
of linear algebraic equations with infinitely many variables) about 1900 (1).

The case investigated by von Koch is, I think, much easier because
it is the case of spaces of sequences. Roughly speaking, in any space of
sequences (such as I, I?, ¢, etc.) we have a system of coordinates distin-
guished in a natural way. Consequently any continuous endomorphism is
determined by an infinite square matrix (ay)ijoy ., ., 20d we have to de-
fine the determinant of this matrix. For instance we can try to define
it as the limit

lim det (ui,-)i’,-zl’_”,n .

N—>00
Of course we have to assume some additional hypotheses which assure
that this limit exists, and that the determinant so defined has properties
analogous to those of the determinant of a finite square matrix. We know
also how to define the subdeterminants of an order n: they are determinants
of the infinite square matrices obtained from (a@y)i;_;,, by omitting
n rows and » columns.

The case investigated by Fredholm, i. e. the case of the space of con-
tinuous functions on closed interval, was more difficult. In fact, at that
time it was not known that there exists a system of coordinates (i. e.
a basis) in this space. To-day we know that the system of coordinates
exists but none of possible systems of coordinates is natural and any

(') For an exposition .of those determinant theories, see Lalesco [1], Riesz
{1], Hellinger and Toeplitz [1], Riesz and Nagy [1], Smithies [2].
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reference to a coordinate system in this space seems to be artificial. In
other words, the space of all continuous functions on & closed interval
can be interpreted as a space of sequences, but this interpretation is
not an adequate method for investigation of this space. The study of
a corresponding space of sequences is more complicated than the study
of the original space of continuous functions. However, if no coordinate
gystem is distinguished in the space of continuous functions on a closed
interval, it is not evident how to define the determinant and subdeter-
minants of an endomorphism. It is not even evident what notion should
be a substitute for the algebraic notion of subdeterminants of a fixed
order. Fredholm has overcome these difficulties and has defined the de-
terminant and subdeterminants for every endomorphism 4 of the form
A = I1-T where I is the indentity mapping, and T is an integral ope-
ration with a continuous kernel. Fredholm’s determinant of A is, of
course, a number. Fredholm’s subdeterminant of an order n (or rather
a substitute for the notion of the set of all algebraic subdeterminants of
order n) is a continuous function of 2n variables. Fredholm’s definition
was clogely connected with the integral character of the endomorphism T.
Therefore it was not evident how to generalize this definition to the
case of an arbitrary Banach space.

On the other hand, the fundamental theorem of the Fredholm the-
ory, called the Fredholm Alternative, can be formulated without using the
notion of determinant and subdeterminants. This fact has caused
many generalizations of the Fredholm Alternative over arbitrary Banach
spaces and endomorphisms A = I--T (of course, under some hypothe-
ses on T). All those generalizations were based on another method,
without introducing the notion of determinant and subdeterminants
of A. However, one thing was lost in. all of those generalizations: the for-
mulae for solutions of the linear equation 4z = %, and the adjoint equa-
tion. That is an additional important advantage in the determinant
theory of linear equations: the determinant theory yields not only the-
orems on existence of solutions of linear equations, but also some simple
formulae for the solutions.

It happens rather often in Mathematics that some problems are
open for a long time and suddenly they are solved independently by seve-
ral mathematicians at the same time. This has also happened in the
case of the theory of determinants in Banach spaces. Nobody had inves-
tigated this problem for a long time. Several years ago two different
solutions were given independently and almost simultaneously. The
first theory of determinants in arbitrary Banach spaces was created
by Ruston [1], [2]. This theory was developed and modified by Grothen-
dieck [1-3] who solved the problem independently. Another theory was
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created by Lezanski [1-2]. This theory was modified and completed by
Sikorski [1-8](?). The two theories are not equivalent. The second the-
ory is more general than the first. The first theory is the most regular
case of the second. Also, the languages of both theories are not the same.
The first theory is formulated in the language of the theory of tensor
product developed by Schatten [1] and Grothendieck [2], [5]. The second
theory makes no use of tensor products and is formulated in the lan-
guage of multilinear functionals.

The purpose of the present paper is to give an account of today’s
state of the theory of determinants in Banach space. This account will
be written in the language of the second theory because this language
is simpler, but the case of the first theory will be also included. §§1-5
contain & purely algebraic part of the theory, in general linear spaces.
The proper theory of determinants in Banach spaces is the subject of
§§ 7-16. In particular, §§ 13-14 contain applications to the theory of inte-
gral equations and to systems of infinitely many linear algebraic equa-
tions with infinitely many variables.

The notation is not always traditional in this paper, e. g. new sym-
bols are used for adjoint transformations, bilinear functionals, finitely
dimensional operators, ete. This notation is more convenient than the
traditional one because it enables us to perform the caleulation in & me-
chanical way. The virtue of the adopted notation is especially evident
in proofs of theorems, but no proofs are given in this paper (they will
be the subject of another paper of the author).

A short list of special symbols used and of terms is added ab
the end of the paper.

§ 1. What should the determinant and subdeterminants be?
We have seen that one of the reasons for difficulties in the definition of
the determinant and subdeterminants of an endomorphism in an infi-
nitely dimensional space lies in the resignation of the choice of an auxil-
liary coordinate system in the space. To facilitate the definition, we shall
first discuss the finitely dimensional case.

Let X be an m-dimensional space over a field of characteristic zero.
Let 4 be an endomorphism in X, i.e. and additive and homogeneous
transformation from X to X. The determinant D, of 4 is a sealar, i. e.
an element of the field under consideration. We expect that, similarly,
the determinant of an endomorphism in any linear space will also be,
if it exists, a scalar.

(3) For generalizations of the both theories over locally convex linear topo-
logical spaces, see Altman [1] and Grothendieck [3].
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It a system of coordinates is fixed in the m-dimensional space X
under eonsidemtion, then points #,y,... in X are uniquely determined
by their coordinates:

1) @ = (v, ... Y = (wy,...

7 7)7714)7 ’w71b)’ e

and the transformation
y = Aw

can be written in the form
m
W; = ._Z:auvj.
~

a = (a;;) is a matrix determining 4. The scalars «;; can be called
the coordinates of A in the considered system of coordinates in X.

Consider the space conjugate to X, i.e. the space 5 of all linear
forms &, 7, ... defined on X. The chosen system of coordinates in X deter-
mines uniquely & corresponding system of coordinates in =, and there-
fore elements &,7neX can be infterpreted as sequences of its coordi-
nates:

2) £ =(py,---

The value £z of the functional & at the point # is given by the formula

b = 2%%-

i=1

) Pm); N = (P1y vy Pou):

Given any finite sequences 4,, ..., %, and jy, ...
gers < m, n< m, let a(h"' ’Z“) be a number defined as follows: if either
Tiyenns

two of the integers 4,,..

, jn of positive inte-

., %, are equal, or two of the integers j;,...,Jn

are equal, then a1’ "/
Blseeesin

)—— 0; in the opposite case a(“""’j.") js the
determinant of the matrix (8;;) where

©5tn

a;; if none of the equalities == 4, j=4; (k,1=1,...,n) holds,

iy =

1 if 4 =4 and j = 4, for an integer k < n,

0 otherwige.

In the second case, a (21""’2"\) is the product of (—1)nt--+ativh.+in
1re-02ln

by the determinant of the matrix obtained from o by omitting the
J1s ey Jn-th columns and the i,..., 4,-th rows.
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Thus the set of all a (;:;:) is, roughly speaking, the set of all sub-

determinants of « of the order n, i. e. the set of all determinants of matri-
ces obtained from o by omitting » columns and = rows.

The set of all the algebraic subdeterminants a(;) of the order 1 deter-
mines uniquely a bilinear functional D, on Ex X, viz. the functional

whose value D, (f) at a point (£, x)eZx X is given by the formula

0ff- 3 Sneff

(see (1), (2)). Similarly, the set of all the algebraic subdeterminants
a(i;) of the order 2 determines a four-linear funetional D, on 52 x X2,
viz.

mn m

£ R
Dz(w:3)= 2 Z %’PW(J Z)viwl

k=1 §l=

(see (1), (2)). More generally, the set of gll the algebraic subdeterminants

a(;i’” ;:) of an order » (1 <\n < m) determines uniquely a 2n-linear

funectional D, on E"x X":
(3) (517 9 f‘ll)
971, M} mn
m mo. .
_ 2 E Byyenny i
= ‘7’1,771""7’n.fna(' L,l...’l)njn,
. = . - .71’ b 7]%
Flyennsip =1 J1,00ing=1
where @, = (U1, -0y Opp) a0d & = (@ry,y .oy gpn) fOr r=1,..., 0.

The multilinear functionals Dy, D,, ... do not depend on the choice
of a system of coordinates in X. They are uniquely determined by the

endomorphism 4 only. The algebraic subdeterminants a(j\), a("" k),...

i 1
are coordinates of Dy, D,, ... respectively, in the assumed system of coor-
dinates in X. Viz.

) 2, ;6
(4) a (.1’ *) n) =D ( ipy . ‘m.)
Jis +evyn, " iyy oens Gy, ’

Colloquium Mathematicurn VIII 10
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are the unit vectors of the axes of coordinates in X and Z.

Thus we see that the 2n-linear funetional D, is a substitute for the
notion of the set of all the algebraic subdeterminants of 4 of an order .
This substitute is independent of the choice of a system of coordinates
in X. Therefore this substitute seems to be adequate for generalization
of the notion of subdeterminants of an order n over the case of infinitely
dimensional linear spaces.

The above discussion suggests the following conclusion: If we want
to define the notion of the determinant and subdeterminants of an endo-
morphism A in o (infinitely dimensional, in general) linear space X, we
must introduce also @ conjugate space Z, i. e. & space of all, or some, linear
functionals on X. We have to expect that the determinant D, is a scalar,
and that the adequate substitute for the notion of the set of all algebraic

o

subdeterminants of an order = is a 2n-linear functional on F"x X™:

o[58,

DByyeeny By

Of course, Dy, Dy, Dy, ... are not arbitrary, they have to satisfy some
indentities or conditions, similar to those satisfied by these multilinear
functionals in the finitely dimensional case. They also have to be con-
nected, in a natural way, with the endomorphism 4.

‘We do not expect it to be possible to define Dy, D,, D,, ... for every
endomorphism 4, if the space under consideration is infinitely dimen-
sional. It is necessary to distinguish a special, possibly large, class of
endomorphisms and to formulate a definition of Dy, Dy, Dy, ... for this
class only. We expect that the definition of Dy, Dy, D,, ... can be axioma-
tic or analytic (by giving explicite formulae for Dy, Dy, Dy, ...). We
shall see later that other methods of definitions are possible, e. g, in
the case of Banach spaces, we can define D, (considered, roughly spea-
king, as a function of 4) as a solution of a differential equation, and we
can obtain D,, D,,... from D, by differentiation. We can also define

Dy, Dy, ... in infinitely dimensional spaces as  continuous extension of -

the finitely dimensional case.

We start with an axiomatic definition which is most general. This

definition will be quoted in § 3. We must precede the definition by some
remarks of an auxiliary character (§2).
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§ 2. Operators. We shall consider & fixed commutative algebraie
field F whose elements will be called scalars and denoted by e, 1. Every
mapping into F will be called a functional. ,

‘We shall also consider two fixed linear spaces & and X (infinitely dimen-
sional, in general) over the field F. The letters &, #, { (with indices, if
necessary) will always denote elements of Z, and the letters @,y,z —
elements of X, unless the contrary is explicitely stated.

We suppose that £ and X are conjugate, i. e. with every pair (&, %)
there is associated a scalar, denoted by &#, in such a way that &z is a bili-
near functional on Ex X, i.e.

@yt 25) = Emy+ Ewy, (B4 E)8 = Eatbya,
¢(éw) = (6é)a = &(em),
and that the following cancelation laws are satisfied:
() if éw =0 for every £¢Z, then z = 0;
(¢') if & =0 for every xeX, then £ = 0.

It follows from the above conditions that every element &5 can
be interpreted as & linear functional on X and, conversely, every ele-
ment zeX can be interpreted as a linear functional on . In symbols

(1) FCcXx, XC&,

where X’ and 5’ denote respectively the linear spaces of all linear fun-
ctionals on X and E. This remark suggests an extension of the meaning
of the symbol
(2) &
ag follows: if £eX’ and w <X, then &z is the value of & at #; if se5' and
£eZ, then &z is the value of » at £ This extension will sometimes be
convenient.

If A is & bilinear functional on Zx X, then the value of 4 at a point
(§,2)eZ XX will be denoted by &dwx.

Suppose that A is a bilinear funectional on Ex X. For every fixed
X there exists exactly one element ye5’ such that &y = EAw for every
£eZ. This element y will be denoted by Az. By definition,

£(Ax) = Edx for every Eel.

Similarly, for every fixed &eZ there exists exactly one element 7eX’
such that no = £4s for every weX. This element » will be denoted by
£A. By definition,

(Ed)z = Edw  for every (@eX.-
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It is easy to see that the mappings

y=Ax and o =F§¢4
are linear transformations of X into & and of & into X', respectively.
The most important case is when they map X into X, and & into &, re-
spectively (see (1)). Then 4 ig said to be an operator. The class of all opera-
tors will be denoted by O. Thus every A <O can be simultaneously inter-
preted as the bilinear functional §Ax on Ex X, or as the endomorphism
y = Az in the space X, or as the endomorphism » = £4 in the space H.
The three interpretations of A O will be systematically used in the whole
paper. The neutral name “operator” has been adopted in order not to
favor any of the three interpretations.

If 4,, A, are bilinear functionals on 5x X, and one of them is an
operator, then we can define the product 4,4, by the equality

(3) E(Ad14,)@ = (§4,)(4,2)

using the extended notation (2) to elements £A, and A,z on the right
side. Viz. if A, is an operator, then (3) is the value of the functional
A,zcE at the point £4,e5. If A, is an operator, then (3) is the value
of the functional £4,¢X’ at the point A,z¢X. The product 4,4, is also
a bilinear functional on = xX.

The most important case is that where both A, and 4, are operators.
Then the product 4,4, is also an operator. By definition, the operator
A, A, interpreted as an endomorphism in X (in &) is the superposition
of the endomorphisms 4, and 4, (4, and 4,), in symbols:

(A;d4,)8 = A (Aym),  E(A;4,) = (§4))4,.

The last two identities and (3) show that we can omit parentheses in
the expressions on both sides, and we can write simply §4;4,x, 4,4,%,
£A A, ete. :

It is easy to see that the space O of all operators is linear with respect
to the natural definition of algebraic operations. It follows -from the
above congideration that O is a linear algebra with respect to the mul-
tiplication (3). The algebra O has a unit element I. Viz. I is the funda-
mental bilinear functional

Ele = & ((eE,weX).
By definition,
£ =¢,

i. e. I, interpreted as an endomorphism in X or &, is the identity mapping.

Iz =2 and
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The following three conditions are equivalent for every 4 ¢O:

(i) 4 has an inverse 4! in the algebra O (i. e. there exists an ele-
ment 4-1¢O such that 44! = A4 = I);

(i;) the endomorphism y = A is a one-to-one mapping of X onto
X, a,n@ the endomorphism # = £4 is a one-to-one mapping of £ onto 5;

(i,) the endomorphism y = Ax maps X onto X, and the endomor-
phism 1 = £4 maps 5 onto 5. '

An operator B is said to be a quasi-inverse (3) of an operator A pro-
vided

ABA =4 and ABA = B.

To explain this notion, let us introduce the following notation:
X, ={dz: 05X}, ZE, ={4: (5},

X, ={Bo:weX), 5,={EB:&cE)}.

Then each of the following conditions is necessary and sufficient for B
to be a quasi-inverse of 4:

(q) ABy =y for every yeX, and Bdxz = g for every zeX,;

(q') 7 = nBA for every ne=; and & = £AB for every &£efH,.

Condition (q) means that the ma.i)ping % = By, considered as a map-
ping defined only on X,, is the inverse of the mapping ¥ = 42 conside-
red as a mapping defined only on X,. Similarly, condition (q') means that
the mapping £ = 5B, considered as a mapping defined only on &, is
the inverse of the mapping 5 = £4 considered as a mapping defined
only on =,.

Let &,, @, be fixed. The operator K, defined by the formula

EK = £y Eg

(i. e. the product of scalars &m, and £,3) is called one-dimensional and
denoted by =z, £,. By definition

Ky = x4y &gx  and  EK, = &my- &,

In the last three expressions (and in the sequel, too) the dot replaces
parentheses. B. g. @, £ is the product of the element #, by the sca-
lar &,2, ete.

Every finite sum of one-dimensional operators

m

(4) K= Da-&
i=1

(%) For properties of quasi-inverse, see Sikorski [4].
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is called a finitely dimensional operator. By the definition,
m

ERw = ))& bio,
=1
68— Nea k.
T=1

Thus y = Ku (n = £K) maps X (maps Z) onto its finitely dimensional
subspace, which legitimates the name. Observe further that, for every
AeD, KA and AK are finitely dimensional, viz.

m
Ky = Zwi'fiw,
=1

m mn

KA = Yard, AK= Dl A&,
i=1 Fe== L

The class of all finitely dimensional operators will be denoted by

FO.
Let K«FO be represented in the form (1). The scalar
(5) K = ) &
o1
does not depend on the rvepresentation of K in the form (1), and it is
called the trace of K. Of course, tr is a linear functional on &FO. Observe
that if 4¢O and KFO is given by (4), then

m
= ZEiA‘,’("I"

=1

(6) tr AR = trKA

§ 3. Determinant systems. By a determinant system (*) for an oper-
ator 4 we shall understand every infinite sequence
(1) Dy, Dy, Dy, ...
such that:

(d,) D,, is 2n-linear functional on " x X", the value of D, at a point
(Exy ooy Epy Byy ooy @) eE" X X" being denoted by D, (’1 "’i");in par-

cevsiliy

ticular, D, is & scalar;

(dg) for n =2, D, (i‘li") is skew symmetric in &, ..., &, and in

Rt )

s

Zyy ..., By, i e. for every permutation p = (py, ..., p,) of numbers 1,..., 7

Ep sy &y ey En Ery ey En
-Dn( Py ’ ’")zsgnp-Dn(E“ 75)___1)“(‘=l7 75 )’

By evvy By L1y eeey &y Ty g <eny By

() Sikorski [4].
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where sgnp = 1 if the permutation p is even, and sgnp = —1 if p is
odd;

(d3) for m =1, D, (51’1'. i’“) interpreted as a function of one va-

riable & and one variable x; only is an operator;

(d,) there exists an integer » > 0 such that D, does not vanish iden-
tically;

(ds) the following identities hold for » = 0:

§od, ‘517---75n)

Toy Tyyevey Wy

(Dn,) —Dn+1 (

(D) Dn+1( S0 51,...,57,)

Axg, By, ey By,

=}29(—1V&wyDnG“'”’&‘”EHU'“’&y

Lan o e e e e e ) 2y

The smallest integer ¢ such that D, does not vanish identically is
called the order of the determinant system (1).

Observe that if X and & are m-dimensional linear spaces over I (see
§1), then O is the set of all endomorphisms in X, and every A <O has
a determinant system. Viz. define Dy, D;, ..., Dy, a8 in §1 (3), and let

Dm(gl’ Y fm) = det(f,imj)i,i'——l,...,m:

2) ;’19 "'y:"m
Dn( e ")=0 for n>m.
By eeeyWn

The sequence Dy, Dy, D,, ... just defined is a determinant system for A.

The finitely dimensional case just discussed suggests, in the case
of arbitrary spaces 5 and X, that we call

Dy — the determinant of A,
and, for n >0,

D, — the subdeterminant of A of the order =.

This terminology is legitimated because, as we shall see later, D,,
D, Dy, ... have many properties of the algebraic determinants and
subdeterminants. However, the analogy with the algebraic determinants
and subdeterminants in the finitely dimensional case is not complete
because the determinant system, if it exists, is not uniquely determined
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by A. In fact, if (1) is & determinant system for 4, and ¢ # 0 is any sca-
lar, then
(1) ¢Dy, ¢Dy, ¢D,, ...

is alio a determinant system for A. Fortunately, the non-uniqueness
is not too great: sequences (1) present all determinant system for 4,
i. e. the following theorem is true: )

THEOREM 1. The determinant system for A, if it ewists, is determined
by A uniguely up to a constant factor = 0(5).

The fact that the determinant system for A is determined by A
up to a factor only, is, of course, a defect of the theory. However, we shall
see later that this phenomenon is rather typical for the theory of deter-
minants in infinitely dimensional linear spaces. We shall discuss later the
case of operators in Banach spaces. Then the determinant system will be
defined by some analytic formulae, but also in this case it will be deter-
mined by the operator uniquely up to a factor. Only under some addi-
tional hypotheses we shall be able to assign uniquely a determinant
system for a class of operators in some Banach spaces (see § 15).

We come back to the definition given at the beginning of this sec-
tion. We are going to illustrate the definition by a few examples.

If (1) is a determinant system for A4 and ¢ s 0, then

Dy, 1Dy, ¢72D,, ...
is a determinant system for cd.

If (1) is a determinant system for A4, and Be©O has the inverse B!,
then

Dn(le“l, ey E,B7Y

n=0,1,2,..
et BRUETIERER

is a determinant system for 4B, and

‘fli"‘yfn 3 — DY
D"(B“lml,...,B"mn (n=10;1,2;..)
is a determinant system for BA.
The unit I always has & determinant system. In fact, let

\ §1%y, ..., 510,

6p=1 and On(g“ s ‘fn)=

Byyeeny By o

J ‘ 5““’17 MR Enm'ﬂr
(%) Sikorski [4].

for n=1,2, ...

DETERMINANT THEORY 153

Then 0, 0y, 0,, ... is & determinant system for I.
It follows immediately from the lagt two remarks that if 4 has the
inverse A4-2, then the formulae

- Ely iy & gAY L E AT
3 Dg =1 D( 17 “):0 (1 2o =
3) 0 ’ i VRN ” Byyeeny @y
A my, ., B A,
U S
_ — =1,2
bl a1z, o A T for n=1,2,

E,LA_l.’lfl, sy 5)1,4‘171‘%'71‘ l

define a determinant system D, (D;, D,, ... for A. By Theorem 1, every
determinant system (1) of A satisfies in this case the identities

(4) D, =Dy, for ==0,1,2,..

§ 4. Which operators have a determinant system? To answer
this question we must introduce the following definition.

An operator 4 is said to be Fredholm if it fulfills the Fredholm Alter-
native, i. e. there exists an integer r > 0 (called the order of 4) such that:

() the endomorphism y = A2 maps the space X onto its subspace

- of the codimension 7;

(f') the endomorphism 5 = £4 maps the space = onto its subspace
of the codimension r.

In other words, 4?2 is Fredholm of order r if:

(f,) the equation Ax = 0 has exactly r linearly independent solutions
1y ey B

(f;) the equation £4 = 0 has exactly r linearly independent solu-
tions &y, ..., &y

(f,) the equation A4x = z, has a solution x if and only if (@ = 0
for i =1,...,r;

(f;) the equation £4 = &, has a solution & if and only if & =0
for i=1,...,7.

In particular, 4 is Fredholm of order 0 if and only if y = 4 is a one-
-to-one mapping of X onto itself and n = £4 is a one-to-one mapping
of E onto itself, i. e. if 4 has an inverse 4~ in the ring O (see § 2 (i), (i1))-

It can be easily proved that every operator of the form I-+K, where
K is finitely dimensional, is Fredholm, and that the product 4,4, of
two Fredholm operators is Fredholm.

Conversely, every Fredholm operator A can be represented in the
form 4 = (I+K,)A; = 4,(I+K,) where K,, K, are finitely dimensio-
nal, and A7}, A7 exist.
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Every Fredholm operator has a quasi-inverse (%).

The problem of existence of determinant systems is solved by the
following theorem: ‘

THEOREM 2. An operator has a determinant system (of order v) if and
only if it is Fredholm (of order 7) (7).

§ 5. Determinants and solutions of linear equations. Theorem 2
should be completed by the following more precise theorems which explain
the connection between a determinant system for 4 and solutions of the
linear equations

EA =&, Az =,

TarorEM 3 (*). Suppose that 4 has a determinant system of an order r.
Let 1y ..., neeZ and yy, ..., y,eX are such that

D "717""5777') 0.
’(ml,...,w, #*

Then there ewists elements y, ..., B and 2y, ...,2.¢X such that

D,(’h’ .......... ,n,)
Yoy ooy Vit @y Yigay ooy Yy,

(1) Lo = for every zeX
Dr("h’---y 777*)
Yiyoor Ysr
and
_Dr(m: vy Mimas &y Mgty ony nr)
, Yiy o o v oo 3
1) Ez, = L 1 9r for every  £e.
_Dr(nli""nr)
Yir o Ur

The elements Ly,...,L. are linearly independent and are solutions
of the equation

2) EA =0.

The elements 2y, ..., 2, are linearly independent and are solutions of
the equation
(27 Az = 0.

Conversely, every solution £ of (2) is a linear combination of Lyy vy Cry
and every solution m of (2') is a linear combination of @y .eny2p.

(5) For a detail'ed investigation of Fredholm operat i i
) Bluoni vgy perators, see e.g. Sikorski [4].
(8) Sikorski [4).
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The equation
(3) EA =&
has o solution & if and only if £2 =0 for ¢ =1,...,v. The equation
(3" Az = @,

has a solution © if and only if Lo =10 for ¢ =1,...,7.
The bilinear functional B defined by the formula

Dr“(fy Ny eevs "71-)

(4) §By = —— 2 Yo Yo
My oves 779‘)

N
Y19 ooy Yo

is a quasi-inverse of A. If & is orthogonal to all 2y, ...,%, then & B is
the only solution of (3), orthogonal 10 Yi; .- Yr. Analogously, if @,
is orthogonal o Cyy..., Ly, then By is the only solution of (3'), orthogonal
10 Ny eeey Nr- )

In the case where » = 0 Theorem 3 asserts that the homogeneous
equations (2), (2') have then only the zero solutions, and

(5) A = Dy'D,.

TusoreM 4 (°). If A is a Fredholm operator of an order T, 21y ...y Zp;
Eayoney &y satisfy conditions (£), (£)) from §4, B is a quasi inverse of A
and ¢ # 0, then the following formulae define a determinant system for A:

(6) Dyp=0 for n=0,.,7r—1,
Ei81y ey E1% Libyyeeey CyBr
o (E e B | e
{7 m’(wl,...,wr H R N !

and for k=1,2,...
N

Liyeuns w,+,c

............ £ €
_ . . ., | ZPe+1? 1 *Pptr
= E sgnp-sgnqg-) ’(mqkﬂ,...,quT
A ! .

(°) Sikorski [4].
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where S is extended over all permutations P = (Pyy ...y Pryx) and q =
v, :
= (1, .- Qryie) Of the integers 1,..., 7+ I, such that

Pria < Pryo <...< Pleirs

P <p2<~"<pl\:;

G <o <o < iy Qrr1 < Qo2 <-ooo < Qrgr

Observe that in the case » = 0 Theorem 4 yields the formula § 3 (4).

Theorem 3 has a great practical value: if we know a determinant
system for 4, we can completely solve the linear equations (2), (2), (3),
(3). The found formulae for solutions are an abstract analogue of the
well known formulae from Algebra. In the case » = 0, formula (4) is
an abstract formulation of the Cramer formula. If » > 0 and X and Z
are finitely dimensional, we can additionally suppose that elements y,,..., ¥
and 7, ..., 7, are unit vectors of the coordinate axes. Then the formulae

&= §,B, = = Bug,y,
where B is defined by (4), coincide with the classical formulae for a solu-
tion of the equations (3) and (3').

It follows from Theorem 3 that the determinant system for A deter-
mines uniquely the operator 4.

Theorem 4 has only a theoretical value. If we know a determinant
system for A, then we know all solutions of (3) and (3'). Thus the deter-
nminant system for 4 contains the whole knowledge of solutions of (3)
and (3"). This fact suggests that perhaps it is possible to express the deter-
minant system for 4 by means of solutions of (3) and (3') only. For-
mulae (6), (7), (8) give an affirmative answer to this question. Theorem 4
has no practical value from the point of view of solving equations (3)
and (3').

§ 6. An analytic case. The main aim of the theory of determinants
in Banach spaces is to give some analytic formulae for determinant
systems of operators. This will be done in following sections. In this
section we would like to quote only one existential theorem which explaing
the theoretical possibility of the existence of such formulae.

Suppose, for simplicity, that X is a complex Banach space, and £
is the space of all complex linear continnons functionals on X. Operators
are then continuous complex linear functionals on = xX which can
also be interpreted as continuous endomorphisms in X and =.

Suppose that

Do, Dy, Dy, ...
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is a determinant system for an operator A. It follows from §3 (d,),
(d,) that D, is then an element of the complex Banach space O, of all
2n-linear complex continuous functionals on Z"x X™. Of course, O, is
the Banach space of all scalars. © is a closed subspace of O,.

Suppose that A (1) is an analytic mapping from an open region G
on the complex plane into the Banach space O. We have learned in § 4
a criterion for the existence of a determinant system '

ey Dy(2), D1(4); Do(A), ...

for every operator 4 (1) separately. Now we shall examine the problem
under what conditions there exists an analytic funetion D,(1) on @ énd,
for n=1,2,..., an analytic mapping D, (4) from @ into O, such that,
for every ie¢@, the sequence (1) is a determinant system for the operator
A(2). Such a sequence (1) will be called an analytic determinant system
for A(2) in G. We shall restrict ourselves to the case where 4 (1)~ exists
for at least one number Ae&.

The first necessary condition for the existence of an analytic deter-
minant system (1) is that 4 (1) exists for every Ae@, except an isolated
et of points 1, As, ... In fact, by Theorem 3, A (A)~* exists if Dy(4) #0.
Since D(1) is analytic, the set of all points 4, A,, ... such that Dy(4) = 0
is isolated.

In the set G—(4,, 1,, ...) there exists an analytic determinant sys-
tem for A(1). Viz. it is given by the sequence

(2 Do(2); Dy (3); DafA)5 -

where D,(4) =1 and, for # > 0, @D,(A) is defined by the formula §3
(8), where 4 is replaced by A (4). Every other analytic determinant sys-
tem for A () differs from (2) by a factor which is an analytic function
of 1, and does not vanish in G—(Ay, Ay, --.)-

Now it is evident that an analytic determinant system exists in the
whole set @ if and only if this analytic factor can be chosen in such a way
that its product with <D, (A) is a holomorphic mapping from the whole
domain & into O, (n =0,1,2,...) and, moreover, the products satisfy
the condition § 3 (d,) at each of the points 1,, A, ... So we get the fol-
lowing theorem:

TeEOREM 5. In order that there emists an analytic determinant system
for A(A) in the whole region G it is necessary and sufficient that A ()t
exist for all AeG except an isolated set of points Ay, s, ... and, for every
point A, there emists a positive integer k,, such that oll the mappings Dn(l)
(n=0,1,2,...) have at A, at most a pole of an order < k. Suppose that
k., is the smallest integer with this property, and Dy(2) is an analytic complex
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fumction in G such that L, is & kn-tuple root of Dy(h) =0 (m=1,2,..),
and Dy(A) # 0 for all AeG—(Ay, Ay, ...). Then

(3) D, (2) = Do(2) Dufl)  (n=0,1,2,...)

is an analytic determinant system for A (A) in G. Bvery other analytic deter-
manant system for A(2) in G differs from (3) by a factor which is an analy-
tic non-vanishing function in @.
Only the case of
A(Ay = I1+2T

(where T< 9O is fixed) was nearly examined. To formulate the fundamen-
tal result, let us denote by €,O the closure of the set FO of all finitely
dimensional operators in the Banach space O, and by €O — the closed
subspace of all compact operators (an operator A4 is said to be compact
provided the endomorphism y = Az is compact). Since €,0 and €O are
closed ideals in the Banach algebra O, the quotient spaces O/€;O and
O/C€O are Banach algebras. We recall that €,0 C €O. It is an old, un-
proved conjecture that €O = €O for every Banach space X. We will dis-
cuss this conjecture from the point of view of the theory of determinants
in §15.

THEOREM 6 (*). Hach of the following conditions is both necessary
and sufficient for the existence of an analytic determinant system for A (1)
= I+ AT in the whole plane:

(ry) (I4+ATY ewists for all A ewcept an isolated set; for every A, the
set {(I4+2T)"w: xeX} is a closed subspace which is independent of n pro-
vided n is sufficiently large; for every A, the set {x: (I+ AT)"x = 0} is a fini-
tely dimensional subspace which is independent of n provided n is sufficiently
large.

(rz) The element determined by T in the quotient algebra O[C,O s
quasi-nilpotent (*1). . .

(rs) The element determined by T in the quotient algebra O[/CO s
quasi-nilpotent.

§ . Problems to be solved. From now on, X and 5 will be two
conjugate Banach spaces (complex or real). The cancellation laws (e)
and (¢’) from § 2 will always be replaced by the following stronger con-
dition:

(m) ‘ |é] = sup [éw|, |o] = sup |£a.
) IZl<1 1§l<1
(1% Ruston [3, 4].
~ (1) For the definition of quasi-nilpotent elements in Banach algebras, see
e. g. Hille and Phillips [1}, p. 121.
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Consequently, operators are now continuous bilinear funectionals on Fx X

which can also be interpreted as continuous endomorphisms in the spa-

ces = and X respectively. Condition (n) implies that the norms of the

three possible interpretations of an operator 4 are equal. Their common

value will be called the norm of the operator A and denoted by |4]. The

normed space O of all operators is a Banach algebra with the unit I.
The inclusions § 2 (1) can be now replaced by the inclusions

EC X", XCBEY

where X* and £* denote the Banach spaces of all continuous linear
functionals on X and £ respectively. The Banach space O of all oper-
ators is a closed subspace of the Banach space O, of all continuous bili-
near functionals on 5 xX:

0C9O,;.

More exactly, if one of the spaces 5, X is reflexive, then so is the
remaining one and

— o
E=X*, X=2Z and

9 =09,.

In the opposite case, at least one of the first two equalities does not hold,
and the third one also does mot hold, i.e. O is a proper subset of O,.

We have to give an analytic formula for determinant systems of
a rather large class of operators. Our experience in the theory of linear
equations in Banach spaces suggests that we should expect that such
a definition is possible only in the case of operators of the form

A=1I+4+T

where the operator T' is rather special, rather near to the class of finitely
dimensional operators, perhaps it should be a compact operator or an
operator of a similar type.

The best we can expect is that we shall be able to distinguish a linear
class  of operators and to give an analytic formula for determinant sys-
tems of operators 4 = I-+T, Te<. The term “analytic” is not preci-
sely defined. It should mean that all D, should be analytic functions of
the variable operator T« in a suitable topology in ¥, and the functions
should be given in an effective way.

Thus we have to solve the following problems:

A) to distuinguish a rather large class X of operators,

B) to assign uniquely and effectively to every Te¥ a determinant
system D,, D,, D,,... for I+ T, :

0) to introduce a topology in € so that D, (n =10,1,2, ..
lytic functions of T in this topology.

.) are ana-
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Moreover, the definition of Dy, Dy, Dy, ... should be so that

D) in the case of finitely dimensional spaces, Dy, Dy, D,, ... coin-
cides with the algebraic determinant system for 4 = I+ T defined by
§1 (3) and §3 (2).

Unfortunately, the situation is more complicated than we have
expected. To explain the reason for the difficulty, let us come back to
the case where X and 5 are m-dimensional spaces (see §1). If a fixed
system of coordinates is chosen, then Dbilinear functionals K<©, are
square matrices (%;5);j~;,. m 8and, conversely, every square matrix is
an operator. However, every square matrix (viz)i.,.m can be also
interpreted as a functional 7 on the linear space Q,, viz.

(1) T(E)= D wam; for K= (u;)eDy.

1,7=1
The last expression is independent on the choice of the system of coor-
dinates in question. Denoting by 7 the operator determined by the
matrix (r;;), we can write (1) in the form

(2) T(K) =trTK = tr KT

for K ¢O,, where tr denotes the trace of a finitely dimensional operator
(see § 2 (5) and (6)). Formula (2) defines ¥ in terms of 7. The next for-
mula defines T by means of 7:

(3) T = T (- £),

where « ¢ denotes the one dimensional operator determined by & and 2
(see § 2, p. 149). We see that there exists a natural one-to-one cor-
respondence

4) ARSI &

between operators 7' and functionals 7 on ©O,. The functional 7 is said
to be the nucleus of the operator T. Since T and 7 are determined by the
game square matrix, they have the same determinant and subdeter-
minants. However, in Algebra, we are used to speaking only of deter-
minants of operators, not on determinants of their nuclei, because the
notion of nucleus does not play any important part in the theory of
linear equations in finitely dimensional linear spaces.

Now consider the case where X and = are arbitrary conjugate Banach
spaces satisfying condition (n). If & is any continuous linear functional
on the Banach space O, of all bilinear functionals on 5 x X, then the
formula (3) defines a continuous bilinear functional T on ExX. If T
is an operator (i.e. if the bilinear functional 7 can be interpreted as
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=
=

an endomorphism in & and in X), then 7 is said to be a quasinucleus,
viz. & quasinucleus of the operator T. If an operator T has a quasinucleus,
i. e. it satisfies (3) for a functional 7 on O,, then T is said to be gquasi-
auclear. If 5 and X are infinitely dimensional, there are operators
which are not quasinuclear, viz. the unit operator I is not quasinuclear.
If 9 is a quasinucleus of a quasinuclear operator T, i.e. if (3) holds,
then (2) holds but only for finitely dimensional operators K. More pre-
cisely, 7 is a quasinucleus of an operator 7 if and only if (2) holds for
every finitely dimensional operator K.

It follows from thig discussion that, if X and 5 are infinitely dimen-
sional, then instead of the one-to-one correspondence (4) we have only
a canonical mapping

(B) T T

“of the space Q9 of all gquasinuclei into the space O of all operators, and

this transformation is neither one-to-one, nor g transformation onto O.

Moreover, unexpectedly, in the case of arbitrary Banach spaces,
the notion of the determinant and subdeterminants seems to be connec-
ted more closely with quasinuclei than with operators.

To explain the last remark, let us observe that QN is a Banach space
with respect to the ordinary algebraic operations and the ordinary norm
of a functional 7. We shall see in the next sections that we can introduce
a multiplication in ON, so that QN becomes a Banach algebra. The
canonical map (5) is then & ring homomorphism of QN into O. If &, X
are finitely dimensgional, then the algebra 09 has a unit element 'Y (viz.
the functional determined by the unit matrix), and the canonieal mapping
transforms O onto I. If Z, X are infinitely dimensional, then Q9 does
not have any unit element, but we can add an abstract unit J to the
‘algebra O and extend the ring homomorphism (3) by the conven-
tion

g-1I.
Hence, in any case, the (extended) canonical mapping transforms 94T
onto I+ T. Writing

A =9+7, A=I417T,
we note the fundamental property of the canonical mapping in the form:
.

In the present state of the theory of determinants in Banach spaces
we can only uniquely assign, to every gquasinucleus 7, a sequence

(6) Do(T), DulT); Del(T), -

Colloquium Mathematicum VIIT <
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such that

1) for every fixed 7, (6) is a determinant system for 4 = I47;

2) for every fixed n, D,(7) is an analytic mapping from QN into
the space O, of all 2n-dimensional functionals on £ x X™.

Simple formulae for (6) will be given in § 8.

1t is natural to call (6) the determinant system of <l =9+ . Obgerve
the terminological difference: (6) is a determinant system of of =947,
but for A = I-+T. The determinant system (6) is uniquely determined
by 7, but is not uniquely determined by 7. More precisely, every qua-
sinucleus 7 uniquely determines a quasinuclear operator 7' and the
determinant system (6) for I-4+7'. A given quasinuclear operator T
has many different quasinuclei 7 (except the finitely dimensional case).
The determinant systems (6) of various nuclei 7 of a fixed operator T
are different in general, but they differ by a scalar factor only, on account
of Theorem 1.

The fact that determinant systems are uniquely associated with
nuclei, but not with operators, causes the analogy between the theory of
determinants in Banach spaces and the theory of determinants in Alge-
bra to be incomplete. This defect of the theory of determinants in Banach
spaces is closely connected with the algebraic phenomenon observed in
Theorem 1.

Of course, we can try (and we should try) to correct the situation by
putting some restrictions on 7 and 7. Suppose we have distinguished
in a natural way, a smaller class N, CQN so that the canonical map (5)
is one-to-one on N, (we say then, for brevity, that N, has the uniqueness
property). If an operator T' has a pseudonuclens 7 in N,, then 7 is uni-
quely determined by 7', and consequently (6) is uniquely -determined
by T. Then it would be natural to call (6) the determinant system of I--T.
The class N of nuclei defined in § 9 seems to be the smallest sensible class
with the uniqueness property. In many concrete examples it has really
the uniqueness property. The problem if it always has the uniqueness
property is very difficult. It will be discussed in more detail in § 15.

§ 8. The definition of the determinant s’ystem of a quasinue-
leus. The following notation will be useful in the sequel: if 7 is any
funetional on O, and A<D, then we shall write sometimes

Tew(EAx)  instead of T (4).
This notation (%) is especially convenient in the case where 4 iy defi-
ned by a formula containing also other variables &,,...,,,...

(*2) Due to Lezanski [1].

DETERMINANT THEORY 163

For instance, let
Ela;li ey Elmn

By ooy By Dy veey By

) 0,7,,0(5““"5”):f)n(§1""’£n)=

En.wl'; eey Enwﬂ

for n =1,2,... (see § 3 (2)). The meaning of the symbol
. &1y ey Eaq _ Eyy oy &p
@ b1 (“’11 ey By T tyien DByyeeny Bp)’

where 7 is a fixed quasinucleus, is clear: If all variables &, ...
..., ®,_, are fixed, then the equality

E Az = 0n(£“ ety E‘n)

Dyyevey By

? E‘n—17 xl?

defines an operator A. The number (2) is the value 7(4) of the functio-
nal 7 at the point A. Of course, 7 (4) depends on &;,..., &1, B1y-e- 9Py
(but not on &,, z, which are bound variables). It can be proved that,

if &y, EugyByyen, By_o ave fixed, then (2), considered as a function
of &,_,, #,., only, is an operator. Thus the expression

T 517"'7fn<1 o 0 fl,...,é'n

e On1.1 (.’l?” RO R e 7fn—1$n—1‘/ Enfon, Biy ooy By

is well defined. Continuing this procedure, we define the 2n-linear funetio-
nals 0,,, on E"X X" (n,m =0,1,2,...):

iseens 5)
3 On.m n
) ’ (“"17---7mn
1
~m!

STRE En+m).

7':n-}-l-”’an i ‘75n+mxn+m 0n+m (d"la s B
In particular, 0,, are scalars:

Epeens Em)

1 7. o
(4) 00,0 =0, =1, eo,m = w Ty oo I by Um By ey By
for m=1,2,...

THEOREM 7. For every quasinucleus 7, the series

(5) Du(T) = D Oum (n=0,1,2,..)

m=1
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converges in the norm in the Banach space O,. It is an analytic mapping
from QN into O,. The sequence

(6) Do(T), Di(T)5 Do(T), ...

s a determinant system for the operator I4-T, where T is the quasinuclear
operator whose quasinucleus is 7.
The sequence (6) is called the determinant system (**) of of = J-+7 .
It coincides with the sequence (6) from § 7.
The convergence in norm follows from the following inequality (14):
(’I’lv e ,m,)(n-l-m)/z

(7) Ol <

m! e

Theorem 7 has a great practical value: Given any quasinucleus 7,
we can calculate the determinant system (6) for T+ 7 by means of for-
mulae (3), (4) and (5) and solve the linear equations

E(I+T) = &,

applying Theorem 3. Since we have the estimation (7), we can use formu-
lae (3), (4), (B) and the formulae quoted in Theorem 3 to numerical cal-
culation of solutions. As we have stated on p. 142, the additional advan-
tage of the determinant theory of linear equations iy that, besides exis-
tential theorems on solutions, it yields also formulae for solutions.

(I+Ta = x,

§ 9. The algebra of quasinuclei and nuclei. The results from
§ 8 point out the importance of the space QN of all quasinuclei and the
canonical mapping

(1) T T

from QN into O which, to every 7 <QN, assigns an operator 7 defined
by the equality

(2) ETx = T (- &)

(see § 7 (3), (5)). The canonical mapping (1) of the Banach space QN
(with the ordinary norm of functionals 7 «QN) into the Banach space O

(1%) This definition and Theorem 7 are due to Leiahski [1] (see also Sikorski
[2]). Ruston [1, 2] and Grothendieck [1, 3] have given other equivalent formulae
(expressed in another language) but only for nuclei and nuclear operators defined
in §§ 9, 107 That is the characteristic difference between the Lezanski theory and
the Ruston-Grothendieck theory that the last theory treats of determinant systems
of nuclei only.

(") Lezanski [1].
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is linear and continuous since
3) 1Tl < |71.
The simplest example of a quasinucleus is as follows:
To(d) = Edm, for all 49,

where &, #, are fixed. This functional 7, will be denoted by &, ® z, and
will be called the one-dimensional nucleus determined by &, ,. Obgerve
that

[£0 @m0l = |&o]- |t

The canonical mapping (1) maps &, ® 2, onto the operator z,-&,.
By a finitely dimensional nucleus we shall understand any finite sum

m
(4) 7=Da@n
i=1
of ‘one-dimensional nucleus, i. e. every functional ¥ on O, of the form

m
T(4) = D &ids; forall AeD,
i=1
where &y,..., &y, Byy..., B, ave fixed. It can be proved (**) that the
norm of a finitely dimensional nucleus 7 is given by the formula

(5) |1 = inf Y |&]ail,
i=1

where “inf” is extended over all possible representations of & in the
form (4). The canonical mapping (1) maps a finitely dimensional nucleus

m

> £, ®w; onto the finitely dimensional operator ) ;- &.
i=1

i=1

The set FN of all finitely dimensional nuclei is = linear subspace
of QN. The closure of FN in QN is a linear subspace N of QN. The ele-
ments of N will be called nuclei. Every operator ' which is the image
of a nucleus ¥ by the canonical mapping (1) is said to be -nuclear,
and 7 is said to be a nucleus of 7. The linear set of all nuclear opera-
tors will be denoted by MNO. The set of all quasinuclear operators will
be denoted by QO.

By definition

(6) FRCRCLAN, FOCNOCQOCO.

In general, no sign C can be here replaced by =.

(15) Schatten [2].
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It follows from § 7 that quasinuclei are an abstract substitute of the
notion of a square matrix considered as a functional on operators. In
the theory of matrices, we associate with every matrix a scalar called
the trace of the matrix. If the matrix is considered as a functional on
operators (see § 7 (1) and (2)), then its trace is the value of the func-
tional on the identity operator I. This fact suggests the following
definition:

For every quasinucleus 7, the number 7 (I) is called the trace of T
and denoted by Tr7. Of course, Tr is a linear continuous functional
on QN and

Tx(7) < [71.

For instance

Tr (Zm‘ 5® mi) = f:fiwi = tr(imi'fi)y
i i o

i. e. the trace of any finitely dimensional nucleus coinecides with the trace
of the finitely dimensional operator determined by this nucleus.

Observe that the notion of trace, similarly as the notion of determi-
nant, is associated with quasinuclei, not with operators (except the
finitely dimensional case). This is a result of the game phenomenon of
the dispersion of the notion of square matrix into two notions: quasi-
nucleus and operator.

Square matrices form a linear algebra. So do their substitutes, opera-
tors (see § 2), and so also do their other substitutes, quasinuclei. In
the space QN we can introduce several operations of a multiplicative
character.

If TeQN and 0D, then ¢F and JC denote quasinuclei (i.e.
functionals on O) defined by the equalities

0T (4) =T(40) and TO(A) =T (CA) for all AeD,.
The products CF and TC satisfy the distributive and associative laws,

and
071 < 10171, 1701 <1T(101.
Observe the following properties of the canonical mapping (1):

0T - 0T, TC - 10.

Hence it follows that OO is an ideal in the Banach algebra O. It T is
& nucleus, so are 07 and JC. Thus NO is also an ideal in O.
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N is a Banach algebra with respect to each of the following mul-
tiplications (*%):

(M T80Ty =TTy, T10Ty=7.Ts,
(8) T1oT e = §(T, @72"}‘(«’71@72)

where, of course, T, T, are operators whose quasinuclei are 7; and 7,
respectively. The canonical mapping (1) is a ring homomorphism with
respect to each of the multiplications (7), (8). The multiplication
,°7, hag the following important property:

(9) Tr(7y0T ) = Tr(T,°7,)

which is an extension of the known property of the trace of matrices.
The products (7) do not have, in general, this property. Consequently
T .0, seems to be the most adequate multiplication in QN. In the se-
quel we shall always consider QN as a Banach algebra with the multi-
plication (8).

Observe that 9N is a subalgebra of QN. Moreover, all the products
(7), (8) coineide for 7., T,eMN.

§10. What operators are quasinuclear? The answer to this
question follows immediately from the investigations in § 7. Viz. we have
stated that a continuous linear functional 7 defined on O, is a quasi-
nucleus of an operator 7 if and only if 7 is an extension of the following
functional defined on the linear set of all finitely dimensional operators:

(KE%D)

Thus, by the Hahn-Banach extension theorem, we gef the following
statement: .

THEOREM 8. An operator T is quasinuclear if and only if the func-
tional (1) s continuous on FO ().

The canonical mapping

) tr TK

T

i one-to-one on the set N of all finitely dimensional nucleus, and trans-
forms N onto the set GO of all finitely dimensional operators. The

(16) The product & was introduced by Lezanski [2] (see also Sikorski [2]).
The products 5, o were introduced by Sikorski [6]. For the case of nucleus, see
Grothendieck [2] and Ruston [1, 2]

Observe that the associativity of © is not trivial. It follows from a result of
Grothendieck [4].

(1) See Sikorski [3].
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canonical one-to-ome correspondence between FN and FO is given by
the formula (see § 9, p. 165):

mn m

2 §i®avi"—*2m,: &

=1 fe=1
Thus we may identify the finitely dimensional operators K with their
finitely dimensional nuclei. Consequently the norm in QN induces an-
other norm in GN, denoted by |K| (®). By §9 (5),

m

2) |K| = int > & |,
=1

where “inf” is extended over all representations of K in the form

K = Zw;
i=1

THEOREM 9. An operator T is nuclear if and only if there ewists
a sequence K, «FO such that

[Ep~T| = 0 for n > 00, and |K,—XK,] —~0 for n,n - oo

or, equivalently, if it can be represented in the form (*%)

o0
T= Ztnmn'én’

=1

where \@,| =1 = |&,| and [3;|4 ||+ ... << oo,
Hence it follows that

(3) NO C E,0C EO

(see notation on p. 158). Thus if T is nuclear, then the endomorphisms
y = T and % = &T are compact.

There are quasinuclear operators which are not compact and, there-
fore, not nuclear. Examples of such operators can be given, e.g., in the
case () where

X=L, EF=M.

(*%) After the identification just mentioned, FO is a dense subset of M. Thus
R can be algo defined as an abstract completion of FO with respect to the norm || |f.
This definition is assumed by Grothendieck [1-4] and Ruston [1-2].

(*) For the analogous representation of nuclei, see § 15 (1).

(*) See Sikorski [3], where a simple example due to C. Ryll-Nardzewski is
quoted. See also footnote (), p. 182.
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In that case, an operator T is quasinuclear if it is an integral operator,
ire.

1
To(s) = [t(s,)et)dt for ael,
0

such that :
f(s) ==(s,")eM for almost all s,

and
1

1
fyf(s)|Mds = afs?pesslr(s,t)lds < oo.

0

T is puclear if the mapping f (from (0, 1) into M) is Bochner integrable.
On the other hand, in many concrete spaces the both notions: nu-
clear operator and quasinuclear operator coineide. So it is e. g. in the
case where
X=1, &F=m.

In that case, an operator is nuclear (i. e. quasinuclear) if and only if it
is determined by an infinite square matrix (z;;):

Ty = (S Tu”f)y @ = (v;)el,
such that
gs?]?lfi,f] < co.

The notions of nuclear operator and quasinuclear operator coin-
cide also in the case where

=1

n

X=P,
and
E=1L,

X =107
1/p+1jg =1, 1 < p < oo. This follows from the more general theorem.:
TEEOREM 10. If X is reflewive, then every quasinuclear operator is
nuclear (21).
In the general case, the notion of a quasinuclear operator is eclo-
sely related to the notion of a compact operator. This follows from the
following theorems:

(%) Grothendieck [2], Chapter I, p. 134.
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TarorEM 11. If T' is a quasinuclear operator, then the endomorphisms
y =Tu and 1 = ET transform bounded sels into weakly compact sets, and
weakly compact sets into compact sets (%2).

TuEOREM 12. If T'ds quasinuclear, then T? (and consequenily all the
powers T n > 1) are nuclear, and therefore compact.

More generally, if Ty, T, are quasinuclear, then T,T, is nuclear (23),

Many deep theorems on nuclear and quasinuclear operators were
proved recently by Grothendieck [2] (in the case where 5 = X™*). We
quote only one of them:

THEOREM 13. In order that an operator T' be quasinuclear it is neces-
sary and sufficient that the endomorphism T be the superposition of three
linear continuous endomorphisms:

(4) xS un oy Sx,

where I' is a set with o finite measure w, M(I') is the Banach space of
all bounded p-measurable functions on I', L(I') is the Banach space of all
Junctions u-integrable on I, and I, is the identity mapping from M ()
into L(I') ().

T is nuclear if and only if there ewists such a decomposition (2) where
18 an atomic measure.

§ 11, Other formulae for determinant systems. The formulae
we are going to present are another formulation of formula () from § 8.
This new form is more convenient to explain in which degree the deter-
minant system of T+7T is determined by the quasinuclear operator 7.
For any operator 7', let T7 denote the following 2n-linear functio-
nal on &"xX":
ETha,, ..., T,
(1) T;:L(El""’fn):_z ............ ,
iy ooy @y . i
E Ty, (L., & Ting,
where the summation is extended over all finite gequences of non-nega-
tive integers ¢,,...,4, such that Uty =m (m=0,1,2,...,
n=1,2,...). Obsgerve that also

i i
E Ty, o, E,T "z,

(**) Grothendieck [2], Chapter I, p. 131,

(®) Grothendieck [2], Chapter I, p. 132-133. A simple proof of the first part
of Theorem 2 was given also by Sikorski [5].

(*) Grothendieck [2], Chapter I, p. 125.

@) T{f("eh"-,fn):Z

(GERERPR 2
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where the summation is extended over the same set of sequences iy, ..., .
Note that, for n = 1, T{* is the m-th power of the operator T.
The 2n-linear functionals T% (m = 0,1,2,...) are closely related

with the 2n-linear functional

E‘I'/(l+ T)lelj s 571 (I+ T)Mlxn

(see §3(3), where 4 = I+ T). Viz. for sufficiently small T (e. g. for |T| <1)
the expression D,(T) considered as a function of T can be developed
in the power series: .

(4) Dy = Y (="

m=0

517 et f"b) —

Bry-eey T

(8) DulT) = @n(

Suppose now that 7' is quasinuclear and 7 is & quasinucleus of 7'. Let
(5) o= T(T" ") =TeT" (n=1,2,...)
(see § 9). Under the above notation we have the following.theorem:
) . . ays 25
TEEOREM 14. The determinamt system of 7 satisfies the identities (%)

g, m—1 0o 0 ...0:
) 6, o m—2 0 .. 0
1 -------

(6) Dy(T) = 2._' .......... ,
m=0 " Opm—1 Om—2 Om-3 gy 1

T ¢, m—1 0 O 0
- 21T o o m—2 0 .0
M D)= MZ e DRI
TZ“] Om_1 Om—z Om—3 -+ 01 1
Tw om Om-1Om—2 -+ 0201
The identity (7) is a simple consequence of (4) and (3) and the
; o (26
:Eg(;nth( ) Dn(f/\) =D0(7).{D7L(T)

(see § 3 (4))-

(25) Plemelj’s [2] formulae (8), (7)
Ruston [1, 2] as the definition of Dy(7) and Di(

(2%) In the case of arbitrary B.anach spaces,
Ruston [3] but it was earlier known in t%xe theory o:
[1, 2], Platrier [1], Hoborski [1], Hurwitz [1].

(see also Poincaré [1]) were assumed by
) for any nucleus 7.

this formula was fitst used b}f
f integral equations. See Plemelj
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The following formula is also valid for sufficiently small 7, e. g. for
7] < 1:
THEOREM 15. If

b oy o w-’(_'l)mvl Fm
log(94+7) = % T'/
exists, then (*7)
(9) Dy(T) = expTrlog(9+T).

9 denotes here the abstract unit added to the Banach algebra QN,
Denoting, more suggestively, Dy(7) by D(947), we can write formula
(7) in the form

(9" logD(T+7) = Trlog(9+7) for sufficiently small 7.

By Theorem 14, D,(7) is determined uniquely by the operator 7T
and the numbers (5). By § 7 (2) we have

(10) T(K)=trTK for KFO.

Thus the values of any nucleus 7 of T are uniquely determined by 7' on
the set of all finitely dimensional operators K. By continuity, the values
of 7 are also uniquely determined by 7 on the closure of this set, i. e.
on the subspace €,0. By Theorem 12 and § 10 (2), T" 1eCyO for n > 2.
Thus the numbers

Gay Ogy onn

are uniquely determined by the quasinuclear operator 7' only. They do
not depend on the choice of a quasinucleus 7 of T' (*).
Hence we infer that the determinant system

(11) Do(T7), Dy(T), Do(T ), ...
for 74T is uniquely determined by T and the numbers o, = Tr7 and
0y =TrJ% = J(T) only.

On the other hand, the determinant system (11) is completely deter-
mined by the funections

(12) TeT, Tr 72, TrT%, ... (T QN).

(*) For the case of arbitrary Banach spaces, see Lezanski [2], Sikorski [2],
Grothendieck [3]. This identity was earlier known in the determinant theory of
integral equations. See e. & Lalesco [1], p. 114.

(28) Sikorski [5].
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In fact, it follows from (9) that (12) determines uniquely D, (7) for small
T (e.g. for [7] < 1). Since Dy (7) is analytic, Dy(7) is the unique analytic
extension of the function expTrlog(9--7) over the whole QN. Hence it fol-
lows that functions (12) determine uniquely values of the function D,(7)
for all 7eQN. However, if we know Dy(7) for all T<QN, we know also
all subdeterminants. This follows from Theorem 16 below. To formu-
late this theorem, let us recall that by the first differential Dy(7 ;7))
of the function Dy(7) (7, 7,¢QN) we understand the limit

n Dy (T + 7 1)~ Dy(T)
1m .

&=l &

By induction, the n-th differential Dy (7; 7,, ..., 7,) is the limit

lim Do(T 4 6T0; Tiyeony Tnoa) —Do(T5 Tyyevey Tuoa) .
) &
Of course, Dy(T; Ty, ..., 7,) is analytic in the ngiable 7, and linear
and symmetric in vaviables 7y, ..., T, (T, Tiyeery TneQN).
TuEoREM 16 (¥). For n =1,2,...

D, (T)= .D,,(E” T E“) = Dy(T; &£® 3y, ..., E,Om,).
Byyeney By

Of course, to know all the functionals (12) it suffices to kngw only
the functional Tr T (for all 7 «QN) and the multiplication 7,07, in QN.
Thus the determinant and subdeterminants (11) are completely deter-
mined by the functional Tr7 on the Banach algebra Q7.

Note one more theorem of this character:

THEOREM 17 (*). The determinant Dy(T) is the only solution of the
differential equation

Dy(T5 (I+T)T) = Dy()-Tr 7,

satisfying the imitial condition
Dy(0) = 1.

(¥) Grothendieck [3]. By Theorem 16, Do(7;71,..., 7n) is a natural exten-
E1yoea & ; {ders
sion of Dy(7; & @ %y, ..., Ea® 2n) = Dn (wil o a::)' Grothendieck [3] considers

.
the set of all algebraic subdeterminants of (?rder ”.
(3%) Michel and Martin [1] and Sikorski [6].

s auny & st ti £
Dy(7; 7y, ..., Tn), instead of Dn(ﬁi, o i:), as the substitute of the notion o
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The following theorem on multiplication of determinants follows
immediately from (9), §9 (6) and some properties (*) of logarithm in
Banach algebras:

TaEOREM 18 (32). For all T4, 7 ;eQN

D{9+TNI+T2) = D(YI+T

On the other hand,

D(9+T,).

THEOREM 19 (2%). The determinant D(T-T) 4s the only analytic fune- .

tion of TeQN such that D(T+T) does not vanish identically, and

D(9+T7) = (D@+T)), DG;7)="TrT.
Of course, D(9;7) is the differential
- D
D(9;T) = lim (9”’6) D) _ p0; 7).
>0

§ 12. The Fredholm determinant and subdeterminants. The
formula (B) from § 8 (i. e. the formulae (6), (7) from §11) have the pro-
perty that in the case of finitely dimensional spaces they give the clas-
sical algebraic determinant system (see § 1) for the operator I T'. How-
ever, in the case of linear integral equations examined by Fredholm they
do not coincide with the Fredholm determinant and subdeterminants.
If T is an integral operator determined by a continuous kernel z(s,?),
then Fredholm’s subdeterminants for I 1 are some functions

S1y ey S
(1) 19*( 1) ’ IL)

Bry euey By
of 2n real variables $,,...,8,, t,...,%,. Of course, from the point of
view of Functional Analysis, those functions should be interpreted as
2n-linear functionals

(1/) D* (51, ey Eﬂ,)

iy ey By

Sy 0ne . A
- f f :(tll: . ’ n) 51(9 ) . En(sn)ml(tl)' . -CU,,,(ZM)dS]_-. .(z.\‘“,(ltl. . -dtn'
However, subdeterminants D, (:7), Dy(7), ... ave never of this integral
form. This will be evident from some formulae quoted in the next sec-

tion where the case of integral equations is carefully discussed.

(®1) See Michel and Martin [1] and Sikorski [21.

(%2) This theorem is a particular case of a general theorem proved by Michel
and Martin [1]. For the case of determinants in Banach spaces, see Lezanski [2],
Sikorski {1, 2, 6] and Grothendieck [3].

(33) Lezanski [2].
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1
In the case of arbitrary Bamach spaces =, X, we can also define
some multilinear functionals D which are a natural generalization of
Fredholm’s subdeterminants (1), (1'). We assume the following defin-
ition:
By the Fredholm determinant Dy (T) of of = 9+F, where
nucleus, we understand the determinant Dy(T):

(2) Di(T) = Dy(T).

By the Fredholn subdeterminant of order m of ol = 94T (T QN) we
understand the 2n-linear functional D}(T) on 5" x X" defined by the

equation
&7,... Eyy ooy &
=Dn ) — » 1y 7 5n
( By .. ) D’(Tml,...,Taan)’

3y DT D*(f”' " 5“)
( ) ( ) ”17 try "l,n
where, for brevity, Dy = Di(7), D, = D,(7), T being the image of
7 by the canonical mapping §9 (1)
The sequence (*)
(4) Dy (T7), DY(T),

is not any determinant system for I+ 7. It satisfies conditions (d,),
(d,), (ds), (dy) from § 5, but it does not satisty condition (d;). Instead

9 is a quasi-

) &l

s &

DT, ...

of (D,), (D,) it satisfies the following identities:
3 p:“(‘f";;j;;j:';i:)
- Seatamaen (i k),

-3

where, for brevity, 4 = I-+1T.

The smallest integer » such that DJ(T) is not identically equal to
zero is called the order of (4).

Although (4) is not any determinant system for

A=1+T,

E T”n D* (507 L] 5‘1‘—17 §i+17 7 57»),

(¥} For definition and properties of (4), see Grothendieck [3] and Sikorski [6].
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it can be used to solve the linear equations
EA = w,, Az =,

We have the following theorem similar to Theorem 3:

TaRoREM 20 (%). The order of Dy(T), DY(T), D3 (T), ... is equal to
the order of Do(T), D(T), Do(T), ...
If v is the order of (4), then
Df = (—1)D,.
Let gy e-ey fpe 8 and Yy .vn, Yre X are such that
x| 'Wr) = 0.
’(ml, ceny By *
Then there exist elements i, ...,CreE and 2y, ...,2.¢X such that
D*(n“" e e .,')7,)
r 7 .
(5) L = Yy ooy Yoy Ty Yigr 5 -0 Yr for every weX
D*(Wlf ) "]r)
Yiyeor Yr
and
D*(ﬂl: ey Micas £ Migay oo 777')
X
(B) gy = I DU for every  EeE.
D* (7717 7779")
M
Y1y )yr

The elements Ly, ..., L are linearly independent and are solutions

of the equation

(6) EA =0

The elements 2y, ..., 2, are linearly independent and are solutions of the
equation
(69 Aw = 0.

Conversely, every solution & of (6) is a linear combination of &y ...y Gy
and every solution x of (6') is a linear combination of 2z, ..., 2.

The bilinear functional B* defined by the formula

£y My o 777%')
D8
" T @y Yyg eees Yr
(7) (B = —
D,("“ 17'/1')
Yisoeos Y

8 an operator.

(%%) Grothendieck [3] and Sikorski [6].
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The equation

(8) ‘4 =&

has a solution & if and only if &z, = 0 for ¢ =1, <oy 7. Viz. the element
&= &—&,B*

is a solution of (8)

The equation

(8" An = @,

has a solution @ if and only if Liwy =0 for i =1,...,7. Viz. the elemont
@ = x,— B*x,

is a solution of (8
Observe also that

(@) D}(T) = 20”.,
where

£y &y &T, ..., &T £, ... &
10 0* 12 ) o =9nm 1 y ) 5n — 1 1 50
(10) ”’m(ml,,.,,mn) g ( Byy oeny By ) B”m(Twl, ,Tmn)

are the Tredholm analogoues of the 2n-linear functionals 0, m defined
in §8 (4)

§ 13. An integral model. To illustrate the theory of determinants
in Banach spaces, let us assume additionally in this section that & and
X are two Banach spaces of some measurable functions defined on a set
I' with a measure u. Integrals extended over the whole space I' will be
written, for brevity, in the form [f(t)dt instead of j f(£)du(t), and simi-
larly for multiple integrals.

Suppose that &z is defined by the formula

(1) fo = [ EWo(nat

An operator K iy said to be an integral operator provided it is of the
form
@) ERw = [ [ &(s)x(s, ha(t)dsds.

where x(s, t) is a measurable function called the kernel of K. For instance,

" -
every finitely dimensional K = ' #;-£; is an integral operator, the ker-
Te=]
m

nel «(s,t) being defined by the formula x(s,t) = 3 #i(s):

1=

&(t).

Colloquium Mathematicum VIIL 12
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A quasinucleus 7 is said to be an integral guasinucleus provided
there exists a measurable function = (¢, s) (called the kernel of 7), such
that '

(3) g(I) =fr(s,s)ds
and
(4) T(E) = [ w(t, 8)n(s, t)dsdt

for every integral operator K with a kernel x(s,?) (**). Then 7 is the

quasinucleus of the integral operator T' whose kernel is <(s,?).
The integral quasinucleus ¢/ determines the determinant system

(5) Dy(T), Dy(T), Do(T), ...

and the corresponding Fredholm system

(6) Di(T), DI(T), D3(T), ...

for the operator I-+T, i.e. for the linear integral equations
w(s)+fr(s,t)m(t)dt = 3y(8),
E)+ [ E(s)T(s, 1) ds = £y(s).

To write some integral formula for (5), it is convenient to intro-
duce a formal expression (s, t) which is a substitute of the Dirac delta
digtribution, and enables us to write the unit operator I in an integral
form. Viz. we define axiomatically 6(s,t) by the equations

(7
(8)

[ oG, vama =a(s), [ E@s)6(s,t)ds = (1),

[] 8(s,0)%(t, 8)dsat = T(I).

If all points in I' have positive measures, then of course there exists
a function 4(s, ¢) satisfying this identity. In the general case, formulae
(7) should be interpréted quite formally as an integral notation for the
unit operator I. Similarly we interpret the following formulae which
are a consequence of notation (7), (8):

[] )80, ya(t) = éa,
[[[ a8, 1)ty n)(r, s)drdsas = [ e, neir, narae,

ete.

(%%) For examples of integral quasinuclei, see Lezanski [1].

icm°
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) TuEOREM 21 (). If T is an integral quasinucleus, then the following
indegral formula holds for the 2n-linear functionals 6, ,, defined in §8 (4):

6713m (El) tey E?L)

By eeny Ly

o 81340048
= f f 0n,m<,117’ ’ ”) §u(81)- o Eu(80) @1 (). . .0, (8,) sy ds, ... G,

eyl

where

810 000y 8
9 1 ron
)

Proe .

(10)

[==]
19n(;s'l,...,s”) _ 2797»"1(81, ...,sn)_
17 +eey ln =~ A UTIR

TEEOREM 22 (*). If T is an integral quasinucleus, then the following
Jormule holds for the 2n-linear functionals 0,*{’,,1 defined in §12 (10):

a0 2)

Dyy ooy By

[l

,::) E1(81) e En(80) B ().« B (1) Sy .. 8, By ...

(%) Sikorski [6].
(%) Sikorski [6].
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1 TSy ta)y ooy T80y )y T(S0971)y ooy T'(SnyTm)
=Wf“'f T(ryyt)y -y T0ray )y D70, ooy 10y, )

ey T s t)s Ty 72y oor T oy )|

ary...dry,.

Consequently
(1) DiT) = 1);1(5“ f”)

Byyoeny By

~[f ﬁ;(:n ’;') E1(82) o 0 (82) 23 (8) o0, (8 5y sty .y,
1y reea o

where

(12) ﬁﬁ(s“ ...,s‘n) =21 79:,7::(3”“"8")-
tl?"'ﬂtn tl?"'!tn
M=

Formulae (9) and (11) should be understood only formally, as an-
other way of writing the exact formulae for D, (7) and Dj(¥) in §§ 8
and 12. The convergence of series (10), (12) should also be understood to
be the convergence in norm of the corresponding multilinear functio-
. nals repregented formally by the kernels under consideration.

However in the series (12) the symbol &(s,?) does not appear. ¥,
are well-defined functions. Consequently the convergence of (12) can
sometimes be understood -as a convergence of functions in a suitable
space of functions, and the meaning of (11) is ordinary. E. g. in the case
investigated by Fredholm, when T'(s,t) is & continuous funection, z‘);‘;'m
are also continuous functions and the series (12) converges uniformly
to & continuous function 9. This is Fredholm’s original subdetermi-
nant of order m, mentioned in § 12 (1). ‘

If 6(s,t) can be interpreted as a function, also 9,, are functions
and the convergence in (10) can be understood sometimes in amother
sense, e.g. as the pointwise convergence. So it is in the cage of matri-
ces investigated in the next section.

icm
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§ 14. The matrix model (*). Now let I" be the set of all positive
integers with the trivial measure:

u(I") = the number of elements in I

defined for all sets /”"C I". All integrals will now be replaced by conver-
gent series. ’
Elements of 5 and X are now infinite sequences

) &= (p1, P2y --s), 7= (Y1, ¥, ...),
& = (7717'027 )7 y= (wlz Wy ou)y

and the product &z is now the ordinary scalar product of sequences £, x:

o0
by = 2971:7)55
in

the series being absolutely convergent.
‘Suppose additionally that the sequences

e =(1,0,0,...)
€ =(0,1,0,...)

fd

form a basis in F and in X.

Every operator K is now uniquely represented by an infinite square
matrix » = (%;;) (the kernel of K, in the terminology from §13). By
definition, '

5 = €; KG,' .

The equality y = K is an abbreviation for the system of linear equations

[48

w; = %305
7

and the equality #n = £K is an abbreviation for

(i=1,2,..),

i
-

o0
ul .
"szz‘f’i’{nﬁ,j (.7=1727-'-)
=1

(see the notation (1)).
The correspondence

Kox (KeQ)

(%) Theorems quoted in § 14 were proved by Koch [1-7] under much stronger
hypotheses. See also Riesz [1]. In the case where X = I and = = m or ¢, the results
mentioned in § 14 were obtained by Lezafski [11.
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is one-to-one. Consequently we can identify operators K with correspon-

ding matrices x, writing K = (#34)-
In particular, the unit operator I is represented by the matrix

6 = (), where
i =j,
OENE
The matrix d;; is the function d(s,?) from §13.
By a matriz quasinucleus we understand any quasinucleus 7 on 9,
of the form °

(2) T(E) = D wamy; for K=
i,j=1

, 1if
Yoo it

(”1’,;)5 O,

where v = (7;;) is an infinite square matrix (the kernel of 7, in the ter-
minology of §13). The definition (2) is the definition (3), (4) from § 13.
More exactly, (2) coincides with condition §13 (4). Condition § 13 (3)
is automatically satisfied, since by (2)

Siet

i,f=1

(3) TrT = () = Z Tige
The class of all matrix quasinuclei will be denoted by MM, The
correspondence

T et (TeMN)

is one-to-one. Consequently we .can identify matrix quasinuclei & with
corresponding matrices 7, writing 7 = (), (71;)e MN, ete. Observe
that

Tij = ‘:](61'6,7).

It follows from (3) that the trace of a matrix quasinuclens 7 = (7))
is the algebraic trace of the matrix ().

If 7 = (7;;) is a matrix quaginucleus, then the matrix = = (v;)
can be also interpreted as an operator (**). Viz, v is the matrix (the ker-
nel) of the quasinuclear operator 7 which is the image of 7 by the cano-
nical mapping (see § 9 (1)). Hence it follows that the canonical mapping

T T

(*%) Such an operator is quasinuclear but, in general, it is not compact and con-
sequently it is not nuclear. A simple example of an operator of this kind in the space
X = Ixe¢, was communicated to me by Pelezynski and Szlenk: T(x,y) = (0, %).
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is one-to-one on the class MM of matrix quasinuclei. Consequently we
can identify 7 with 7T':

4) T=(u)=T (T<MM).

However this identification is not extended over the norms of (zi,5):
the norm of (7;;) interpreted as an element of QM is not equivalent,
in general, to the norm of (7;;) interpreted as an element of ©O.

Since the extended canonical mapping transforms the abstract
unit I, added to the algebra QN, onto the unit operator I, the identi-
fication (4) suggests to identify 9 with I,i. e. with the unit matrix § = (8:,9)
Consequently the determinant D(9-+7) (i.e. Do(7) — see § 11, p. 172)
will be called the determinant of the matriz

(5) a=06+7=(8;+17,).
and denoted by det a or by

11y Opay vee

The class of all infinite square matrices a of the form (5) (i. e. of all
the matrices o such that a— 6e9MN) will be denoted by M. Thus, with
every acM, we have uniquely associated a number det a.

Of course, the determinant system Dy(7), Dy(T), Do(T), ... will
be also called the determinant system of the mairiz a. The series § 13 (10),
(12) defining D,(7) (n ==0,1,2,...) econverges pointwise. In particu-
lar, Theorem 21 yields the following formula for det (é-7), TeIMN:

Zam,

(6) det(6+71) =

where 6, = 1 and, for m =1,2,..

(7) Go,m =

U< | Tipiy s oo e Tigin

The formulae (6), (7) define the determinant for the system of linear
equations

(8) D oy = w
F=1

(G=1,2,...,
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and for the adjoint system of linear equations

(8') Z%aifz"f’i (i=12,...)
i=1
(see (1)), where a = 6+ 7.
The product af of any matrices «, feM exists and belongs to M.
It follows from Theorem 18 that
TaeorREM 23. For any a, feM,

detap = deta-detf.

If ae M, then the j-th column of e, i. e. the sequence (a;, ay,...),
is an element of X (viz. it is the element (I+T)¢). Any matrix «, ob-
tained from « by replacing the j-th column by terms of a sequence
zeX belongs also to M. Moreover det a, is linear function of # «X . Simil-
arly, if aeN, then the i-th row of a,i.e. the sequence (a;;, a;s,...) is
an element of & (viz. it is the element ¢;(I+7T')). Any matrix o obtained
from « by replacing the i-th row by a sequence £eX belongs also to M.
Moreover det ,a is a linear function of £e5.

We express shortly the two last remarks in the form of the following
theorem, analogous to a known theorem on determinants of finite square
matrices:

THEOREM 24. The determinant deta is o linear fmwtwn of any of the
columns and rows of the matriz ae M.

The next theorem is the analogue to the known theorem on skew
symmetry of determinants of finite square matrices:

THEOREM 25. If two rows or two columns are commuted in o matric
aeM, then deta changes its sign.

Let a = (a; ;)¢ M and let 4, ..., 4, and jy, ..., j, be two finite sequen-
ces of positive integers. Define the numbers a (ii’ e z:) in the same man-

ner 2s in the finitely dimensional case (see §1, p. 144), viz.: if either
two of the integers 4,,..., 7%, are equal, or two of the integers ji, ...,

are equal, then a(ﬁ fZ) = 0; in the opposite case a(’l’ ZZ) iz the
determinant of the matrix (8;;)¢“M where
a;; if none of the equalities ¢ = 4, j = 7
_ [ (k, 7 =1,...,n) holds,
P = Il if 4 =4, and j = j; for an integer k < #,
0  otherwise.
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The theorem below asserts that a(;" t“) have the same meaning

Lo vevs

as the analogous symbols in the finitely dimensional case (see § 1,
p. 144-145), i. e. they are algebraic subdeterminants of order » of the
infinite square matrix aeM.

B1s uey i
THEOREM 26. The numbers a (]i :1) are coordinates of the 2n-linear

Sfunctional Dy (T) (@ = 647,T = 7 = (v57) eMN), 4. e. the following for-
mulae hold:
a(i.“ ...,1’:”) _ D,,(g"l’ . ei"‘),
J1seeerdn Gy enes O,
where, for brevity, D, = D, (7). Consequently
Eiyeeny sn)

Dy enry By
1y einy By
é Privs s Pui a(_ N P R
Po\J1s ey <1 "

..... =1 i;,,,..f,ﬁl

D, (

where By = (Vp1y Vrgy --2)y & = (@1 Pray --2) Jor r=1,..,n
Observe that the series § 13 (10) in Theorem 21 converges pointwise,
and we have the identities:

0

Byyeeny b, Tyyeen Tyg eeny b
9 a _1: ) n) — ﬁn(~” )= Qt)n,}l( 19 n)
) (Jn- <y I, Jryeeerin 2 Jas - :]n

=0

(10) 9, (Z = 13")

J1s <-=3)n
ailﬁ’] y ey 6,:1’7-)1, (Sil’,-l g seey 6i1,,.m
6"1L>jl LA a"win,’ 6‘%,3’1 LA 6’1)1,”111‘
o ¢
ry<racn.<ty | Tridry 0 Troins Trins ons Ty 1
.................. :}‘
Trmd1? * 003 Troind Ty <o 0o Tt

In particular, a({) is the analogue of the subdetermunant (of the

order 1) obtained by omitting the j-th column and the i-th row. We have
the following formula for the development of a determinant by a row or
by a column:
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THEOREM 27. For any positive integers iy and j,

oo . D?1 .
deta = Z aio'ja(lgn) = 2 0y 5, @ (];) .
i=1

=

Theorem 3 yields the Cramer formulae for solutions of (8) and (8'):
THEOREM 28. If deta 5= 0, then the only solutions of (8) and (8') are:

Op 1y weey Oajory Wiy Qrgypry -- l

Every matrix v = (7;;) can be formally written as the sum of an
infinite series of matrices, each of which contains one column (or row)
of v and zeros elsewhere. For this purpose, let @; = (v,;, 7a,,...) and
& = (731, Tyay .. .). If 7 is considered as an operator T, then we can write
formally

ol 00
1) T= o, 7=k
j=1 T=sl

If v is considered as a quasinucleus 7, then we can write formally

(12) ?7'—*20;@-’61, T =Z§i®6i.
= ;

[ES5Y
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In general, neither the series (11) converge (in norm) in the space O,
nor the series (12) converge (in norm) in the space QN. Of course, the
convergence of one of the series (12) implies the convergence of the cor-
responding series (11) (see the norm inequality (3) at the beginning
of §9). In some cases, one of the series (12) converges. So is e.g. in
the case X =1, & = ¢,.

THEOREM 29. If 7 = (7,,)eM, and one of the series (12) converges
to T =7 is the space LN, then the matriz o = 5---v has the property

deta —=Tim| "

N->00

This property was suggested on p. 141 as one of the possible defi-
nitions of the notion of the determinant of an infinite square matrix.

§ 15. The poblem of uniqueness. In §§ 8 and 11 we have solved
the problems A), B), C), D) from § 7 with one modification: the deter-
minant system is uniquely associated with quasinuclei T (i.e. with
A = 9+4T) but not with operators A = I+ 7. However we have given
analytic, effective formulae for determinant systems for 4 =14 T,
Te0Q9O, and these formulae are indeed relevant. In the case of finitely
dimensional spaces they coincide with the algebraic formulae, and in
the case of infinite square matrices they lead to a theory of determinants
analogous, in all details, to the theory of determinants of finite square
matrices.

The theory just presented has only one defect: the determinant
system for A = I+ 7T is not uniquely determined by A itself (}). We
have learned that the reason for this defect lies in the dispersion (in the
cage of infinitely dimensional space) of the notion of square matrix into
two notions: operator and its quasinucleus. At the end of § 7 we have
proposed a method for omitting the phenomenon of non-uniqueness:
to restrict the class QN of all quasinuclei to a smaller class 9%, having
the uniqueness property (i. e. sueh that the canonical mapping 7 — T
is one-to-one on 9N,), and to associate with A = I+ T the determinant
system of of = J-+7 where 7 is the only quasinucleus of 7T in 9%,. This
method has been applied in § 14 where we have assumed 9Ny = MN =
the class of all matrix quasinuclei. For every matrix aeN, there exists
infinitely many quasinuclei 7 such that 7 - T, T = (z;;) = a—d, butb

(4) Observe that this non-uniqueness appears also in the determinant theory
of integral equations with non-continuous kernels.
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there exists only one matrix quasinucleus 7 satisfying these conditiong.
Therefore we have been able to assign uniquely, to every aeM, a deter-
minant system of a. The hypothesis that I'" is the set of all natural inte-
gers is not esgential in § 14. Therefore the results from § 14 can be gene-
ralized to the case where I" is any countable or uncountable set of indi-
ces.

Roughly speaking, the method from § 14 can be applied to any spa-
ces 5, X having bases. In fact, suppose that = and X have adjoint coun-
table basis. Then we can consider & and X as some spaces of sequences,
viz. all sequences of coordinates of feZ and weX with respect to the
bases in question. We can now introduce the notion of matrix nucleus
and the corresponding set " of matrices. With every operator whose
matrix iy in M we can assign, uniquely and effectively, a determinant
system by the method described in § 14. Since main results from § 14
remain valid in the case of any uncountable set I', we can also genera-
lize the above procedure over the case of spaces with uncountable bases.

Unfortunately the problem of the.existence of a basis in every (sepa-
rable) Banach space is not solved, and therefore the method just descri-
bed cannot be applied in the case of arbitrary Banach spaces. Moreover
the choice of bases in Z and X is not always convenient in practice
(the difficulty of characterizing the corresponding spaces of sequences!)
and such the procedure does not seem to be natural in many concrete
eases.

The above discussion proves, however, the importance of the pro-
blem of existence of basis for the theory of determinants in Banach spa-
ces. §14 also reconfirms our remark on p.141 that the case of spaces
of sequences is much easier than the general case.

If & and X are arbitrary Banach spaces, we know that the class N
of all finitely dimensional nuclei has the uniqueness property. However
this class is too small for our purpose because it leads only to operators
A =TI+ K where K is finitely dimensional. The smallest closed subspace
in QN, which contains N, is the class N of all nuclei.

The problem arises whether N always has the uniqueness property.

Before giving any answer to this problem, let wus discuss first the
situation in the case where N has the uniqueness property.

We have then a full solution of problems A), B), C), D) from § 7,
if we assume T = NO but with the topology induced by the norm in N.
We can assign uniquely to every operator A = [T (I'eNO) a deter-
minant system by analytic formulae. It is natural to call it the deter-
minant system of A. The restriction to nuclear operators T' is not very
strong. On the one hand, in many concrete cases it is not any restriction
because the notion of quasinuclear and nuclear operators coincide (see
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e.g. Theorem 10). On the other hand, even if Q9N is larger than N, the
both notions are rather close (see Theorem 12).

The phenomenon of dispersion of notions does not appear because
it is natural to identify then nuclear operators with their nueclei. This
fact simplifies the theory. NO is 2 Banach space with respect to the norm
from N.

The only defect of the determinant theory is radically removed. We
get a theory which is completely analogous to the case of finitely dimen-
sional spaces.

The adopted definition of determinant system is, in some sense,
the only natural extension (over A = I-+T, TeNO) of the notion of
algebraic determinant systems in finitely dimensional spaces. In fact,
by purely algebraic means we can define uniquely the determinant system
of any operator I+ T where T is finitely dimensional. This follows from
the fact that we can represent X and = as Cartesian products X = X, x
x X, & = ZyX &y, such that X,, 5, are finitely dimensional and conju-
gate, and 7' operates only on X,, 5,. Thus the determinant system of
I+41T is the algebraic determinant system of its finitely dimensional
restriction to X,, Z,. The defined algebraic system of I+ T does not
depend continuously on 7' with respect to the ordinary norm |T| of the
operator T (except the case where X and £ are finitely dimensional).
However it is a continuous function of 7' with respect to the norm |7
induced in FO by the norm in N (see § 10, p. 168). Since FN is dense in
NO with respect to the norm induced by N, the determinant system of
I+T, TeND, is the only continuous extension of the algebraic deter-
minat gystem of I-+7', TeFO (42).

Thus we see that if O has the uniqueness property and we restrict
ourgelves to operators A = I+ 7T with T nuclear, the theory becomes
more regular and more simple.

In many concrete cases we know that 9T has the uniqueness pro-
perty. We do not know any example where N does not have this property.
However we cannot prove that 9N always has the uniqueness property.

The problem of unigueness was examined recently by Grothendieck
[2]in the case where & = X*. The main result is given by the following
theorem:

THEOREM 30. N has the uniqueness property if and only if €0 =
= @O, i.e. if every compact endomorphism in X dis the limit in norm of
a sequence of finitely dimensional endomorphisms (4%).

(%) The definition of Dp(7) as an extension, by continuity, of Dn(7’) where
J’ is finitely dimensional was the starting point of the theory of Ruston [1, 2].
(#%) Grothendieck [2], Chapter I, § 5, 1, p. 165.
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Unfortunately, the problem whether €O = €O for every Banach
space is an old, very difficult, unsolved problem of Functional Analysis,
Consequently it seems to be hopeless to find any answer to the question
of whether N always has the uniqueness property.

Observe that if X has a basis, then 9 has the uniqueness broperty.
This is one proof more for the statement that in spaces of sequences the
theory of determinants is simpler,

We can try to omit the phenomenon of non-uniqueness also in the
following way.

We have seen in § 11 that any determinant system for 4 = I+ T
is uniquely determined by 7' and the numbers o = Tr7 = T(I), o, =
=Tr 7%= T(T), T being a quasinuclens of 7.

In general, o, is not uniquely determined by 7', but it is very easy
0 restrict the class of quasinuclear operators so that it will be uniquely
determined by 7. For this purpose it suffices to take into consideration
only those quasinuclear operators which are a limit in norm of a sequence
of finitely dimensional operators, i. e. operators TeQO~CO. The last
clags contains the class NO of nuclear operators but, in general, it is
wider than NO.

The number o, is never uniquely determined by I' if no additional
hypotheses on admitted quasinuclens of I' are assumed. ¢, is the trace
of 7 but, we know from the theory of determinants of finite or infinite
square matrices (see §14), o, should be the trace of the operator I.
Consequently we have to investigate operators for which it is possible
to define, in a natural way, the notion of trace.

We have earlier defined the trace of finitely dimensional operators
(§ 2 (2)). Unfortunately, the trace is not a continuous functional on FO
(with respect to the ordinary norm of an operator). Therefore it cannot
be extended by continuity over a larger class of operators.

However, we can try to define the notion of trace as follows: Sup-
pose that the canonical mapping ¥ — T has the following property:

(u) if 7, is a nucleus of the zero operator, then TrT, = 0.

Then all nuclei 7 of a fixed nuclear operator 7' have the same trace.
Their common value will be called the trace of T and denoted by trZT.

Of course the uniqueness property of 9 implies the condition (u).
On the other hand, it is evident that for our purpose it suffices to assume
only the hypothesis (u). For if T is nuclear, then the numbers o, and o,
are uniquely determined by 7. Thus the determinant system for I-T
does not depend on the choice of any nucleus of 7, it is uniquely deter-
mined by 7' only.

icm
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Unfortunately, the hypothesis of whether condition (u) always
holds is as difficult as the uniqueness problem of M. Grothendieck [2]
has proved that both problems are equivalent.

However, for some special nuclear operators T it is possible to define
the trace of T' in another way, e. g. as the sum of eigenvalues of 7 (¥).
So we can get the unigeness of the definition of the determinant system
for I+ T for some special nuclear operators 7.

Note the following result of Grothendieck [2]. Every nucleus 7 can
be written in the form

@ T = 4‘?’" EQay,

where

(2) & =1 = |2 and j[ti] < co.
Moreover -

(3) [7] = inf Zu; %],

where “inf” is extended over all representations of nucleus 7 in the
form (1), (2).

For 0 < p < 1, denote by N, the class of all nuclei 7 which can be
represented in the form (1) where

() Gl =1=la] and Dkl < co.
Let -
(5) |71y = inf 3 4"

where “inf” is extended over all representations of 7, in the form (1),
(4). Of course, N; = N and |F|; = |7]. For 0 <p < 1, N, is a proper
linear subset of 9N (except the case where X is finitely dimensional). N,
is & metric linear space but not a Banach space since

TstTily < [T+ Tl amd [6Tly = 1”17
for 74, 7,, TeN,.

THEOREM 31. If 0 << p <2/3, the canonical mapping is one-to-one
on N, (%).

(44) See Grothendieck [4].
(%) Grothendieek [2], Chapter II, p. 18.
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Observe also that if we resignate from the condition D) (§ 7, p. 160),
we can very easily assign uniquely, to every operator A = I T (TeQD),
a determinant system by some simple analytic formulae. Viz. it followg
from § 11 that the expression
(6) D(T) = Dy(T) exp(—TrT + $Tr7?)
does not depend on the choice of the quasinucleus 7 of T', it depends only
on 7. The sequence

(7 DP(T), DP(T

(n=0,1,2,...)

Dp(T),

" is a determinant system for I —}—1’.
If 7' is nuclear (or, more generally, if 7' is guasinuclear and 7'« €,0),
then we can replace formula (6) by the following ones:

(8) DT = Dy(T)-exp(—TrT)

The expression (3) does not depend on the choice of the nucleus 7 of T,
and the sequence

(9) DINT), DIN(T), DIN(T), ...
is a determinant system for I--7T.

However, in the case of finitely dimensional spaces, the sequences
(7) and (9) do not coincide with the algebraic determinant system for
I+T. They do not have all the properties of the determinant system
Do(T), Di(T), Dy(7), ... defined in §§8 and 11 (e.g. Theorem 18 on
multiplication of determinants does not hold) but, of course, they can
be applied to solve linear equations by means of Theorem 3.

Observe that DP(T) can be represented in the form

m=0,1,2,..).

0

2 ”’b' 71"”1/1

M=

(10) DTy

where 6f),(T) are given by the formulae § 11 (6) (7) with the following
modification: the symbols o, and o, are everywhere replaced by 0. For
n > 2, the number ¢, is uniquely determined by 7' only, and it should
be called the trace of 1™.

Similarly, if T' is nuclear (or, more generally, 7 is qua»smuclear and
T€,Q), then

ay D) = 3 o),

m=0

where 03),(T) are given by the formulae § 11 (6) (7) with the following
modification: the symbol o, is everywhere replaced by 0. For n > 1,

I)LTFI(’ 111 N [ NT THL[)RI

the number o, is uniquely determined by 7T only, and it should be call-
ed the trace of T". 6%),(7) can be also defined by formula § 8 (3) with
the following modlﬁeamon in the determinant 6,., (on the right side
of § 8 (3)) the expressions &, -3 EnymPum should be replaced
by 0 (*).

In the case where X = 5 = a Hilbert space, the notions of a nuclear
operator and a quasinuclear operator coincide. An operator is nuclear
if and only if it is the product (superposition) of two Hilbert-Schmidt
operators. We recall that T is a Hilbert-Schmidt operator if and only if,
interpreting X as a space L*(I", u), T is an integral operator with a ker-
nel (s, ) such that ‘

nly -

(12) Il =y [z, ol dsdt < oo.
In the case where X = 5 = a Hilbert space, the series (11) conver-
ges for all Hilbert-Schmidt operators T and gives a determinant system
for A =714 7T, i.e. for the integral eguations

w(s)+ [ ls, DaB)dt = o(s),
(13)

£+ [ E(s)T(s, 0)ds = &(1)
with a kernel v(s, ) satisfying (12). So we obtain Carleman’s determinant
theory (*) of the integral equations (13). More precisely, Carleman’s
original determinant and subdeterminants coincide with the expressions

(]) El $§'nT :D(l) 517'--:57&
xl,. Ly @y, " \Twyy .oy Ty,
(see the analogous formula in § 12).
The above example shows that sometimes it is useful to investigate

the determinant systems (7) i (9) instead of the determinant system defi-
ned in § 8.

§ 16. Determinants and eigenvalues. Suppose now that X, %
are complex Banach spaces. Let T¢Q9O and let  be a quasinucleus of 7.
Thus D(9-+ A7) (see the notation in § 11, p. 172) is the determinant for
the opera,tor I+ AT. It follows immediately from § 8 (7) that

DY) =

(“) I‘ollowmg an idea of Hilbert [1] in the determinant theory of mtegral equa”
tions. An analogous modification should be performed in formulae quoted in The-
orems 21 and 22 in the integral model of the theory.

(47) Carleman [1] (see also Hille and Tamarkin [1, 2] and Smithies [1], [2]).
The general determinant theory in abstract. Hilbert spaces is the subject of papers:.
Sikorski [7, 8]. See also Fuglede and Kadison [1, 2].
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THEOREM 32. D(T--2AT) 4s an entire function (of the comples varia-
ble 1) of an order < 2. :

Let 4y, A, ... be the sequence formed of all roots A of the equation
D(9+41T) = 0 (every root repeated according to its multiplicity). Since
D(9+4T) = 0, the equation (I+41;T)s = 0 has a non trivial solution
(see Theorem 3), i.e. the number

is an eigenvalue of the operator 1'.
It follows from Theorem 32 that

Zl”f|q=2ﬁt’—q<w

1)

for every ¢ > 2, and

@) DO+AT) = explai+pi) [ [ ((1+ ) exp(—

7

M+ 3 2%7)).

The problem of convergence of the series (1) for ¢ < 2 has not been
examined for arbitrary quasinucleus 7. It was examined by Grothendieck
[2] in the case where 7 is a nucleus (5 = X*). Note the main results:

THEOREM 33 (*). If T 4s a nucleus, then
>

=l
7

Iyl < oo

)
and consequently

(4) D(9+17) = exp(ATrT) [ [ (1 2n;)exp(— Mny)).

¥
If, moreover,

() ;’ Il < oo,

then

(6) D(9+AT) = exp(ad) [] (L+ Awy),
where '

(7

o= TrJ — Zw.
7

(*8) Grothendieck [2), Chapter II, p. 17-20.

icm
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If TeN, (0<p
< r, where

< 1), then D(9427) is an entire function of an order

< |
RS
|
o] =

and of the type 0 for p
(8)

< 2/3. Moreover

(Xl < 1Tl
< 2/3, then (5) holds, and « = 0. Thus

=H(1+Zv]-),
Z’Vj.
-

The problem whether a = 0 (see (7)) for every 7N satistying (5)
is mot solved.

The next theorem treats the case where T has no non-zero eigenvalue.

THEOREM 34(*). The following conditions are equivalent:

(1) D(I+AT) does not vanish for any i;

(i) TrT™ =0 for n =2,3,...;

(iif) Hm|T"" = 0;

T--+00

(iv) hm |7 = 0.

If Te‘ﬁp, where 0 < p < 2/[3, then each of the conditions (i)-(iv) im-
plies

If TeN,, where 0 < p

(9) D(9+47)

(10) 7 =

Tr7 = 0.

The problem whether the last part of Theorem 34 is valid without
the hypothesis 0 < p < 2/3 is not solved.

List of symbols

o 147, tdz 147, £A 147, Az 147, © 148, I 148, £ 149, $O 150, tr 150,
Dy (51" - 5") 150, 6, 152, Dy, 153, Oy 157, 6,0 158, €O 158, T 160, ON 160,

Dys oans By,
Ten (EAx) 162, Ong 163, Dn(T) 163, @ =z 165, FN 165,

9 161, o 161,
%165, MO 165, QO 165, Tr 166, T,0T, 167, T 170, o, 171, D(O+T) 172,
DI(T) 175, Opy 177, 8(s,1) 178, Bum 179, O, 179, OF,, 180, 8% 180, e 181,

8 182, MN 182, deta 183, M 183, My 191, | | 191, DA(T) 192, DO(T) 102.

*) Grothendieck [2], Chapter I, p. 117, and Chapter II, p. 19-20.
1Y
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List of terms

canonical mapping 161, 164 matrix gquasinucleus 182

compact operator 158 nuclear operator 165

determinant 151 nucleus 160, 165

determinant of an infinite square matrix
183

determinant system 150

determinant system of a quasinucleus
162, 164

one-dimensional nucleus 165
one-dimengional operator 149
operator 148

order 1561, 153, 175

quasi-inverse 149
quasinuclear operator 161
quasinucleus 161

finitely dimensional nucleus 165
finitely dimensional operator 150
Fredholm determinant 175
Fredholm operator 153
Fredholm subdeterminant 175

subdeterminant 151

trace of a finitely dimensional operator
150
trace of a quasinucleus 166

integral operator 177
integral gquasinucleus 178

kernel 177, 178 uniqueness property 162
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ON THE IMPOSSIBILITY OF EMBEDDING OF THE SPACE L
IN CERTAIN BANACH SPACES

BY

A. PELCZYNSKI (WARSAW)

In this note we shall prove the following

THEOREM. The space L of all absolutely summable real-valued func-
tions defined on the interval [0, 1] is not isomorphic to a subspace of a sepa-
rable B-space X* conjugate to the B-space X, as well as to a subspace of
a B-space with an unconditional basis.

The impossibility of the embedding of the space L in a conjugate
separable B-space was first proved by Gelfand (see [4], p. 265). Recently
a similar proof was given by Dieudonné [2]. The arguments of Gelfand
and Dieudonné are based on the representation of linear operators in L
by kernels. Qur proof is quite different and is based on the fact that for
every perfect set T C[0,1] of a positive Lebesgue measure there is
a bounded measurable function which is equivalent to mno function
belonging to the first Baire class on 7. The alternative proofs that the
space L has no unconditional basis are given in [5] and [6].

Remark. All results in this paper remain valid if we replace the
space L by the space L(Q, u), where y is a non-purely atomic measure
defined on the o-field of all Borel sets in a compact metric space @, and
L(Q, u) denotes the space of all absolutely summable real-valued func-
tions f defined on @, under the norm |f| = g 1f (@) u(dq)-

By L*® we shall denote the space of all real-valued essentially boun-
ded functions ¢ defined on the interval [0,1] with the morm [g¢] =
€88 suple(t)|. In the sequel by measure of a set 7' C [0, 1] we shall mean

6[0,1]
thé Lebesgue measure of this set and we shall denote it by mes 7.

Lemma 1. Let E be a separable subspace of L™. Then there is a per-
feet set T with positive measure such that every function ¢ in X is equiva-
lent to a function @, the restriction of which is continwous on T.
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