

S. ROLEWICZ

n the first case, and

$$\sum_{k=k_{n-1}+1}^{k_{n}} \|y_{k}\| = h_{n} \|t_{n} x_{n}\|' = h_{n} F(t_{n}, x_{n}) |t_{n}| \|x_{n}\|' \geqslant \frac{1}{2} \cdot 4^{n} \cdot 2^{n} = 2^{n-1}$$

because $F(t_n, x_n) \geqslant F(\tau_n, x_n)$, in the second case.

Hence the series $\sum_{k=1}^{\infty} y_k$ is not absolutely convergent in both cases.

REFERENCES

[1] S. Banach, Théorie des opérations linéaires, Warszawa-Lwów 1932.

[2] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the space (s), Colloquium Mathematicum 7 (1959), p. 45-51.

[3] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in linear normed spaces, Proceedings of the National Academy of Sciences of the United States of America 36 (1950), p. 192-197.

[4] M. Eidelheit und S. Mazur, Eine Bemerkung über die Räume vom Typus (F), Studia Mathematica 7 (1938), p. 159-161.

[5] W. Orlicz, O szeregach doskonale zbieżnych w pewnych przestrzeniach funkcyjnych, Prace Matematyczne I, 2 (1953), p. 393-414.

Reçu par la Rédaction le 23. 2. 1960

COLLOQUIUM MATHEMATICUM

FASC. 1

VOL. VIII 1961

INTEGRALS ON QUOTIENT SPACES

S. ŚWIERCZKOWSKI (WROCŁAW)

NOTATION AND SUMMARY

If G is a locally compact topological group and H is a closed subgroup, then every integral I on the quotient space G/H is associated with exactly one integral \tilde{I} on G (cf. formula (2) below). The class of integrals on G which are of the form \tilde{I} will be characterized in Theorems 1 and 2. It contains the Haar integral if and only if there is an invariant integral on G/H (Th. 1, Corollary). The integrals I and \tilde{I} define a pair of Banach spaces $L^1(G/H)$ and $L^1(G)$. H. Reiter considered these spaces under the assumption that \tilde{I} is the Haar integral on G, whence only in the case where there is an invariant integral on G/H (cf. [4]). His results will be extended in Theorems 3 and 4 to the general case where I is an arbitrary integral on G/H.

If X is a locally compact topological space, we shall denote by L(X)the class of all continuous real-valued functions on X which vanish outside compact sets. The class of extended Baire functions on X (cf. [1], [2]; these functions take also infinite values) will be denoted by B(X). $L_{+}(X)$ and $B_{+}(X)$ will denote the subclasses of non-negative functions. Every non-negative linear functional I on L(X) will be called an integral on X and we shall sometimes assume that the domain of definition of I includes $B_{+}(X)$ or the class of all I-summable functions. The class of all integrals on X will be designated by I(X). We shall denote by S_t the support of a function f on X, i. e. the set $\{x: f(x) \neq 0\}$.

Now let G and H be as in the beginning. Let \overline{x} denote the coset xH. For any $f \in L(G)$ we put

(1)
$$\bar{f}(\bar{x}) = \int_{H} f(x\xi) d\xi,$$

where $\int_{\mathcal{T}}$ is the integral with respect to the left Haar measure in H. It is clear that $\bar{f}(\bar{x})=\bar{f}(\bar{y})$ if $\bar{x}=\bar{y}$ and (see [2], sec. 33A) that $\bar{f} \in L(G/H)$,

INTEGRALS ON QUOTIENT SPACES

where the topology in G/H is the natural one. For any $I \in I(G/H)$ and $f \in L(G)$ we put

(2)
$$\tilde{I}(f) = I(\bar{f}).$$

Then $\tilde{I} \in I(G)$ and the mapping $I \to \tilde{I}$ maps I(G/H) into I(G). Let

$$\tilde{I}(G/H) = \{\tilde{I} : I \in I(G/H)\}.$$

As is well known ([2], sec. 33B), the mapping $f \to f$ transforms L(G) onto L(G/H). Hence, by (2), the mapping $I \to \tilde{I}$ is one-to-one. So we see that the investigation of I(G/H) may be reduced to that of $\tilde{I}(G/H) \to I(G)$. We shall first give some characteristic properties of the class $\tilde{I}(G/H)$ (Theorem 1) and then we shall estimate the "size" of this class in I(G) (Theorem 2). For any integral I on G/H we shall consider the spaces $L^1(G/H)$ and $L^1(G)$ of all I-summable and \tilde{I} -summable functions. The mapping $f \to \bar{f}$ will be shown to be a bounded linear transformation of $L^1(G)$ onto $L^1(G/H)$ with a well-defined kernel K (Theorem 3). We shall also consider the quotient Banach space $L^1(G)/K$ with the norm of a coset defined as its distance from the origin. Then the mapping $f \to \bar{f}$ defines a norm-preserving isomorphism between the spaces $L^1(G)/K$ and $L^1(G/H)$ (Theorem 4).

THE CLASS $\tilde{I}(G/H)$

For $f \in L(G)$ and $a \in G$ we adopt the notation $f^a(x) = f(xa^{-1})$. We define the "translation" Q^a of an integral Q on G by $Q^a(f) = Q(f^a)$. Let J denote the left invariant Haar integral of H. The modular function $\delta(\xi)$ of J is then defined by $J^{\xi} = \delta(\xi)J$ $(\xi \in H)$.

THEOREM 1. The following conditions are equivalent:

(i)
$$Q \in \tilde{I}(G/H)$$
,

(ii)
$$Q(f) = 0 \text{ whenever } \bar{f} = 0 \text{ (} f \in L(G)\text{)},$$

(iii)
$$Q^{\xi} = \delta(\xi)Q \text{ for each } \xi \in H,$$

(iv)
$$Q(f\bar{g}) = Q(\bar{f}g), \text{ when } f, g \in L(G)$$
 (1).

If Q is the Haar integral on G and Δ denotes the modular function for Q, then $Q^x = \Delta(x)Q$ for each $x \in G$. Thus, by (iii), we infer that the Haar integral belongs to $\tilde{I}(G/H)$ iff Δ and δ coincide on H. Hence, by Weil's condition (cf. [5]) the

COROLLARY. The Haar integral belongs to $\tilde{I}(G/H)$ iff there is an invariant measure on G/H.

If Q and *Q are integrals and, for non-negative Baire functions f, Q(f)=0 implies ${}^*Q(f)=0$, then we shall write ${}^*Q\ll Q$. If ${}^*Q\ll Q$ and $Q\ll {}^*Q$, then Q and *Q will be called equivalent and this will be denoted by $Q\equiv {}^*Q$. Condition (iii) in Theorem 1 implies that $Q\equiv Q^t$ for $\xi\in H$. Conversely, we have

THEOREM 2. If $Q \in I(G)$ and $Q \equiv Q^{\ell}$ for every $\xi \in H$, then $Q \equiv {}^*Q$ for some ${}^*Q \in \widetilde{I}(G/H)$.

In particular, let Q be the Haar integral on G. Then Theorem 2 implies the existence of an integral I on G/H such that \tilde{I} is equivalent to the Haar integral. The existence of such an integral was shown previously in [3] (the corresponding Baire measure was called *inherited*).

Proof of theorem 1. The equivalence of (i) and (ii) follows by (2). Also the implication (ii) \rightarrow (iii) is easily shown. By the definition of δ , we have, for $f \in L(G)$, $\overline{f^{\xi}} = \delta(\xi)\overline{f}$, whence $Q(f^{\xi} - \delta(\xi)f) = 0$, by (ii), i. e. $Q^{\xi}(f) = \delta(\xi)Q(f)$. It remains to show that the implications (iii) \rightarrow (iv) \rightarrow (ii) hold.

(iii) \rightarrow (iv). If $g(x, \xi) \in L(G \times H)$, then we can think of g as being a collection of functions in L(G), each corresponding to a fixed value of ξ . Then, for each ξ , Q(g) is defined and, to be more precise, we shall denote this number by $Q_x(g(x, \xi))$. We adopt a similar convention for the integral J on H, so that $Q_x(g(x, \xi)) \in L(H)$ and $J_{\xi}(g(x, \xi)) \in L(G)$ (cf. [2], sec. 16B). In the sequel we shall use the well-known equality

$$Q_x J_{\varepsilon}(g(x,\,\xi)) = J_{\varepsilon} Q_x(g(x,\,\xi)).$$

Also the well-known formula $J_\xi \big(h(\xi)\big) = J_\xi \big(h(\xi^{-1})\,\delta(\xi^{-1})\big)$ will be applied. We have

$$\begin{split} Q(f\bar{g}) &= Q_x \Big(f(x) J_{\xi} \big(g(x\xi) \big) \Big) = Q_x J_{\xi} \big(f(x) g(x\xi) \big) \\ &= J_{\xi} Q_x \Big(f(x) g(x\xi) \big) = J_{\xi} Q_x^{\xi^{-1}} \Big(f(x\xi^{-1}) g(x) \big), \end{split}$$

and this, by (iii), is equal to

$$\begin{split} J_{\xi} \, \delta(\,\xi^{-1}) \, Q_x \big(& f(x \xi^{-1}) \, g(x) \big) \, = \, Q_x \big(g(x) \, J_{\xi} \big(f(x \xi^{-1}) \, \delta(\,\xi^{-1}) \big) \big) \\ & = \, Q_x \big(g(x) \, J_{\xi} \big(f(x \xi) \big) \big) \, = \, Q(g \bar{f}) \, . \end{split}$$

 $(iv) \rightarrow (ii)$. Suppose that $f \in L(G)$ and $\bar{f} = 0$. By (iv), it is sufficient to find a function $g \in L(G)$ such that $f = f\bar{g}$ since then $Q(f) = Q(f\bar{g}) = Q(\bar{f}g) = 0$. Such a function g exists because, by Urysohn's Lemma, there is a function $d \in L(G/H)$ which is equal to 1 on the bounded set $\{\bar{x}: f(x) \neq 0\}$ and there is a function $g \in L(G)$ such that $\bar{g} = d$.

⁽¹⁾ Here \overline{f} and \overline{g} are defined over G by the formulae $\overline{f}(x) = \overline{f}(x)$ and $\overline{g}(x) = \overline{g}(x)$.

Proof of theorem 2. The construction of *Q follows in lemmas A and B.

A. If Q is an integral on G and $p \in L_+(G)$, then the formula

$$_{p}Q(f) = J_{\xi}Q_{x}(f(x\xi)p(x))$$

defines an integral ${}_{p}Q \in \tilde{I}(G/H)$.

Proof of A. Since $f(x\xi)p(x) \in L(G \times H)$ and $J_{\xi}Q_x$ is an integral on $G \times H$ (cf. [2], sec. 16B), ${}_pQ$ is an integral. It remains to verify that ${}_pQ^{\sigma} = \delta(\sigma){}_pQ$ for $\sigma \in H$. If $f \in L(G)$ and $\sigma \in H$, then

$${}_{p}Q^{\sigma}(f) = J_{\xi}Q_{x}\left(f(x\xi\sigma^{-1})p(x)\right) = Q_{x}\left(J_{\xi}\left(f(x\xi\sigma^{-1})\right)p(x)\right)$$
$$= Q_{x}\left(\delta(\sigma)J_{\xi}\left(f(x\xi)\right)p(x)\right) = \delta(\sigma)_{p}Q(f).$$

B. Let $Q \in I(G)$ satisfy $Q^{\xi} \equiv Q$ for $\xi \in H$ and let $0 \neq p \in L_{+}(G)$. We consider the integral pQ which was defined in A and also all such integrals with p replaced by a translation p^{t} ($t \in G$). We denote these integrals by tQ. Then there is a set $T \subseteq G$ such that the expression

$$^*Q(f) = \sum_{t \in T} {}_tQ(f)$$

defines an integral $^*Q \equiv Q$, Moreover, $^*Q \in I(G/H)$.

Proof of B. Let T be any subset of G which is minimal with respect to the property $S_pTH=G$ (S_p is the support of p). If φ is the natural mapping of G onto G/H, then our condition means that the open sets $\varphi(S_pt)$, $t \in T$, form a minimal covering of G/H.

We show first that

(*) $T \cap CH$ is finite when $C \subseteq G$ is a compact set.

Consider the compact set \bar{S}_p (closure of S_p). The set \bar{S}_pC is compact and hence $\varphi(\bar{S}_pC)$ is compact. Since $\varphi(S_pt)$, $t \in T$, are open and their union covers G/H, $\varphi(\bar{S}_pC)$ can be covered by a finite union of these sets. Thus, by the minimality of T, there cannot be infinitely many sets $\varphi(S_pt)$ contained in $\varphi(\bar{S}_pC)$. Hence the relation $t \in T \cap CH$ holds for a finite number of t's at most.

To prove that *Q is an integral it is enough to show that, for each $f \in L(G)$, the sum defining *Q has only a finite number of non-zero terms. Indeed, if ${}_tQ(f) \neq 0$, then, by A, $f^{\xi}p^t \neq 0$ for some $\xi \in H$, $t \in T$. Then there is an x such that $x \xi^{-1} \in S_f$ and $x t^{-1} \in S_p$ and, this implies that $t \in S_p^{-1} S_f H$. Since the closure of $S_p^{-1} S_f$ is compact, we see by (*), that only a finite number of elements of T can satisfy this condition.

Now let us show that ${}^*Q \equiv Q$. Since $Q \equiv Q^{\xi}$ for $\xi \in H$, it easily follows from our construction that ${}^*Q \ll Q$. To show that $Q \ll {}^*Q$, we have to show that

(**)
$$Q(f) > 0$$
 implies ${}^*Q(f) > 0$ if $f \in B_+(G)$.

Since G is covered by the open sets $S_p t \xi$ $(t \in T, \xi \in H)$, the support of any Baire function can be covered by a countable union of such sets. It follows that it is enough to prove (**) under the assumption that the support S_f is contained in one of the sets $S_p t \xi$. Moreover, we can assume that f is bounded. We have that $f p^{t \xi}$ is positive on S_f , whence $Q(f p^{t \xi}) > 0$. Let us fix the element t for which this inequality holds. Since p is uniformly continuous and f is bounded, we infer that $Q(f p^{t \xi})$ is a continuous function of ξ . Thus it is positive on a certain open subset of H and, by $Q \equiv Q^{\xi}$, we have

$$Q^{\xi^{-1}}(fp^{t\xi}) = Q(f^{\xi^{-1}}p^t) = Q_x(f(x\xi)p^t(x)) > 0$$

for an open set of ξ 's. This proves that ${}^*Q(f)>0$. We have thus shown that ${}^*Q\equiv Q$.

By A, we have ${}_{t}Q \in \tilde{I}(G/H)$ $(t \in T)$, and thus ${}^{*}Q \in \tilde{I}(G/H)$.

THE SPACES
$$L^1(G)$$
 AND $L^1(G/H)$

Let I be an integral on G/H. We consider the Banach spaces $L^1(G)$ and $L^1(G/H)$ under the norms

$$||f||_G = \tilde{I}(|f|), \quad ||g||_{G/H} = I(|g|).$$

THEOREM 3. The mapping $f \to \bar{f}$, when considered on $L^1(G)$, is a bounded linear transformation of this space onto $L^1(G/H)$. Its kernel

$$K = \{k \in L^1(G) : ||\bar{k}||_{G/H} = 0\}$$

is the closed linear subspace generated by all the functions

$$n(x) = f^{\xi}(x) - \delta(\xi)f(x),$$

where $f \in L(G)$ and $\xi \in H$.

Let us note that the mapping $f \to \bar{f}$ cannot be extended to B(G) because $\int_{G} f(x\xi) d\xi$ may not exist for some $f \in B(G)$.

THEOREM 4. Let

$$dist\{f, K\} = g.l.b.\{||f - k||_G: k \in K\},\$$

and let $L^1(G)/K$ be the quotient space with the norm of a K-coset y defined as $\operatorname{dist}\{f,K\}$, where f is any representative of y (cf. [2], sec. 6B). Then the mapping $f \to \bar{f}$ establishes a norm-preserving isomorphism between the spaces $L^1(G)/K$ and $L^1(G/H)$ so that

$$\operatorname{dist}\{f,K\} = \|\bar{f}\|_{G/H}.$$

In the above theorems we have generalized the results of H. Reiter [4]. He assumed that \tilde{I} is the Haar integral and that there is an invariant measure on G/H. Theorems 3 and 4 include this case since, under the above assumption, the Haar integral belongs to $\tilde{I}(G/H)$ (Th. 1, Corollary).

Proof of theorem 3. It is known that the mapping $f \to \bar{f}$, as defined by (1), transforms $L_+(G)$ onto $L^+(G/H)$ ([2], sec. 33). It extends uniquely to a mapping of $B_+(G)$ onto $B_+^1(G/H)$. This follows from the fact that (1) is invariant under the formation of limits of monotone sequences and this operation is sufficient to obtain the classes B_+ from the classes L_+ . Since also (2) is invariant under these operations, we infer that

(3)
$$\tilde{I}(f) = I(\bar{f}) \quad \text{when} \quad f \in B_+(G),$$

where ∞ is allowed as a possible value of the integrals. If $f \in L^1(G)$, then both non-negative parts, f_1 and f_2 , of f ($f = f_1 - f_2$, $f_i \geqslant 0$) are \tilde{I} -summable, and thus, by (3), $\bar{f}_i \in L^1_+(G/H)$. It follows that the formula $\bar{f} = \bar{f}_1 - \bar{f}_2$ defines \bar{f} as an element of $L^1(G/H)$ (with the usual ambiguity at those points where the summands assume opposite infinities as values). We have thus shown that the mapping $f \to \bar{f}$ can be extended to $L^1(G)$.

If f runs over $B_+(G)$, then \overline{f} runs over $B_+(G/H)$ and if one of these functions is summable, then so is the other, by (3). Hence the transformation $f \to \overline{f}$ maps $L^1_+(G)$ onto $L^1_+(G/H)$. Consequently $L^1(G)$ is mapped onto $L^1(G/H)$.

The transformation is bounded because

$$||\bar{f}||_{G/H} = I(|\bar{f}|) \leqslant I(|\bar{f}_1| + |\bar{f}_2|) = \tilde{I}(|f|) = ||f||_G.$$

Finally, let us show that the kernel K of this transformation is the closed linear subspace $N \subset L^1(G)$ which is generated by the functions n(x). It is clear that $\overline{n} = 0$ and from the continuity of the transformation we infer that K is closed. Hence $N \subset K$. If N^{\perp} denotes the class of all bounded linear functionals F which vanish on N, i. e. the annihilator of N, and if K^{\perp} is the annihilator of K, then the inclusion $K \subset N$, which we have to prove, is equivalent to $N^{\perp} \subset K^{\perp}$. Thus we have to verify that if $F \in N^{\perp}$ and $k \in K$, then F(k) = 0. We need the following

LEMMA. If $F \in \mathbb{N}^{\perp}$, then there are integrals I_0 and I_1 on G/H such that

$$F = \tilde{I}_0 - \tilde{I}_1$$

and $I_0, I_1 \ll I$.

Remark. The proof given below yields in fact the following stronger result: N^{\perp} is the class of functionals F which are of the form $F = \tilde{I}_0 - \tilde{I}_1$, where I_0, I_1 are bounded integrals on G/H such that $I_0, I_1 \ll I$.

Proof of the Lemma. As is well known ([2], sec. 15A), each bounded functional F on $L^1(G)$ is expressible as the difference $F = F^+ - F^-$ of two bounded integrals (non-negative functionals), where

$$(4) F^+(f) = \operatorname{lub} \{ F(g) \colon 0 \leqslant g \leqslant f \} \quad \text{when} \quad f \geqslant 0.$$

Moreover, if $F \in N^{\perp}$, then F^+ , $F^- \in \tilde{I}(G/H)$. Indeed, we have $F(f^{\xi} - \delta(\xi)f) = 0$, when $f \in L(G)$, $\xi \in H$, and hence $F^{\xi} = \delta(\xi)F$. Thus, by (4), F^+ satisfies condition (iii) of Theorem 1, and consequently also $F^- = F^+ - F$ satisfies this condition.

Let $I_0,\,I_1$ be integrals on G/H such that $\tilde{I}_0=F^+$ and $\tilde{I}_1=F^-$. Since F^+ and F^- are bounded, we infer that $\|f\|_G=0$ implies $F^\pm(f)=0$, i. e. $\tilde{I}_i\ll \tilde{I}\ (j=0,1)$. To prove that $I_j\ll I$ assume that I(g)=0, where $g\,\epsilon B_+(G/H)$. There is a function $f\,\epsilon B_+(G)$ such that $\bar{f}=g$, and then $\tilde{I}(f)=0$, by (3). It follows that $\tilde{I}_j(f)=0$, and thus, again using (3), $I_j(g)=0$. This proves the lemma.

Suppose now that $F \, \epsilon N^{\perp}$ and $k \, \epsilon K$, i. e. $I(|\bar{k}|) = 0$. By the above lemma

$$F(k) = \tilde{I_0}(k) - \tilde{I_1}(k) = I_0(\bar{k}) - I_1(\bar{k}),$$

and both $I_i(\bar{k})$ vanish because $I_i \ll I$. Our proof is now complete.

Proof of theorem 4. $L^1(G)/K$ and $L^1(G/H)$ are isomorphic linear spaces, by the definition of K. We may therefore assume that these spaces are identical, that is to say, a K-coset with a representative $f \in L^1(G)$ will be identified with \bar{f} . Then we have in $L^1(G/H)$ also the norm taken from $L^1(G)/K$:

$$_{K}||\tilde{f}||_{G/H}=\operatorname{dist}\{f,K\}.$$

To prove our theorem we must verify that both norms in $L^1(G/H)$ are identical, i.e. that

$$\|g\|_{G/H} = \|g\|_{G/H} \quad ext{ when } \quad g \in L^1(G/H).$$

This is easily seen once we have shown that

- (a) $_{K}||g||_{G/H} = ||g||_{G/H}$, when $g \geqslant 0$ or $g \leqslant 0$,
- (b) $_K ||g+h||_{G/H} = _K ||g||_{G/H} + _K ||h||_{G/H},$ when the supports of g and h are disojoint.

Proof of (a). If $g \in L^1_{\pm}(G/H)$, then there is a function $f \in L^1_{\pm}(G)$ such that $\overline{f} = g$. Then $K_{\epsilon} \|g\|_{G/H} = \mathrm{dist}\{f, K\}$. If $K_{\epsilon}K$, then

$$\int\limits_{H}|f(x\xi)-k(x\xi)|\,d\xi\geqslant|\int\limits_{H}\left(f(x\xi)-k(x\xi)\right)d\xi|=|\bar{f}(\overline{x})|$$

Colloquium Mathematicum VIII

1:14

S. ŚWIERCZKOWSKI

and hence, by (3),

$$||f-k||_G = I\left(\int\limits_{\widetilde{H}} |f(x\xi)-k(x\xi)|\,d\xi\right) \geqslant I(|\widetilde{f}|) = \widetilde{I}(|f|) = ||f||_G.$$

This proves that $||f||_G = \text{dist}\{f, K\}$. Now, by (3), $||f||_G = ||g||_{G/H}$ and hence $||g||_{G/H} = _K ||g||_{G/H}$.

Proof of (b). By the triangle inequality it suffices to verify that

$$|g+h|_{G/H} \geqslant |g|_{G/H} + |g|_{G/H}.$$

Let $r, t \in L^1(\mathcal{G})$ be such that $\overline{r} = g$, $\overline{t} = h$, where the supports S_r, S_t satisfy $S_r H \cap S_t H = \emptyset$. Then the inequality we wish to prove is equivalent to

(5)
$$\operatorname{dist}\{r+t, K\} \geqslant \operatorname{dist}\{r, K\} + \operatorname{dist}\{t, K\}.$$

It is easily seen that if $k \in K$, then the restricted functions $k^{(r)} = k | S_r H$ and $k^{(t)} = k | S_t H$ also belong to K, and this implies that

$$\begin{split} \|r+t-k\|_G &= \tilde{I}(|r-k^{(r)}|+|t-k^{(t)}|+|k-k^{(r)}-k^{(t)}|) \\ &\geqslant \|r-k^{(r)}\|_G + \|t-k^{(t)}\|_G \geqslant \operatorname{dist}\{r,\,k\} + \operatorname{dist}\{t,\,K\} \,. \end{split}$$

Hence (5) follows and the proof of Theorem 4 is complete.

REFERENCES

- [1] P. R. Halmos, Measure theory, New York 1951.
- [2] L. H. Loomis, An introduction to abstract harmonic analysis, New York 1953.
- [3] A. M. Macbeath and S. Świerczkowski, Measures in homogeneous spaces, Fundamenta Mathematicae 49 (1960), p. 15-24.
- [4] H. Reiter, Über L¹-Räume auf Gruppen I, Monatshefte für Mathematik 58 (1954), p. 73-76.
- [5] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1938.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 23. 3. 1960; en version modifiée le 1. 4. 1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

ON THE ALGEBRAS L, OF LOCALLY COMPACT GROUPS

 \mathbf{BY}

W. ZELAZKO (WARSAW)

Let G be locally compact group, and μ its left invariant Haar measure. Let L_p be the Banach space of complex functions defined on G, for which

$$||f||_p^p = \int |f(t)|^p d\mu(t) < \infty.$$

It is well known that L_1 is a Banach algebra if multiplication is defined as the convolution

$$f*g(t) = \int f(t\tau^{-1})g(\tau) d\mu(\tau).$$

It is also known that if the group G is compact, then the space L_2 is also a Banach algebra with the same multiplication (see [1], p. 156). Here I shall prove that this theorem and the converse theorem hold for all p>1. More precisely I shall prove

THEOREM 1. If the locally compact group G is compact, then for every p, $1 \leq p \leq \infty$, the space L_p is a Banach algebra under convolution.

THEOREM 2. If for a locally compact abelian group the space L_p is a Banach algebra under convolution, and 1 , then the group G is compact.

The following simple remark is useful in the proofs:

Let X be a Banach space with the norm $\|x\|$, and R a dense linear subspace, which is at the same time an algebra with the multiplication xy. Then

(A) X is a Banach algebra with the same multiplication if and only if there exists such a number C>0 that

$$||xy|| \leqslant C ||x|| ||y||$$
 for every $x, y \in R$.

Or, what is equivalent,