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n the first case, and
kﬂ

1 n Y3 —_
E lyell = bl = B ' (1, @) [ta] 2all" 2 3‘ 42" = 2"
k=ky_1+1

because F(t,,x,) > F(v,,,), in the second case.
o0

Hence the series 'y, is not absolutely convergent in both cases.

f=1
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NOTATION AND SUMMARY

If @ is a locally compact topological group and H is a closed sub-
group, then every integral I on the quotient space G/H is associated with
exactly one integral I on @ (cf. formula (2) below). The class of integrals
on @ which are of the form I will be characterized in Theorems 1 and 2.
It contains the Haar integral if and only if there is an invariant integral
on G/H (Th. 1, Corollary). The integrals I and I define a pair of Banach
spaces L'(G/H) and L'(G). H. Reiter considered these gpaces under the
agsumption that I is the Haar integral on @, whence only in the case
where there is an invariant integral on G/H (cf. [4]). His results will be
extended in Theorems 3 and 4 to the general case where I is an arbitrary
integral on G/H.

If X is a locally compact topological space, we shall denote by L(X)
the class of all continuous real-valued funections on X which vanish
outside compact sets. The class of extended Baire functions on X
(ef. [1], [2]; these functions take also infinite values) will be denoted by
B(X). L,(X) and B,(X) will denote the subclasses of non-negative
functions. Every non-negative linear functional I on L(X) will be called
an integral on X and we shall sometimes assume that the domain of defi-
nition of I includes B, (X) or the class of all I-summable functions. The
class of all integrals on. X will be designated by I(X). We shall denote
by 8; the support of a function f on X, i.e. the set {@: f(w) 7 0.

Now let G and H be as in the beginning. Let % denote the
coset wH. For any feL(G) we put

(1) i@ = [f(=8)dt,
H

where [ is the integral with respect to the left Haar measure in H. It
H 0 -
is clear that F(%) = (7) if Z = 7 and (see [2], sec. 33A) that feL(G/H),
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where the topology in ¢/H is the natural one. For any I<I(G[H) and
feL(G) we pub
@)

I = 1(h.
Then el (@) and the mapping I .y maps I(G/H) into I(G). Let

1G/H) = {I: T<I(G[H)).

Ag is well known ([2], sec. 33B), the mapping f - f transforms L(G)
onto L(G/H). Hence, by (2), the mapping I — T is one-to-one. So we
see that the investigation of I(G/H) may be reduced to that of I (GH)
D I(G). We shall first give some characteristic properties of the class
I (G/H) (Theorem 1) and then we shall estimate the “size” of this class
in I(@) (Theorem 2). For any integral I on G/H we shall consider the
spaces L' (G/H) and L*(G) of all I-summable and I-summable functions.
The mapping f — f will be shown to be a bounded linear transformation
of I1(@) onto LA(G/H) with a well-defined kernel K (Theorem 3). We
ghall also congider the quotient Banach space L'(@)/K with the norm of
a coset defined as its distance from the origin. Then the mapping f->f
defines a norm-preserving isomorphism between the spaces L*(G)/K
and LY(G/H) (Theorem 4).

THE OLASS T(G/H)
For feL(G) and a<G we adopt the notation f*(z) = f(za™). We
define the “translation” @ of an integral @ on G by Q“ = Q(f*). Let J

denote the left invariant Haar integral of H. The modula,r function (&)
of J is then defined by J* = 8(&)J (&<H).

THEOREM 1. The following conditions are equivalent:

@ Qel(G/H),

(i) Q(f) = 0 whenever f =0 (fel()),
(iii) @ = Q for cach &eH,

{iv) QUfF) = Q(fg), when f, geL(G) ().

If @ is the Haar integral on @ and 4 denotes the modular function
for @, then @" = A(»)Q for each ze@. Thus, by (iii), we infer that the

Haar integral belongs to I(G/H) iff 4 and & coincide on H. Hence, by
Weil’s condition (c¢f. [5]) the

() Here f and g are defined over G by the formulae f(x) = } () and g(z) = ¢(x)-

©

INTEGRALS ON QUOTIENT SPACES 109

CorOLLARY. The Haar integral belongs to I (G/H) iff there is an in-
variant measure on G[H.

It @ and *Q are integrals and, for non- negatlve Baire functions f,
Q(f) = 0 implies Q(f =0, then we shall write *Q < Q. If *Q < @ and
Q < *Q, then @ and *@ will be called equivalent and this will be denoted
by @ = "Q. Condition (iii) in Theorem 1 implies that Q = @° for £eH.
Conversely, we have

THEOREM 2. If QeI(G
some *QeI(G/H).

In particular, let ¢ be the Haar integral on G. Then Theorem 2
implies the existence of an integral I on G/H such that I is equivalent
to the Haar integral. The existence of such an integral was shown pre-
viously in [3] (the corresponding Baire measure was called inherited).

Proof of theorem 1. The equivalence of (i) and (ii) follows by (2).
Also the implication (ii) - (111 is easﬂy shown. By the definition of 6,
we have, for feL(&), ff = 6(£)], whence Q(f—5(£)f) =0, by (i), i.e.
Q(f) = 6(&5)Q(f). It remains to show that the implications (iii) — (iv)
— (ii) hold.

(i) — (iv). If g(=», £)eL(GxH), then we can think of g as being
a collection of functions in L(@), each corresponding to a fixed value
of & Then, for each &, Q(g) is defined and, to be more precise, we shall
denote this number by Qm(g(m, 5)). ‘We adopt a similar convention for the
integral J on H, so that Q,{g(x, &) eL(H) and J¢(g(x, £)eL(G) (of. [2],
sec. 16B). In the sequel we shall use the well-known equality

Qst(g(my f)) = J.',*Qz(g(my 5))
Also the well-known formula J,(h(&) = Js(h(£7)8(67") will be
applied. We have,
QD) = Qu(f(0) Telg(28))) = QuT:(f(@) g(2))
= J:Qu(f(@)g(28) = T:05 (@& Mg (@),
and this, by (iii), is equal to
T:6(67)Qu(F(0E ) 9(2) = Qulg (o) Te(Fl@E™) (&™)
= Qu(9(2)T{f@8)) = QD)
(iv) — (ii). Suppose that feL(G) and f = 0. By (iv), it is sufficient
to find a function geI(@) such that f=fj since then @Q(f) = Q(/7)
=Q(fg) = 0. Such a function g exists because, by Urysohn’s Lemma,

there is a function deL(G/H) which is equal to 1 on the bounded set
{#: flw) # 0} and there is a function geL(§) such that § =d.

) and @ == Q°* for every EcH, then Q =*Q for
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Proof of theorem 2. The construction of *@ follows in lemmas A
and B.
A, If @ is an integral on G and peL, (&), then the formula
2R(f) = J:Qu (f(28)p ()
defines an integral ,Q eI (G/H).
Proof of A. Since f(wé)p(2)eL(GX H) and J.Q, is an integral on

GxH (cf. [2], sec. 16B), ,Q is an integral. It remains to verify that
20° = 8(0),@ for ceH. If feL(G) and oeH, then

oQ°(f) = JeQu (f@éo™)p (@) = Qul 7 (f(wEo~)p ()
= Qu[8(0) T {f (@) p (@) = 8(0)@(f)-

B. Let Q<I(G) satisfy ¢ =@ for f<H and let 0 o pel, (G).
‘We consider the integral ,@ which was defined in A and also all such in-
tegrals with p replaced by a translation p’ (¢e¢@). We denote these
integrals by ,Q. Then there is a set T C & such that the expression

Q) =D QW
teT
defines am integral *Q = Q, Moreover, *Q  I{G/H).

Proof of B. Let T be any subset of ¢ which is minimal with respect
to the property S,TH = G (8§, is. the support of p). If ¢ is the natural
mapping of G onte G/H, then our condition means that the open sets
@(8pt), tel, form a minimal covering of G/H.

We show first that-

T ~ CH is finite when CC G is a compact set.
Consider the compact set S, (closure of S,). The set §,C is compact
and hence ¢ (S,C) is compact. Since p(S,t), teT, are open and their union
covers G/H, (S,C) can be ecovered by a finite union of these sots. Thus,
by the minimality of 7, there cannot be infinitely many sets ¢ (S,¢) con-
tained in ¢(S,0). Hence the relation teT~CH holds for & finite number
of ¥s at most.

To prove that *@ is an integral it is enough to show that, for each
feL (@), the sum defining *Q has only a finite number of non-zero terms.
Indeed, if Q(f) £ 0, then, by A, f*p° 0 for some &eH, t<T. Then
-there is an ® such that #£7¢S; and at™'¢S, and, this implies that
teS; '8, H. Bince the closure of §;'S; is compact, we see by (x), that
only a finite number of elements of T can satisfy this condition.

Now let us show that *Q = Q. Since @ == @ for £ H, it easily follows
from our construetion that *@ < @. To show that @ < *@, we have to
show that

() Q) >0 implies *Q(f) >0 if feB, (G).

*)
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Since G is covered by the open sets 8pt& (teT, £eH), the support
of any Baire function can be covered by a countable union of such sets,
It follows that it is enough to prove (++) under the assumption that the
gupport Sy is contained in one of the sets 8pté. Moreover, we can assume
that f is bounded. We have that fp is positive on 8;, whence @ (fp%) > 0.
Let us fix the element ¢ for which this inequality holds. Since p is uni-
formly continuous and f is bounded, we infer that Q(fp®) is a continuous

function of & Thus it is positive on a certain open subset of H and, by
Q = ¢, we have

¢ = U TP) = Qulfet) (@) >0

for an open set of &s. This proves that *@(f) > 0. We have thus shown
that *Q = Q.

By A, we have Q<I(G/H) (1T), and thus *Q <I(6/H).
THE SPACES L'(¢) AND LY(G/H)

Let I be an integral on G/H. We consider the Banach spaces L'(Q)
and I'(G/H) under the norms

Iflle = I(I71),

THBEOREM 3. The mapping f - ]7, when considered on L' (@), is a bounded
linear tramsformation of this space onto LM(G/H). Its kernel

llgllesm = I(|g1)-

K = (leIM@): [l = 0}
is the closed linear subspace generated by all the functions
‘ n(@) = £ (@)— 8(&)f(@),
where feL(@) and EeH.

Let us note that the mapping f —>f cannot be extended to B({)
because ff(mg)df may not exist for some feB(G).
I

THEOREM 4. Let
dist{f, K} = gLb.{|f—klg: ke K},

and let L1 (G) /K be the quotient space with the norm of a K-coset y defined
as dist{f, K}, where f is any representative of y (cf. [2], sec. 6B). Then
the mapping f - J establishes .o norm-preserving isomorphism between the
spaces LY (G)|/K and LY (@|H) so that

dist(f, K} = |fllaz-


GUEST


8, SWIBRCZKOWSKI

In the above theorems we have generalized the results of H. Rei-
ter [4]. Fe assumed that I is the Haar integral and that there iy an
invariant measure on &/H. Theorems 3 and 4 include this case since,
under the above assumption, the Haar integral belongs to I(G/H)
(Th. 1, Corollary).

Proof of theorem 3. It is known that the mapping f—f, as
defined by (1), transforms L (G) onto L+ (G/H) ([2], sec. 33). It extends
uniquely to a mapping of B (&) onto B'.(G[H). This follows from. the
fact that (1) is invariant under the formation of limits of monotone
sequences and this operation is sufficient to obtain the classes B, from
the classes L. Since algo (2) is invariant under these operations, we infer
that
(3) I(f) = I(f)
where oo is allowed as a possible value of the integrals. If fe L*(@), then
both non-negative parts, f; and. fy, of f (f = fi—fa, fi 2 0) arve I-summable,
and thus, by (3), feIl (G/H). It follows that the formula f =7 —F,
defines 7 as an element of L'(G/H) (with the usual ambiguity at those
points where the summands assume opposite infinities as values). We
have thus shown that the mapping f — f can be extended to L'(G).

If f runs over B, (@), then 7 runs over B, (G/H)and if one of these
functions is summable, then so is the other, by (3). Hence the transfor-
mation f - f maps I (@) onto L} (G/H). Consequently I'(@) is mapped
onto L'(G[H).

The transformation is bounded because

Wiloyz = T(F) < I(Fsl+17el) = T(1f1) = Iiflle-

Finally, let us show that the kernel K of this transformation is the
cloged linear subspace N C L'(¢) which is generated by the functions
n(x). It is clear that % = 0 and from the continuity of the transformation
we infer that K is closed. Hence N C K. If N+ denotes the class of all
bounded linear functionals ' which vanish on ¥, i. e. the annihilator of
N, and if Kt is the annihilator of K, then the inclusion K C N, which we
have to prove, is equivalent to N+ C K+. Thus we have to verify that
if FeN' and keK, then F(k) = 0. We need the following

Lovma. If FeNL, then there are integrals I, and I, on G[H such thai

when feB,(G),

I = fl)_j;.
and Iy, I, < I.
Remark. The proof given below yields in fact the following stronger
result: N1 is the class of functionals F which are of the form F = fo-—f 1
‘where I,, I, are bounded integrals on G/H such that I, I, < I.
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Proofof the Lemma. As is well known ([2], sec. 15A), each bound-
ed functional ¥ on L*(G) is expressible as the difference F = F+—F~
of two bounded integrals (non-negative functionals), where

(4) F*(f) =lub{F(9): 0 <g <f} when f>0.

Moreover, if FeN', then F*, F~cI(G/H). Indeed, we have
F(ff—8(8)f) =0, when feL(&), é<H, and hence F* = §(¢)F. Thus, by
(4), F* satisfies condition (iii) of Theorem 1, and consequently also
F~ = F"—F gsatisfies this condition.

Let Iy, I, be integrals on G/H such that I, = F* and I, = F~.
Since I and I~ are bounded, we infer that ||flls = 0 implies F* (f) = 0,
ie. I; < I (j =0,1). To prove that I; < I assume that I(g) = 0, where
geB, (G/H). There is a function feB, (&) such that f =g, and then
I(fy =0, by (3). Tt follows that I;(f) =0, and thus, again using (3),
I;(g) = 0. This proves the lemma.

Suppose now that FeN+ and keK, i.e. I(|k]) = 0. By the above
lemma

F(k) = Io(k)—I,(k) = I()—I,(%),

and both I;(%) vanish because I; < I. Our proof is now complete.
Proof of theorem 4. LY(#)/K and L'(G/H) are isomorphic linear
spaces, by the definition of K. We may therefore assume that these spaces
are identical, that is to say, a K-coset with a representative feL*(G) will
be identified with 7. Then we have in I'(G/H) also the norm taken from
LY @)K :

wl gz = dist{f, K}.

To prove our theorem we must verify that both norms in L'(G/H)
are identical, i. e. that . '

s

xllglloyzr = lgllyz ~ when  geL*(G/H).

This is easily seen once we have shown that

() wllglear = lglam, when g 20 or g <0,

®)  wlly - bller = wllgle;a+xhlem, when the supports of g and h
are disojoind.

Proof of (a). If geL (G/H), then there is a funection feI) (&) sueh
that f = g. Then gl|gllyn = dist{f, K}. If keK, then

[ 1f @) —b(@e)ae =| [ (f@e)—k(@s)dEl = |F(@)]
H H
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and hence, by (3),
If—Hle = I( [ If@&)—Hk(@é)|dg) = (7)) = 1(1f) = Ifla-
:4

This proves that |flle = dist{f, K}. Now, by (3), |Ifle = llgllejzz and
hence |gligz = llgllea-
Proof of (b). By the triangle inequality it suffices to verify that

zllg+Pllem = xllglen +xlhllez -

Let 7, teL*(@) be such that 7 = g, I = h, where the supports S,, §,
satisfy 8, H ~ S,H = @. Then the inequality we wish to prove is equiva-
lent to i

() dist{r+1t, K} > dist{r, K}+ dist{z, K}.

Tt is easily seen that if % <X, then the restricted functions % = k|8, H
and %% = k| S,H also belong to K, and this implies that

I+ t— Tl = {7 — K|+ i— 10| + %R — ) _
> r— kg4 [i— Kl > dist {7, k) + dist {t, K} .

Hence (5) follows and the proof of Theorem 4 is complete.
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ON THFE ALGEBRAS L, OF LOCALLY COMPACT GROUPS

BY
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Let G be locally compact group, and g its left invariant Haar measure.
Let L, be the Banach space of complex functions defined on &, for which

I = [IF P du) < oo

It is well known that I, is a Banach algebra if multiplication is
defined as the convolution

frg(t) = [fEz)g()du (o).

Tt is also known that if the group @ is compact, then the space L, is also
a Banach algebra with the same multiplication (see [1], - 156). Here
I shall prove that this theorem and the converse theorem hold for all
p >1. More precisely I shall prove

TeroreM 1. If the locally compact group G is compact, then for every p,
1 < p < oo, the space Ly, is a Banach algebra under convolution.

TuEORBM 2. If for a locally compact abelian group the space L, is
a Banach algebra under convolution, and 1 < p < oo, then the group G
8 compact.

The following simple remark is useful in the proofs:

Let X be a Banach space with the norm [z|, and B a defnse' linear
subspace, which is at the same time an algebra with the multiplication xy.
Then

(A) X is a Banach algebra with the same multiplication if and only
if there ewists such a number ¢ >0 that

loyll < Clalllyll  for every @, yeR.

Or, what is equivalent,
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