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Let X be an F*-space (for the definition and basic property of
an F*-gpace see [1], p:. 35) with the norm {z] (not' necessarily homoge-
neous).

00
‘We shall say that the series Y s, of elements of X is unconditionally
=1
conwergent if for every sequence {,}, where 7, is equal to 1 or 0, the series
oo

> mm, is convergent.

n=

We shall say that the series ) , is absolutely convergent if the series
N=1
Dl is convergent (see [5]).
=1

Every absolutely convergent series is also unconditionally con-
vergent. If X is a finite dimensional space and the norm ||| is homo-
geneous, then, conversely, every unconditionally convergent series is
also absolutely convergent.

A. Dvoretzky and O. A. Rogers [3] have proved that in an arbitrary
infinite (hmenslonal B-gpace X with 9. homogeneous norm. || || there is

an unconditionally convergent series Zw,, which is not absolutely con-

vergent.
In this note we prove the followmg simple generalization of the
Dvoretzky-Rogers theorem.:

THEOREM. In every infinite dimensional F*-space with norm || || there
fod

is an wunconditionally convergent series '@, which is mot absolutely con-
n=1

vergent.
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. Proof. At the beginning we suppose that in X there is a homo-
geneous norm | ||* equivalent to the norm | ||(}). In this case there is
a positive constant A sueh that [o|* < 4 ||o] if |lz]|* < 1. Indeed, if there
is a sequence @, such that |le,|* < 1 and |l,)" > |z, then the triangle
inequality implies

“ [Wiﬂ*] o < ["”;i"u"r]llwnll < hé-uar] i el < %{7

where [u] denotes the integral part of the real number wu.

On the other hand,
I 1 ] * [ 1 ] . 1
|| = | ol =
.{Huwnn* " leal* 17 7 2

because |jz,|" < 1.
Hence the norms || || and || |* cannot be equivalent.
The Dvoretzky-Rogers theorem implies that fhere is an uncon-
o0

ditionally convergent series 3 'u, such that ) |lw,|" = 4 oo, whenece, from
N=1 Toz=]
. o0
the preceding also the series Y |lw,|| = -+ oo.
M=1

Now we suppose that there is no equivalent homogeneous norm
in X. We shall consider two cages.

Firstly, in X there are “arbitrarily short” straight lines (see [2]),
which means that for every ¢ >0 there is in X an element # = 0 such
that for every real ¢ the inequality ||tw| < ¢ holds.

In this case we can choose a sequence @, such that, for arbitrary
real 1, |z, << 1/2™

Secondly, in X there are no “arbitrarily short” straight lines, which
means that there is such an & >0 that for an arbitrary weX there is
such & 2, that ||4,2]=¢,. By |[#]|' we denote the norm. ]| = BILLLp It

ezl

The norm |||’ is equivalent to the norm || (see [4]). By F(t, x) we denote
the function F(t, @) = |||’ /|#| |le]’.

If, for some 0 < & < &, that function is bounded on the set lle|l” == e,
0 <t <1, then the norm ||z|, and hence algo the norm. llell, is equivalent
to the norm |z|* = inf {¢: |w/tf] = e}. The norm |jw|f* is homogeneous
and we obtain a contradiction of our supposition. Hence for arbitrary
0 < &< g, the function F(t,s) is unbounded on the set )" = e,

(*) The norms || ||, || |* are called equivalent if llen]] tends to zero if and only
if Jlwli* tends to zero.
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0 <t <1. Therefore we can choose sequences {m,) of elements of X
and =, of such numbers that

10 fla|I" = 172",
20 F("[‘n.: JI/‘,,,) > 4"

From the definition of |lz| it follows that there are such ¢, that
0 <1y, < Ty “tn“;nH/ = th“"nuv thmn“/ = “tn“vw.”,-

Let #, be the sequences chosen in the ways described in the first
or the second ease. Lt h, = [1fx,] in the first case, and h, = [1/¢,] in
the second case. We write k, = 0 and %, = hy+...+h,. Let

@, in the first case,
Y = .
' t, @, in the second case

for k., < k < k,.
In hoth cases the series Yy, is unconditionally convergent but is
Fe=1
not absolutely convergent. N
Really, let 7, be an arbitrary sequence of zeros and unities. Let m
be an arbitrary positive integer. By n(m) we denote n(m)= ksnupn. Now
I <M
o0
we estimate the rest of the series ]Zm.yk:
o=

00 kn(m)—[—l o0 kn+l
~
| Boall = L Z MeYr)| = § NeYx+ 2 2 77k?/k1i
F=m-1 k=m+41 n=n{m)+1 k=ky+1
7‘%(‘_1:1% 41 o0 o, _’1 1
g“ 2{ MY + § Z MeYx < 2n(m)—1
Ree=my-p1 n=n(m)+1  k=kp+1
because
< —~—~1 in the first case
Ky m}p”ﬁwﬂ, all € ST in the first case,
‘ § MY || =
Teeke! sl < ST in the second case,

where &' =k, 1.
On the other hand,

fa 1 1
llyell = hn+1”mn+1u = [m] @il = Y

Joelty -1
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n the first case, and
kﬂ

1 n Y3 —_
E lyell = bl = B ' (1, @) [ta] 2all" 2 3‘ 42" = 2"
k=ky_1+1

because F(t,,x,) > F(v,,,), in the second case.
o0

Hence the series 'y, is not absolutely convergent in both cases.

f=1
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INTEGRALS ON QUOTIENT SPACES
BY

8. SWIERCZKOWSKI (WROCEAW)

NOTATION AND SUMMARY

If @ is a locally compact topological group and H is a closed sub-
group, then every integral I on the quotient space G/H is associated with
exactly one integral I on @ (cf. formula (2) below). The class of integrals
on @ which are of the form I will be characterized in Theorems 1 and 2.
It contains the Haar integral if and only if there is an invariant integral
on G/H (Th. 1, Corollary). The integrals I and I define a pair of Banach
spaces L'(G/H) and L'(G). H. Reiter considered these gpaces under the
agsumption that I is the Haar integral on @, whence only in the case
where there is an invariant integral on G/H (cf. [4]). His results will be
extended in Theorems 3 and 4 to the general case where I is an arbitrary
integral on G/H.

If X is a locally compact topological space, we shall denote by L(X)
the class of all continuous real-valued funections on X which vanish
outside compact sets. The class of extended Baire functions on X
(ef. [1], [2]; these functions take also infinite values) will be denoted by
B(X). L,(X) and B,(X) will denote the subclasses of non-negative
functions. Every non-negative linear functional I on L(X) will be called
an integral on X and we shall sometimes assume that the domain of defi-
nition of I includes B, (X) or the class of all I-summable functions. The
class of all integrals on. X will be designated by I(X). We shall denote
by 8; the support of a function f on X, i.e. the set {@: f(w) 7 0.

Now let G and H be as in the beginning. Let % denote the
coset wH. For any feL(G) we put

(1) i@ = [f(=8)dt,
H

where [ is the integral with respect to the left Haar measure in H. It
H 0 -
is clear that F(%) = (7) if Z = 7 and (see [2], sec. 33A) that feL(G/H),
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