

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

ON A GENERALIZATION OF THE DVORETZKY-ROGERS THEOREM

BY

S. ROLEWICZ (WARSAW)

Let X be an F^* -space (for the definition and basic property of an F^* -space see [1], p. 35) with the norm ||x|| (not necessarily homogeneous).

We shall say that the series $\sum_{n=1}^{\infty} x_n$ of elements of X is unconditionally convergent if for every sequence $\{\eta_n\}$, where η_n is equal to 1 or 0, the series $\sum_{n=1}^{\infty} \eta_n x_n$ is convergent.

We shall say that the series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent if the series $\sum_{n=1}^{\infty} ||x_n||$ is convergent (see [5]).

Every absolutely convergent series is also unconditionally convergent. If X is a finite dimensional space and the norm $\|\cdot\|$ is homogeneous, then, conversely, every unconditionally convergent series is also absolutely convergent.

A. Dvoretzky and C. A. Rogers [3] have proved that in an arbitrary infinite dimensional B-space X with a homogeneous norm $\|\cdot\|$ there is an unconditionally convergent series $\sum_{n=1}^{\infty} x_n$ which is not absolutely convergent.

In this note we prove the following simple generalization of the Dvoretzky-Rogers theorem:

THEOREM. In every infinite dimensional F^* -space with norm $\|\cdot\|$ there is an unconditionally convergent series $\sum_{n=1}^{\infty} x_n$ which is not absolutely convergent.

Proof. At the beginning we suppose that in X there is a homogeneous norm $\|\cdot\|^*$ equivalent to the norm $\|\cdot\|(1)$. In this case there is a positive constant A such that $\|x\|^* \leqslant A \|x\|$ if $\|x\|^* < 1$. Indeed, if there is a sequence x_n such that $\|x_n\|^* < 1$ and $\|x_n\|^* > n \|x_n\|$, then the triangle inequality implies

$$\left\|\left[\frac{1}{\left\|x_n\right\|^*}\right]x^n\right\|\leqslant \left[\frac{1}{\left\|x_n\right\|^*}\right]\!\left\|x_n\right\|\leqslant \left[\frac{1}{\left\|x_n\right\|^*}\right]\frac{1}{n}\cdot \left\|x_n\right\|^*\leqslant \frac{1}{n},$$

where [u] denotes the integral part of the real number u. On the other hand,

$$\left\| \left[\frac{1}{\|x_n\|^*} \right] x_n \right\|^* = \left[\frac{1}{\|x_n\|^*} \right] \|x_n\|^* \geqslant \frac{1}{2}$$

because $||x_n||^* < 1$.

Hence the norms || || and || ||* cannot be equivalent.

The Dvoretzky-Rogers theorem implies that there is an unconditionally convergent series $\sum\limits_{n=1}^\infty x_n$ such that $\sum\limits_{n=1}^\infty \|x_n\|^* = +\infty$, whence, from the preceding also the series $\sum\limits_{n=1}^\infty \|x_n\|^* = +\infty$.

Now we suppose that there is no equivalent homogeneous norm in X. We shall consider two cases.

Firstly, in X there are "arbitrarily short" straight lines (see [2]), which means that for every $\varepsilon > 0$ there is in X an element $x \neq 0$ such that for every real t the inequality $||tx|| < \varepsilon$ holds.

In this case we can choose a sequence x_n such that, for arbitrary real t, $||tx_n|| < 1/2^n$.

Secondly, in X there are no "arbitrarily short" straight lines, which means that there is such an $\varepsilon_0 > 0$ that for an arbitrary $x \in X$ there is such a λ_x that $\|\lambda_x x\| = \varepsilon_0$. By $\|x\|$ we denote the norm $\|x\|' = \sup_{0 < k \le 1} \|tx\|$. The norm $\|x\|'$ is equivalent to the norm $\|x\|$ (see [41]) By R(t, x) was denote

The norm ||x||' is equivalent to the norm ||x|| (see [4]). By F(t, x) we denote the function F(t, x) = ||tx||'/|t| ||x||'.

If, for some $0 < \varepsilon < \varepsilon_0$ that function is bounded on the set $\|x\|' = \varepsilon$, $0 < t \le 1$, then the norm $\|x\|'$, and hence also the norm $\|x\|$, is equivalent to the norm $\|x\|^* = \inf\{t\colon \|x/t\|' = \varepsilon\}$. The norm $\|x\|^*$ is homogeneous and we obtain a contradiction of our supposition. Hence for arbitrary $0 < \varepsilon < \varepsilon_0$, the function F(t,x) is unbounded on the set $\|x\|' = \varepsilon$,

 $0 \le t \le 1$. Therefore we can choose sequences $\{x_n\}$ of elements of X and τ_n of such numbers that

1º
$$||x_n||' = 1/2^n$$
,

20
$$F(\tau_n, x_n) > 4^n$$
.

From the definition of ||x||' it follows that there are such t_n that $0 < t_n \le \tau_n$, $||t_n x_n||' = ||t_n x_n||$, $||t_n x_n||' = ||\tau_n x_n||'$.

Let x_n be the sequences chosen in the ways described in the first or the second case. Let $h_n=\lceil 1/x_n\rceil$ in the first case, and $h_n=\lceil 1/t_n\rceil$ in the second case. We write $k_0=0$ and $k_n=h_1+\ldots+h_n$. Let

$$y_k = \begin{cases} x_n & \text{in the first case,} \\ t_n x_n & \text{in the second case} \end{cases}$$

for $k_{n-1} < k \leq k_n$.

In both cases the series $\sum_{k=1}^{\infty} y_k$ is unconditionally convergent but is not absolutely convergent.

Really, let η_k be an arbitrary sequence of zeros and unities. Let m be an arbitrary positive integer. By n(m) we denote $n(m) = \sup_{k_m < m} n$. Now

we estimate the rest of the series $\sum_{k=1}^{\infty} \eta_k y_k$:

$$\begin{split} \|R_m\| &= \Big\| \sum_{k=m+1}^{\infty} \eta_k y_k \Big\| = \Big\| \sum_{k=m+1}^{k_{n(m)+1}} \eta_k y_k + \sum_{n=n(m)+1}^{\infty} \sum_{k=k_n+1}^{k_{n+1}} \eta_k y_k \Big\| \\ & \leqslant \Big\| \sum_{k=m+1}^{k_{n(m)+1}} \eta_k y_k \Big\| + \sum_{n=n(m)+1}^{\infty} \Big\| \sum_{k=k_n+1}^{k_{n+1}} \eta_k y_k \Big\| \leqslant \frac{1}{2^{n(m)-1}} \end{split}$$

because

$$\Big\|\sum_{k=k'}^{k_{n+1}}\eta_ky_k\Big\|\leqslant egin{cases} \sup_{\lambda}\|\lambda x_{n+1}\|\leqslant rac{1}{2^{n+1}} & ext{in the first case,} \ \|x_{n+1}\|'\leqslant rac{1}{2^{n+1}} & ext{in the second case,} \ \end{aligned}$$

where $k' \geqslant k_n + 1$.

On the other hand,

$$\sum_{k=k_{n}+1}^{h_{n+1}}\|y_{k}\|=h_{n+1}\|x_{n+1}\|=\left[\frac{1}{\|x_{n+1}\|}\right]\|x_{n+1}\|\geqslant\frac{1}{2}$$

⁽i) The norms $\|\cdot\|$, $\|\cdot\|$ * are called equivalent if $||x_n||$ tends to zero if and only if $||x_n||^*$ tends to zero.

S. ROLEWICZ

n the first case, and

$$\sum_{k=k_{n-1}+1}^{k_{n}} \|y_{k}\| = h_{n} \|t_{n} x_{n}\|' = h_{n} F(t_{n}, x_{n}) |t_{n}| \|x_{n}\|' \geqslant \frac{1}{2} \cdot 4^{n} \cdot 2^{n} = 2^{n-1}$$

because $F(t_n, x_n) \geqslant F(\tau_n, x_n)$, in the second case.

Hence the series $\sum_{k=1}^{\infty} y_k$ is not absolutely convergent in both cases.

REFERENCES

[1] S. Banach, Théorie des opérations linéaires, Warszawa-Lwów 1932.

[2] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the space (s), Colloquium Mathematicum 7 (1959), p. 45-51.

[3] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in linear normed spaces, Proceedings of the National Academy of Sciences of the United States of America 36 (1950), p. 192-197.

[4] M. Eidelheit und S. Mazur, Eine Bemerkung über die Räume vom Typus (F), Studia Mathematica 7 (1938), p. 159-161.

[5] W. Orlicz, O szeregach doskonale zbieżnych w pewnych przestrzeniach funkcyjnych, Prace Matematyczne I, 2 (1953), p. 393-414.

Reçu par la Rédaction le 23. 2. 1960

COLLOQUIUM MATHEMATICUM

FASC. 1

VOL. VIII 1961

INTEGRALS ON QUOTIENT SPACES

S. ŚWIERCZKOWSKI (WROCŁAW)

NOTATION AND SUMMARY

If G is a locally compact topological group and H is a closed subgroup, then every integral I on the quotient space G/H is associated with exactly one integral \tilde{I} on G (cf. formula (2) below). The class of integrals on G which are of the form \tilde{I} will be characterized in Theorems 1 and 2. It contains the Haar integral if and only if there is an invariant integral on G/H (Th. 1, Corollary). The integrals I and \tilde{I} define a pair of Banach spaces $L^1(G/H)$ and $L^1(G)$. H. Reiter considered these spaces under the assumption that \tilde{I} is the Haar integral on G, whence only in the case where there is an invariant integral on G/H (cf. [4]). His results will be extended in Theorems 3 and 4 to the general case where I is an arbitrary integral on G/H.

If X is a locally compact topological space, we shall denote by L(X)the class of all continuous real-valued functions on X which vanish outside compact sets. The class of extended Baire functions on X (cf. [1], [2]; these functions take also infinite values) will be denoted by B(X). $L_{+}(X)$ and $B_{+}(X)$ will denote the subclasses of non-negative functions. Every non-negative linear functional I on L(X) will be called an integral on X and we shall sometimes assume that the domain of definition of I includes $B_{+}(X)$ or the class of all I-summable functions. The class of all integrals on X will be designated by I(X). We shall denote by S_t the support of a function f on X, i. e. the set $\{x: f(x) \neq 0\}$.

Now let G and H be as in the beginning. Let \overline{x} denote the coset xH. For any $f \in L(G)$ we put

(1)
$$\bar{f}(\bar{x}) = \int_{H} f(x\xi) d\xi,$$

where $\int_{\mathcal{T}}$ is the integral with respect to the left Haar measure in H. It is clear that $\bar{f}(\bar{x})=\bar{f}(\bar{y})$ if $\bar{x}=\bar{y}$ and (see [2], sec. 33A) that $\bar{f} \in L(G/H)$,