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A REMARK ABOUT CAUCHY’S EQUATION
' BY
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It seems rather difficult to raise a new problem concerning the
equation

(*) fla+y) = fl@)+1(y).

However, P. Erdos has done it asking if a function which satisfies
(*) for almost every pair (x,y) of real numbers must be almost everywhere
equal to a function satisfying this equation for every pair (s,y), i. e.
to a linear or a Hamel function. Obviously, the first underlined ‘‘almos?”
conecerns Lebesgue’s plane measure and the second refers to the linear
meagure [1]. Unfortunately, this paper does not contain a reply o this
interesting question, since the author has been unable to find one. But
let us notice that the problem does not become quite trivial even if the
assumption is replaced by the following stronger one:

(i) The function f fulfils (») for every pair (x,y) of numbers belonging
to a linear set A whose complement has measure zero.

Then the assertion is positive; moreover: (x) is fulfilled by the
function f for all # and y. No additional reasoning is needed to prove
the more general

TesorEM 1. If f. is & mapping of an Abelian measurable group .(see
e.g. [2], p. 287) & with an invariant o-finite measwre p into an Abelian
group H and if (x) is fulfilled for z,yeAC@G, u(G\4)=0, then f is
a homomorphism.

Proof. Choose 2y, 2;eG arbitrarily and let (2, 2,) denote the set
of points (y, o) ¥ x G satisfying the following three conditions:

(ii) @y, @ped,
(i) —@yed—2y, —Bped—2,,

(iv) @ —myed —2y, T—w e A—2,.
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It is obvious that almost every point of GX@ fulfils (ii) and (iii).
Now, if BC@G is a u-measurable set and ¢z denotes its characteristic
function, then it follows from the measurability of ¢ that cp(w,—a,)
is (X p)-measurable. Hence, by Fubini’s theorem, (iv) is also fulfilled
almost everywhere in GxX@. So the set H(2,,#,) is non-void. Let (z,, o,)
be one of its elements. Putting y, = 2;,—x, and ¥y, = #,— &, We have
Y1, YpeA by (iii) and @5+ y,, Y1+ @A by (iv). Using also (ii) and the
commutativity of ¢ and H we obtain

1t 22) = @+ 91+ 2+ Ya) = F(@x+¥2) Hf (Y1 22)
= f(m1)+f(?/2)+f(y1)+ f(@s) = f(“'l”l‘ Y1)+ [ (@24 92)
= f(#1)+f(25).
A slightly better result can be deduced if x(@) =1 (e.g. for com-
pact groups with normed Haar measure):
THEOREM 2. If u(G) = 1 is assumed in Theorem 1, then the condition

w(GN\A) = 0 can be replaced by u(A) > %(V?—l) without changing the
statement about f.

The proof follows exactly the same lines. One has merely to notice
that ’

(1 x ) {{{my, Bp): By e, myeA})
= (X p) ({(@y) B3): —@ e A—2y, —Bped—2,}) = (u(4)),
and further that on account of Fubini’s theorem
(xp) ({(@1, Bo): 3y —@pe A—2}) = [ [ 04_s, (1= 3) p(d0r) p(dy) = p(4),
and analogously
(1% ) ({2 @) : By— By e A—21}) = p(A).
Thus, putting u(4d) =1—¢ (0 < e < 1) we find
(1 x ) (B (21, 25)) 2 1—2[1—=(1—¢)*]—25 = 26" — 65+ 1.

This is positive (and thus the set E is non-void) if & < %(3—1/?).

Theorem 2 can be applied to (+) if the addition #-+y is taken modl;
then it will be sufficient to suppose in (i) that the set 4 C [0,1) is of
measure greater than (V7— 1).

In the proofs of Theorems 1 and 2 there was but one essential pro-
perty of the set A which was needed, namely: for any 2y, #,¢G there are
points @y, @y, 41, Y, of A such that 2, = @4 yy, 2y = @+ ¥,, B3+ ysed
and ,+y,eA. Let us call a set BC G a small set, if its complement B’
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has this property. Thus, if A’ is a small set, then f is a homomorphism
provided () holds for all points of A, without any restriction as to the
Abelian groups G and H. If ¢ is a topological group, then every set of
1-st category is small; this can be stated in nearly the same way as has
been done for zero-sets in the proofs of the preceding theorems: instead
of Fubini’s theorem one has but to use its topological analogon, as proved
by Sikorski ([3], p. 291, Theorem 3). Hence it appears that the real line
or the circle can be decomposed into two small gsets (b0 be small is not an
additive property!). For these remarks the author is indebted to E. Mar-
czewski.

The study of the Cauchy equation for groups leads to the question
of characterising those Abelian groups which admit non-trivial homo-
morphisms into the additive group of real numbers. Here is an easy
ansgwer:

THEOREM 3. An Abelian group G admils a non-zero homomorphism
into the group R of real numbers if and only if it contains an element of
nfinite order.

Proof. From f(0) = 0 and f(nx) = nf(x) it follows at once that
the condition is necessary. Now, if x is of infinite order, fix an irratio-
nal 1 and put y(nw) = ™™ (n integer). As is well known, a character
of a subgroup ean always be extended to a character of the whole group.
So we may consider y as defined on @. The circle group K is the direct
sum of its torsion part T and of a group L isomorphic to R. If L~ B
then putting h(t) = 0 for teT we get a non-zero homomorphism of K
into R. Hence hy(z) (2¢@) is a homomorphism of G into B and one has
hy(x) 5= 0, since y(x)¢T.
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