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A Boolean algebra is, by definition, a non-empty set 2 of elements
(denoted here by letters A, B, ...) on which there are defined three ope-
rations A v B, A ~B, —A called the join, the meet and the complement
of A, Brespectively. These operations are characterized by a set of axioms.
Many sets of axioms are known() but we' shall not quote here any of
them. We recall only that every set of axioms ensures that the Boolean
operations v, ~, — have, roughly speaking, the same properties as the
set-theoretical operations on sets: union, intersection and complement
(relative to a fixed space).

‘We mention below the most typical examples of Boolean algebras:

1° The class 2(X) of all subsets of a space X, the Boolean operations
being the set-theoretical ones.

2° Bubalgebras § of A(X), i. e. non-empty subclasses of 2(X) closed
with respect to the set-theoretical union A o B, intersection 4 ~B and
complementation —4 = X —A. Boolean algebras of this kind are called
fields of sets.

3° The two-element Boolean algebra, i. e. the algebra AU(X) where X
is a one-element set. .

4° Quotient algebras F/S where §F is a field of subsets of a space X,
and § is an ideal of sets, i. e. a non-empty additive and hereditary class
of subsets of X. The algebra &3 is obtained by identification of sets
whoge symmetric difference belongs to . The element of 2/T determined
by a set 4 «F is denoted by [A]. The Boolean operations in & /3 are defined
by the equalities:

[4]v[B] =[4vB], [4]~[B]=[4~B], —[4]1=[—4]

* This paper is a lecture held by the author in Amsterdam, Poznat and
Wroelaw in 1959,
(*) For bibliographical notes, see Sikorski [23], p. 2.
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The Boolean. algebra §/3 is sometimes called the algebra of sets « &F modulo
the ideal 3.

There are also other types of Boolean algebras examined in practice,
such that their definition has nothing in common with the notion of
field of sets. For instance, in Mathematical Logic one investigates the
Boolean algebra obtained from the set of all formulas of a formalized
theory by identification of equivalent formulas.

However, every Boolean algebra is, by its axiomatic definition,
something like a field of sets. Elements of any Boolean algebra are ana-
logues of subsets of a fixed space. The Boolean operations v, ~, — are
analogues of the set-theoretical ones. Hvery Boolean algebra contains
the zero element (or: empty element) A and the wunit element (or: full ele-
ment) vV which are Boolean analogues of the empty set and the whole
gpace. The relation C defined as

ACBiff AVB =B

is the Boolean amnalogue of the set-theoretical inclusion, ete.

The connection between. the notions of Boolean algebras and fields
of sets is much deeper. On one hand, every field of sets is a Boolean
algebra. On the other hand, the converse statement is also true in some
sense: Bvery Boolean algebra can be represented as a field of sets, thatis,
for every Boolean algebra 2[ there exist a space X and an 1somorphlsm
of 2 into 2 (X), i. e. a one-to-one mapping % of U into A(X) which trans-
forms the Boolean operations onto the corresponding set-theoretical
operations:

h(4 v B) = h(4) v h({B), h(4 ~B)=h(4)~h(B),

1)

h(—A) = —h(4).
More exactly, M. H. Stone ([26] and [27]) has proved that, for every Boo-
lean algebra 2, there exists a totally disconmected compact topological
space X such that 2 is isomorphic to the field of all clopen () subsets
of X. The space X is determined by 2 uniquely up to homeomorphism
and i§, called the Stone space of .

Stone’s repregentation theorem has opened a new period in the
development of the theory of Boolean algebras. However, it solves the
representation problem for Boolean algebras from the point of view of
finite Boolean operations only. In every Boolean algebra A, we can also
define the notion of infinite join and meet which are Boolean analogues

(*) Following Halmos, a subset of a topological space is said to be clopen pro-
vided it is both closed and open.
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of the set-theoretical union and intersection of infinitely many sefs.
Viz. an element A is said to be the join of an indexed set {A;};,r of
elements of 2 provided

(j1) 4;C A for every teT;

(jo) if A;C BeY for every teT, then 4 C B.
‘We then write

(2) 4= UteT-At~

Analogously an element A is said to he the meet of an indexed set
{Ai}ier of elements of 2 provided

(m,) 4 C A, for every teT}

(m,) if BC 4, (Be) for every teT, then BC A.
We then write

(3) A = Nier 4s.

It 7 < m (m being a cardinal), then {d;},r is called an m-indeved
set (the same terminology will be applied for doubly indexed sets), and
(2) and (3) are called an m-join and an m-meet respectively. The letter m
will always denote an infinite cardinal, and the letter c—the cardinal
of the set of all integers. The-join and meet of an infinite set of elements
of 2 do not always exist. If they exist for every m-indexed set of elements
of 2, then 2 is called m-complete. 2 is said to be complete provided it is
m-complete for every mt.

We mention the simplest examples of m-complete Boolean algebras:

5° m-fields of sets, i. e. fields of sets &, which are closed with respect
to the union and intersection of at most m sets in &;

6° m-quotient algebras, i. e. algebras &/3 where & is an m-field of
sets, and J is an m-additive ideal.

The simplest example of a complete Boolean algebra, ig given by the
algebra 2(X) of all subsets of a space X. However, there are also complete
Boolean algebras which are not isomorphic to any 2(X). For instance,
any measure algebra, i.e. a c-complete Boolean algebra with a finite
(or, more generally, o-finite) (*) strictly positive c-measure (that is, a
countably additive measure vanishing only on the zero element) is & com-
plete Boolean algebra (*). In particular, the algebra of all Borel sets (of
real numbers) modulo sets of the Lebesgue measure zero is complete.
Similarly, the algebra of Borel subsets (of any topological space) modulo

(* A g-measure on a Boolean algebra is said to be o-finite if the unit element
is the join of a sequence of elements of finite measure.
(*) Wecken [30]. See also Sikorski [23], § 21.
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sets of the first category is complete (%). The last example is typical:
every complete Boolean algebra is isomorphic to a Boolean algebra
of the kind just mentioned ().

The Stone isomorphism % of a Boolean algebra 2[ onto the field of all
clopen subsets of the Stone space X of 2l does not tramsform infinite
joins and meets into the corresponding set-theoretical unions and inter-
sections. More precisely, if (2) holds, then h(4) is not the get-theoretical
union of all the sets h(4,) (t<T) except the cage where the join (2) is not
essentially infinite, i.e. 4 = A; v ... v 4, for a finite sequence i, ...
.., taeT. The same remark is true for infinite meets. Both remarks easily
follow from the compactness of the Stone space.

The Stone representation theorem fails if infinite Boolean operations
are taken into consideration: For every infinite cardinal m, there exists
an m-complete Boolean algebra which is not isomorphic to any m-field
of sets. This fact is closely connected with the fact that not all identities
true for infinite set-theoretical unions and intersections are true for
their Boolean analogues: the infinite join and meet. As an example of
such an identity we quote here the infinite distributive law:

14) Nier NaesAes = Uper MNier A

where ST denotes the set of all mappings from T into 8. Identity (4)
holds for set-theoretical operations but, in general, it does mot hold for
infinite Boolean operation: it is possible that all infinite joins and meets
in (4) exist But the equality does mot hold.

A Boolean algebra 2 is said to be m-distributive provided (4) holds
for any m-indexed set {A;q)ires of elements of 2 such that all the
joins and meets

U asSﬁAt,s y ﬂ teT U aeSAt,a ’ ﬂ teT At,;l(t)

exist. Tt is called completely distributive iff it is m-distributive for every m (7).

Every m-field of sets; and consequently every Boolean algebra
isomorphic to an m-field of sets, is m-distributive. On the other hand,
it is easy to construct m-complete Boolean algebras (of the form F/3

(¥) This result is due to Birkhoff and Ulam. See [2].

The completeness of algebras of Borel sets modulo sets of measure zero or of
the first category is an example of a very interesting phenomenon of overcompleteness
of quotient algebras. For a detailed investigation of overcompleteness, see Smith
and Tamski [25]. See also Sikorski [19], where a fundamental non-solved problem
on overcompleteness iy formulated.

() For the proof, see the remark below Theorem 10.

(") For a systematic investigation of infinite distributivity see Scott [15],
Sikorski [22], Smith [24], Smith and Tarski [25]. See also Sikorski [23],
§§ 19, 30.
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where & is an m-field of sets, and 3§ is an m-additive ideal) which are not
m-digtributive. Hence it follows that they are not isomorphic to any
m-field of sets. The first examples of m-complete Boolean algebras which
are not isomorphic to any m-field of sets were based on the idea
just mentioned (8). For instance, in this way we can prove that if &
is a o-field (of sets of real numbers) containing all Borel sets, and 3
is an o-additive ideal containing all one-point sets (3 # &), then the
o-complete Boolean algebra /3 is not isomorphic to any o-field of sets ().
If & is the field of all Borel sets and 3 is the ideal of all sets of the first
category (or: of the Lebesgue measure zero), then & /J is an example of an
m-complete Boolean algebra which is not isomorphic to any m-field of sets.

We know some criteria for a given m-complete Boolean algebra to
be isomorphic to an m-field of sets. Atomicity is the simplest sufficient
(but not necessary) condition for the existence of such an isomorphism.
An element a<? is said to be an atom of the Boolean algebra 2 if ¢ # A
and the condition A =% A C a implies 4 = a. The notion of atom. is the
Boolean analogue of the notion of one-element set. A Boolean algebra 2
is said to be atomic iff, for every element A # A, there exists an atom
a CA.

In the theory of meagures on Boolean algebras () a property weaker
than the m-distributivity, but also of a distributive character, plays an
important role. This property is called the weak w-distributivity (). To
explain this notion, let wus introduce the following notation: if
{Ayghiorsos 1 any m-indexed set, then for every finite set F C § the
gymbol 4, denotes the finite join

-AI,F = UseFAt,sv 2

Let S denote the class of all finite subsets of S and, consequently

let ST denote the class of all mappings F from T into S. A Boolean algebra
A is said to be weakly m-distributive provided the identity

(5) mlsT Us@S‘At,& = UF&ST ﬂteTAi,F(t)
holds for every m-indexed set (Ayg)yrss of elements of A such that
all the joing and meets

Ussdiss  NirUsesdes; (e drrg

exist.

(®) Tarski [2], Marczewski [1]. See also Sikorski [18]. ’

(") Stronger theorems of this kind were proved by Sikorski [18]. See also
Sikorski [28], §§ 24, 26, 27, 28.

(19) Recently Kelley [5] has proved that the existence of a finite strictly positive
o-measure on a o-complete Boolean algebra U is equivalent to the existence of a finite
strictly positive measure (finitely additive only!) and the weak o-distributivity of .

("*) For investigation of this notion, see e. g. Sikorski [22] and- [23], § 30.
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The most important case is m = o. Every measure algebra is weakly
o-distributive (2). In particular, the algebra of Borel sets modulo sets
of the Lebesgue measure zero is weakly o-distributive. However, the
algebra of all Borel sets (of real numbers) modulo sets of the first category
is not weakly o-distributive. It follows from the continuum hypothesis
that the algebra of all sets of real numbers modulo any proper c-additive
ideal containing all one-point sets is not weakly o-distributive (12).

As we have stated above, there are m-complete Boolean algebras
which are not isomorphic to any m-field of sets. The simplest examples
are given in the form of m-quotient algebras, i. e. algebras &S where F
is an m-field of sets and the ideal J is m-additive. The question ariges
whether every m-complete Boolean algebra is isomorphic to an m-quo-
tient algebra. The angwer is affirmative for m = &. The answer is nega-
tive for m > 2°, For instance the algebra of all Borel sets (of real numbers)
modulo sets of the first category or modulo sets of the Lebesgue measure
zero is m-complete but is not isomorphic to any m-quotient algebra for
m > 2° (see Sikorski [18]).

The above consideration suggests to distinguish the following pro-
perties of Boolean algebras:

A — atomieity;

CD  — complete distributivity;

CSR — complete set-representability ;

m8R — m-set-representability;

mD  — m-distributivity;

WmD — weak m-distributivity;

MmQR — m-quotient representability.

The atomicity and the distributivity properties being just defined,
we are going to define more precisely the remaining properties.

A Boolean algebra U is said t0 be completely set-representable if there
exist a space X and an isomorphism h of % into 2A(X) which preserves
all infinite joins and meets in 2 (i.e. if (2) holds in 2l then h(4) is the

set-theoretical union of all h(4,), teT'; and the same holds for meets (3)). °

A Boolean algebra U iy said to be w-sei-representable iff there exist
a'space X and an isomorphism % of 2 into 2 (X) which pregerves all the
m-joing and m-meets in 2. By this definition, an m-complete Boolean
algebra is m-set-representable iff it is isomorphic with an m-field of sets.

A Boolean algebra 2 is said to be m-quotient-representable provided

.(12) This theorem was explicitly formulated and proved by Horn and Tavski [4],
but it had been applied earlier by Banach and Kuratowski [1].
(**) Banach and Kuratowski [1]. See also Sikorski [23], § 30.
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there exist a space X, an m-additive ideal I and an isomorphism h of U
into 2(X)/3 such that h preserves all m-joins and m-meets in A (i. e.
if (2) holds in 2 and T < m, then h(4) is the join of all h(4,) in UA(X)/3;
and the same holds for meets). By this definition, an m-complete Boolean
algebra is m-quotient-representable iff it is isomorphic to a quotient
algebra &/ where & is an m-field of sets and the ideal § iy m-additive.

The following theorems explain the mutual connection between the
properties quoted on p.6:

THBorREM 1 (™). The following equivalences hold:

A &> 0D <= O8R.
TupornM 2. The following implications are true (*5):
. P
U8R > mSR = mD = WmD = mQR.

None of the converse implications is true for m =o. A counter
example for oSR =% OSR is given by any non-atomic o-field of sets.
A counter example (%) for oD #> oS8R is given by the algebra A(X)/S
where X is any set of cardinal > 2° and 3§ is the ideal of sets of cardinal
< 2°. A counter example for WeD > oD is given by the algebra of all
Borel sets (of real numbers) modulo sets of the Lebesgue measure zero.
A counter example for cQR =) WoD is given by the algebra of Borel sets
(of real numbers) modulo sets of the first category.

Tn the case of an arbitrary infinite eardinal m, we ean show, by the
same way, that the implications mSR = CSR and mD = mSR () are
not true. The algebra 2(X)/3 where X is a set of cardinal >m and 3
is the ideal of all sets of cardinal < m is a counter example for mQR %> mD.
Assuming the generalized continuum hypothesis we ean prove that the
algebra in question is also a counter example for mQR #> WmD. The
implication WmD =>mD has not yet been examined for m >o.

" Observe that the above counter examples for oD % oSR and
mD £ m8R were based on the following
Tarorey 3 (18), The following implication is true:

2" QR > mD.

() This theorem is due to A. Lindenbaum and A. Tarski. See Tarski (28],
Hom ard Tarski [4], and also Sikorski [23], §26.

(*) The implication WmD = mQR follows from Theorems 6 and 7 below.
See alsc Sikorski [22] and [23], §§ 29, 30.

(%) Sikorski [18]. ) o

(*") For a more general result, see Sikorski [211.

(%) See o. g. Sikorski [28], § 21.
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A non-empty subset of an m-complete Boolean algebra is called an
m-subalgebra provided it is closed with respect to complementation and
forming of m-joins and m-meets. A Boolean algebra 2 is said to be
m-generated by a clags C of its elements if the smallest m-subalgebra con-
taining the set € coincides with the whole algebra 2.

THEOREM 4 (2°). If an m-complete Boolean algebra 2 is m-generated
by ot most wm elements, then the following equivalences are true for 2:

A ES SR &S mD.

THEOREM 5 (). An m-complete Boolean algebra 2 has one of the
properties
mD, WmD, wmQR

iff each of its m-subalgebras m-generated by at most m elements has the
property in question.

Now we are going to give some characterizations of Boolean algebras
having one of the properties mentioned on p.6. The first characteri-
zation iy given in terms of two-valued homomorphisms. By a two-valued
homomorphism on a Boolean algebra 2l we understand any homomor-
phism of 2 into & two-element Boolean algebra B (see p.1, 3°), i.e.
any mapping & of 2 into B such that conditions (1) are satisfied. We
say that a two-valued homomorphism % of 2 into B preserves a given
join (2) in 2 iff h(A) is the join of all the h(A4;) in B. The definition of
preservation of meets (3) is analogous.

In the proof of the Stone representation theorem the following fact
plays a fundamental part: for every element A4 % A of a Boolean
algebra 2, there exists a two-valued homomorphism % on 2 such that
h(4) 5= A (i.e. h(4) = v). The characterization given below is formu-
lated in terms of similar but stronger properties:

TeEOREM 6. The following equivalences hold for every Boolean algebra :
CSR <= Tor every A A there exists a two-valued homomorphism h on 2

such that h(A) == A and h preserves all infinite joins and meets in 2.
mSR <= For every A £ A there ewists a two-valued homomorphism b on 2

such that h(A) 5= A and b preserves all m-joins and m-meets in 2 (2).
mD > For every A = A (Ae) and for every m-subalgebra 2, C 20 (4 < ,)
. m-generated by at most m elements, there exists a two-valued homomor-

phism h on 2, such that h(A) # A and h preserves all m-joins and

m-meets in 2, (thiy equivalence is proved under the hypothesis that
U is m-complete).

(**) See e. g. Sikorski [22] and [23], § 24.
(*%) Bee e. g. Sikorski [22] and [23], §§ 24, 29, 30.
(*1) Pauc [9], Horn and Tarski [4], Sikorski [18]. See also Sikorski [28], § 24.

icm

BOOLEAN ALGEBRAS 9

WmD <= For every A = A (A <) and for every given set of at most m
m-joins and m-meets in A:

Ay = U, A (T <m,
) By = NuryBiy (T, <m,

sed, 8 <m)
SeS”, 5" <mj,

there ewists an element Agel, A # A, C A, such that for every two-
valued homomorphism h on 2 the condition h(A4,) = A implies that h
preserves all the infinite joins and meets (x) (22).

MQR &> For every A +# A (A ) and for every set (=) of at most m m-joins
and n-meets in 2, there ewists a two-valued homomorphism h such thai
h(4) = A and h preserves all the infinite joins and meets (+) (¥).

The next characterization of Boolean algebras having properties
mentioned on p. 6 is given in terms of Stone spaces. To facilitate the
formulation let us adopt the following terminology.

X will denote the Stone space of the Boolean algebra 2 in guestion.
A set GC X (FCX) is said to be m-open (m-closed) provided it is the
union (the intersection) of at most m clopen subsets of X. A subset of X
is said to be m-nowhere dense provided it is a subset of an m-closed nowhere
dense set. A subset of X is said to be of the m-category provided it is the
union of at most m sets m-nowhere dense in X.

THpOREM 7. The following equivalences hold for every Boolean
algebra 2A: .
CSR &= The wnion of all mowhere dense sets in X 4s nowhere dense.
CSR &> The union of all wowhere dense sets in X is a boundary seb.
mSR &> The undon of all m-nowhere dense sels in X is a boundary
subset of X (34). .
WmD &= Hoery set of m-category is o nowhere dense subset of X ().
MQR &> Boery set of m-category is & boundary subset of X ().
‘We do not know any simple characterization of this kind for mD.
Note that every set of o-category is of the first category. Every set
of the first category in a compact Hausdorff space is a boundary set.
Hence the last equivalence implies the following fundamental

TumoreM 8. Hvery Boolean algebra has the property QR (¥).
() Sikorski [22] and [28], § 30.
(#%) Chang [3]. See also Sikorski [22] and [23], § 29.
(*%) Pierce [10]. See also Sikorski [23], § 24.
(*%) Kelley [5], Sikorski [22] and [23], § 30.
(2%) Pierce [10], Sikorski [22] and [23], § 29. ]
(") Under the hypothesis of o-completeness, this theorem was proved m(.le-
pendently by Loomis [8] and Sikorski [18]. Theorem 8 was proved in full generality

by Sikorski [20].
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The topological characterizations of CSR and mSR suggest also
the distinction of the class of Boolean algebras whose Stone spaces have
the following property: the unjon of all m-nowhere dense sets is nowhere
denge. This class lies between SR and mSR. For m = ¢, we know an
example of a Boolean algebra belonging to this class but not having the
property CSR (for m > o such an example is not known). The example
is given by the algebra of all subsets of an infinite space modulo the ideal
of all finite subsets (28). This algebra is not atomic, therefore it is mnot
CSR. On the other hand, every o-nowhere dense subset of the Stone
space of this algebra is empty, and so is the union of all o-nowhere
dense sets.

The last property follows from the fact that there exists no essentially
infinite o-join in the Boolean algebra just defined. Observe that for m > ¢
we do not know whether there exists an infinite Boolean algebra 2( such
that no m-join in 2 is essentially infinite.

Theorems 6 and 7 show that there is a great similarity between the

properties mentioned on p.6. To underline that similarity we quote
here an algebraic characterization of those properties.

In the next theorem {4} denotes any indexed set of elements of
the Boolean algebra 2 in gquestion, such that

(6) Mier Uses iy = V,

and 87 and S” have a meaning as in (4) and (5).
TEEOREM 9. T'he following equivalences hold for every Boolean algebra 2
OSR & For every indewed set {Ayghersss; o (6) holds, then for every
A £ A there exists a mapping fe8T such that

Ao (e Aoy 7 A

mD & For every m-indemed sel {Ass)tarsos, 4 (6) holds, then for every
A £ A there emists a mapping feST such that (*)

A NVgrdage # A

WmD &2 For every, m-indened set {Ay g} ss, i (6) holds, then for every
A s A there ewists a mapping FeST such that (*)

A N A pgy 7 A-

(%5} Por investigation of thiy algebra, see Sierpifski [16] and [17].
(2%) Smith and Tarski [25], See also Sikorski [23], § 19.
(*) Sikorski [22] and [28], § 30.
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MQR &> For every wm-indexed set {Ayglirees, of (6) holds, then for
every A # A there exists o mapping feST such that

Ao N Aegy # A

for every finite set T' C T (7).

The inequalities + in the characterization of the first three properties
should be read as follows: eithera the infinite meet on the left side does
not exist, or it exists but is not equal to A.

By an m-filter of a Boolean algebra 20 we understand a non-empty
clags 3 of elements of 2 such that:

(f,) if A;¢3 for all 7 and T < m, then there exists an element
A3 such that 4 C A, for every teT;

(f,) if 4¢3 and A C B, then BeS.

An m-filter S is said to be proper iff A ¢3.

The condition characterizing mQR in Theorem 9 can be formulated
also in the following way: For every m-indexed set {A;shiz s, if (6)
holds, then for every proper m-filter S in U there exists a mapping f 8T
guch that

A~ N Aiggy & A

for every A 3 and for every finite set 7" C T (2). Also conditions charac-
terizing mQR in Theorems 6 and 7 can be modified in this way (3%).

It follows from Theorem 1 that only atomic Boolean algebras can
be isomorphically imbedded into a complete atomic algebras with the
preservation of all infinite joins and meets. The situation is completely
different if we do not require imbedding into atomic algebras.

THEOREM 10 (3¢). For every Boolean algebra U there emist a compleie
Boolean algebra ' and an isomorphism h of 2 into ' which preserves all
infinite joins and meets in 2 (i. e. if (2) holds in 2, then h(4) is the join
of all the h(4;) in 2; and the same holds for meets).

The algebra U’ can be defined as the quotient algebra /3 where F
is the field of all Borel subsets of the Stone space X of 2, and J is the ideal
of all yubsets of the first category. The isomorphism # is defined by the
formula
(M) h(A) = [h(4)]eF/S  for

(*1) This equivalence, proved by Sikorski [22], is a modification of another
condition given earlier by Smith [24]. See also [23], §29.

(##) This characterization was formulated explicitly by Sikorski [5] (see also
Sikorgki [23], §29) but it was based on an earlier result of Chang [3].

(*) Such a modification of characterization of mQR in Theorem 6 is due to
Chang [3] who was the first to observe this fact.

() Por the proof, see e.g. [23], §35.

A,
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where 7, is the Stone isomorphism of 2 onto the field of all clopen subsets
of X. The algebra F/3 is called the minimal estension of 2 and has very
special properties (22).

Observe that if 2 is complete, then the isomorphism A defined by (7)
maps 2 onto F/I. This proves the remark on p.4 that every coiplete
Boolean algebra is isomorphic to a quotient algebra /3, where & is the
field of all Borel subgets of a topological space and J is the ideal of all
subsets of the first category.

Without any hypothesis on the Boolean algebra 2 in question, we
can prove the following

THEOREM 11 (%%). For any giwen countable set of infinite joins and
meets in a Boolean algebra 2,

(8) Ap= Utr, Angy  Ba = Utaﬂ‘;,:B1L,i (n=1,2,..),
there ewists a space X and an isomorphism h of U into A(X) such that h pre-
serves all the joins and meets (8).‘

The proof of Theorem 11 is topological. It is based on the fact that,
in a compact Hausdorff space, no open non-void set is of the first
category. '

Theorem 11 has important applications to Mathematical Logie.
The Godel theorem on completeness of the predicate caleulus and the
theorem on existence of models for any (finite or countable) consistent set
of formulas are immediate consequences of Theorem 11, (37).
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