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1. Introduction. Let L ⊇ K be a Galois field extension with Galois
group G. We consider G as a topological group with the Krull topology (see
e.g. [LS, p. 329]).

The normal basis theorem asserts that if L has finite dimension over K,
then there is x ∈ L such that {σ(x)}σ∈G form a basis for L as a vector
space over K (for a proof see e.g. [J, p. 283]). The sequence {σ(x)}σ∈G is
called a normal basis and x is called a normal basis generator. L and K[G]
are, in a natural way, left K[G]-modules. The normal basis theorem can be
formulated by saying that there is a left K[G]-module isomorphism

(1) K[G] ∼= L.

The group algebra K[G] can be viewed as the set (G,K) of functions f :
G → K with a K[G]-module structure induced by (σf)(τ) = f(σ−1τ) for
all σ, τ ∈ G. In this context, (1) is equivalent to the existence of a left
K[G]-module isomorphism

(2) (G,K) ∼= L.

If L has infinite dimension over K, then the normal basis theorem is, of
course, not true any more. However, in [LH] two infinite analogues of (1)
and (2) are proved (see (3) and (4) below). The approach taken there is the
following: Denote by U the set of open normal subgroups N of G. Taking
into account the notations used later, we write N ′ ≺ N when N ⊆ N ′ are
open normal subgroups of G. For N ′ ≺ N , let the ring homomorphism
%N ′/N : K[G/N ] → K[G/N ′] be induced by the natural group homomor-
phism G/N → G/N ′. If N ∈ U , let LN = {y ∈ L | σ(y) = y for all
σ ∈ N}. Then LN is a finite Galois extension of K with Galois group
G/N . When N ′ ≺ N , we have the trace map TrN ′/N : LN → LN

′
given by

TrN ′/N (y) =
∑
σ∈N ′/N σ(y). Since U is a pre-ordered set with respect to

the relation ≺, we can define the inverse limits K[[G]] = lim←−N∈U K[G/N ]
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and L = lim←−N∈U L
N , taken with respect to the maps %N ′/N and TrN ′/N

respectively. L is in a natural way a left module over K[[G]].

1.1. Theorem. Let L ⊇ K be a Galois field extension with Galois group
G. Then there is a left K[[G]]-module isomorphism

(3) K[[G]] ∼= L.

Note that Mostowski [M] proved an analogous theorem already in 1955
for the case when the characteristic of K is zero.

If we replace (G,K) in (2) by C(G,K), the set of continuous functions
f : G→ K (where we let K have the discrete topology), then the following
theorem holds:

1.2. Theorem. Let L ⊇ K be a Galois field extension with Galois group
G. Then there is a left K[G]-module isomorphism

(4) C(G,K) ∼= L.

If S ⊇ R is a finite Galois ring extension (see Section 4 for our conventions
about Galois ring extensions) of commutative rings, where S is connected
(i.e. it has no non-trivial idempotents) and R is local, then a normal basis
exists for S ⊇ R (see e.g. [C]).

Recall that an ideal I of a ring R is called residually nilpotent if
⋂∞
n=1 I

n

= {0}. In that case {In}∞n=1 are a basis of neighbourhoods of zero of a
Hausdorff topology on R called the I-adic topology on R (see e.g. [BN]).
Using the same notation as in the field case, we will prove results analogous
to (3) and (4) that hold for some infinite Galois ring extensions:

1.3. Theorem. Let S ⊇ R be a Galois ring extension of commutative
rings with Galois group G. If S is connected and R is a local ring with a
residually nilpotent maximal ideal m such that R is compact in the m-adic
topology , then there is a left R[[G]]-module isomorphism

(5) R[[G]] ∼= S,

where S is defined as in the field case above, and there is a left R[G]-module
isomorphism

(6) C(G,R) ∼= S.

Note that neither (5) nor (6) holds if R is replaced by an arbitrary
connected ring, since it is well known that normal bases usually do not exist
under such general assumptions. However, it is not clear whether they hold
for local rings R, which do not satisfy the assumptions of the last theorem.

For some related results concerning normal bases for infinite Galois field
extensions see [LP, Theorem 1.3].
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2. Inverse limits of compact Hausdorff spaces. We recall the follow-
ing definitions. A set I is pre-ordered if it is equipped with a binary relation
≺ that is transitive and reflexive. A set I is directed if it is pre-ordered and
has the additional property that for any two α, β ∈ I there is γ ∈ I such
that α ≺ γ and β ≺ γ. An inverse system of topological spaces (Xα, fαβ)
relative to a set I consists of a pre-ordered set I, a topological space Xα for
each α ∈ I, and a continuous map fαβ : Xβ → Xα for each pair α, β ∈ I
with α ≺ β such that fαα = idXα

for each α ∈ I and fαβfβγ = fαγ for all
α, β, γ ∈ I with α ≺ β ≺ γ. The inverse limit of such a system, denoted by
lim←−α∈I Xα, is defined to be the set of all (xα)α∈I in

∏
α∈I Xα such that if

α, β ∈ I and α ≺ β, then fαβ(xβ) = xα.
Using [S, Theorem 3], we immediately get the following result about

inverse limits of compact Hausdorff spaces, which we need later:

2.1. Proposition. Let (Xα, fαβ) be an inverse system of non-empty
compact Hausdorff topological spaces relative to a directed set I. If all fαβ
are surjective, then the inverse limit lim←−α∈I Xα, taken with respect to the
maps fαβ , is non-empty.

3. Topology on group rings. Let R be a ring. We always assume that
R has a multiplicative unit 1R and that ring homomorphisms R → S map
1R to 1S . The multiplicative group of units of R is denoted by R∗. Recall
the following definitions: R is artinian (noetherian) if every non-empty set
of left ideals of R contains a minimal (maximal) element with respect to
inclusion. The Jacobson radical of R, denoted by J(R), is the intersection
of the maximal left (or right) ideals of R and R is semi-local if R/J(R)
is semi-simple artinian. We mention some well-known results about rings,
which we need later:

3.1. Proposition. Let R and S be rings.

(a) If R is semi-local and there is a surjective ring homomorphism R→
S, then the induced map R∗ → S∗ is surjective.

(b) If I is an ideal of S contained in J(S), then s ∈ S∗ if and only if
s+ I ∈ (S/I)∗.

(c) If S is finitely generated , as a left R-module, by elements s ∈ S such
that sS = Ss, then J(R)S ⊆ J(S).

P r o o f. (a) follows directly from [BH, Proposition (2.8)], (b) is [R, Lem-
ma 2.5.5] and (c) is [R, Corollary 2.5.30].

If R is a topological ring and H is a finite group, then we let the group
ring, R[H], of R and H be equipped with the topology induced by the
topology on R. If I is an ideal of R, then we always let R/I have the
quotient topology. A subset of a topological ring is always assumed to have
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the relative topology and a finite ring is always assumed to have the discrete
topology. We gather some elementary facts about topological rings:

3.2. Lemma. Let R and S be topological rings. Let H1 and H2 be finite
groups.

(a) If R is compact (Hausdorff), then R[H1] is compact (Hausdorff ).
(b) If there is a group homomorphism H1 → H2 and a continuous ring

homomorphism R → S, then the induced ring homomorphism R[H1] →
S[H2] is continuous.

(c) If there is a continuous ring homomorphism R→ S and S∗ is closed ,
then the induced group homomorphism R∗ → S∗ is continuous.

(d) If I is an ideal of S contained in J(S) such that S/I is a finite ring
and the natural map S → S/I is continuous, then S∗ is closed.

P r o o f. (a) This follows from the fact that a non-empty direct product
of compact (Hausdorff) topological spaces is compact (Hausdorff).

(b) This follows directly from the definition of a topological ring.
(c) Denote by f the continuous ring homomorphism R → S. Take a

closed subset C of S. Then (f |R∗)−1(C ∩ S∗) = R∗ ∩ f−1(C) ∩ f−1(S∗),
which, since S∗ is closed, is a closed subset of R∗.

(d) Denote the natural map S → S/I by n. By Proposition 3.1(b),
S∗ = n−1((S/I)∗), which is closed.

Combining Proposition 3.1 and Lemma 3.2 gives us the following results,
which we need in the sequel:

3.3. Proposition. Let R be a ring such that J(R) is residually nilpotent
and R is compact in the J(R)-adic topology. Let H1 and H2 be finite groups.

(a) R[H1]∗ is a compact and Hausdorff topological space.
(b) If there is a surjective group homomorphism H1 → H2, then the in-

duced group homomorphism R[H1]∗ → R[H2]∗ is continuous and surjective.

P r o o f. (a) By Lemma 3.2(a), R[H1] is compact and Hausdorff. The
quotient R/J(R), being both compact and discrete, must be finite. Hence
R[H1]∗ is, by Proposition 3.1(c) and Lemma 3.2(b),(d) (with S = R[H1]
and I = J(R)[H1]), compact and Hausdorff.

(b) By Proposition 3.1(a) the map R[H1]∗ → R[H2]∗ is surjective and
by Lemma 3.2(b),(c) it is continuous.

Note that if R is noetherian, then J(R) is residually nilpotent (see e.g.
[NM, Theorem (4.2)]).

4. Galois extensions. In this section, we prove Theorem 1.3.
Let S ⊇ R be a ring extension of commutative rings where S is con-

nected. The extension is called locally finite separable if every finite subset
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of S belongs to a finitely generated separable ring extension of R in S. Let
G be the set of R-automorphisms of S. The extension is called Galois with
Galois group G if it is locally finite separable and SG = R. In that case, a 1-1
dual correspondence between locally finite separable R-sub-algebras of S and
closed subgroups of G, in the usual sense of Galois theory, can be developed
(see [NT]). The extension is called finite if the Galois group is finite and it
is called infinite otherwise. In the finite case, the trace map TrS/R : S → R
is defined by TrS/R(s) =

∑
σ∈G σ(s) for all s ∈ S. Due to the lack of

appropriate reference, we give a proof of the following well-known facts:

4.1. Lemma. Let R′′ ⊇ R′, R′′ ⊇ R and R′ ⊇ R be finite Galois ring
extensions of commutative rings with R′′ connected. Suppose that R′ ⊇ R
has Galois group H.

(a) R[H]∗ acts transitively on the set of normal basis generators for
R′ ⊇ R.

(b) If x is a normal basis generator for R′′ ⊇ R, then TrR′′/R′(x) is a
normal basis generator for R′ ⊇ R.

P r o o f. (a) This follows directly from the fact that R′ is a free rank one
R[H]-module generated by any normal basis generator.

(b) Suppose that R′′ ⊇ R has Galois group H1. By the Galois cor-

respondence, R′ = R′′
H2 for some normal subgroup H2 = {γj} of H1.

Let H = {αi}. Choose {βi} ⊆ H1 such that βi|R′ = αi for all i. Then
H1 = {βiγj}. Since TrR′′/R′ is surjective (see e.g. [C]), the H-conjugates
of TrR′′/R′(x) span R′ over R. Suppose that

∑
i riαi(TrR′′/R′(x)) = 0 for

some {ri} ⊆ R. Then
∑
i,j riβiγj(x) = 0, which, since x is a normal basis

generator for R′′/R, implies that all ri = 0.

Proof of Theorem 1.3. We first prove (5). If we use Proposition 3.3, then
for every N ∈ U we can define a compact Hausdorff topology on R[G/N ]∗

induced by the m-adic topology in R. Pick a normal basis generator yN for
SN/R. For N ′ ≺ N define βN ′/N ∈ R[G/N ]∗ by the relation TrN ′/N (yN ) =
βN ′/N (yN ′). This is possible because of Lemma 4.1(a),(b). By Proposition
3.3, the functions γN ′/N : R[G/N ]∗ → R[G/N ′]∗ defined by γN ′/N (αN ) =
%N ′/N (αN )βN ′/N for all αN ∈ R[G/N ]∗ are continuous and surjective. It is
easy to check that (R[G/N ]∗, γN ′/N ) forms an inverse system of topological
spaces relative to U . By Proposition 2.1, the inverse limit lim←−N∈U R[G/N ]∗

taken with respect to the functions γN ′/N is non-empty. Pick (αN )N∈U ∈
lim←−N∈U R[G/N ]∗. For every N ∈ U , let xN = αN (yN ). By Lemma 4.1(a),
xN is a normal basis generator for SN/R. Then (xN )N∈U is a free generator
of the left R[[G]]-module S.

Now we prove (6). We proceed as in [LH]: From the proof of (5), we
obtain (xN )N∈U in

∏
N∈U S

N such that
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(i) if N ∈ U , then xN is a normal basis generator for SN/R, and
(ii) if N ′ ≺ N , then TrN ′/N (xN ) = xN ′ .

Let f ∈ C(G,R). Since G is compact and R is equipped with the discrete
topology, there is N ∈ U such that f is constant on τN for every choice of
τ ∈ G. We can therefore define a map fN : G/N → R induced by f . We
now define Φ : C(G,R)→ S by Φ(f) =

∑
σ∈G/N fN (σ)σ(xN ). By (ii), Φ is

well defined. It is clear that Φ is R-linear. By (i), Φ is bijective. It is easy to
check that Φ also respects the action of G.
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